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Abstract

Epigenetic mechanisms regulate the expression of virulence traits in diverse pathogens, including protozoan and fungi. In
the human fungal pathogen Candida albicans, virulence traits such as antifungal resistance, white-opaque switching, and
adhesion to lung cells are regulated by histone deacetylases (HDACs). However, the role of HDACs in the regulation of the
yeast-hyphal morphogenetic transitions, a critical virulence attribute of C. albicans, remains poorly explored. In this study,
we wished to determine the relevance of other HDACs on C. albicans morphogenesis. We generated mutants in the HDACs
HOS1, HOS2, RPD31, and HDA1 and determined their ability to filament in response to different environmental stimuli. We
found that while HOS1 and RPD31 have no or a more limited role in morphogenesis, the HDACs HOS2 and HDA1 have
opposite roles in the regulation of hyphal formation. Our results demonstrate an important role for HDACs on the regulation
of yeast-hyphal transitions in the human pathogen C. albicans.
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Introduction

Candida albicans is the most common fungal pathogen of

humans and is the fourth most common cause of nosocomial

bloodstream infections [1]. C. albicans pathogenesis depends on its

ability to transition between the yeast, pseudophyphal, and

hyphal cellular morphologies [2], and these transitions are

triggered by diverse environmental cues, including temperature,

serum, pH, and starvation [3]. Both the yeast and hyphal

morphologies are required for pathogenesis in animal models of

infection [4–6], and are required for the formation of normal

biofilms [7,8], a structure that increases antifungal drug resistance

and constitutes a source of inoculum for disseminated and

recurrent infections [9]. The different cellular morphologies can

also trigger immune tolerance or activation against C. albicans

[10–12]. Therefore, the ability to switch between morphologies

has pleiotropic effects on C. albicans interaction with the host and

on its ability to cause infection.

As epigenetic regulators of gene expression, chromatin

modifying enzymes regulate diverse aspects of C. albicans

biology. For example, histone modifying enzymes are required

for the regulation of virulence traits and for pathogenesis in C.

albicans [13–23]. Since the yeast-hyphal switch is critical for

pathogenesis, we investigated the role of histone deacetylases

(HDACs) in the regulation of this virulence trait. Here, we

screened mutants in HOS1, HOS2, RPD31, and HDA1 for a role

in C. albicans morphogenesis. We found that HOS1 and RPD31

have little to no role in morphogenesis, and that HOS2 and

HDA1 encode proteins with opposing roles in morphogenesis:

Hos2 functions as a repressor, while Hda1 functions as an

inducer of filamentation.

Results

Chromatin remodeling proteins effect diverse aspects of C.

albicans biology. Several histone modifying enzymes in C. albicans,

including the histone methyltransferase Set1 and the histone acetyl

transferase complex NuA4, are required for the expression of

virulence factors and for pathogenesis in vivo [16,21]. The yeast-to-

hyphal transition is one biological property of C. albicans required

for pathogenesis, and it is governed at least in part by epigenetic

processes [16,22]. To further address the role of chromatin

remodeling proteins and epigenetic regulation on pathogenesis, we

investigated the role of HDACs in the yeast-to-hyphal transition.

We identified Tn7::UAU1 insertion clones located close to the

START codon of HOS1 (orf19.4411), HOS2 (orf19.5377), and

RPD31 (orf19.6801) (Table 1). When available, two clones were

used to disrupt the same gene to enhance the robustness of the

approach. (Tn7::UAU1 insertions were identified within additional

HDACs, but these plasmids had complex or incomplete inserts

(data not shown)). We generated hos1/hos1, hos2/hos2, and rpd31/

rpd31 mutants using the Tn7::UAU1 insertional mutagenesis

system [24]. The hda1D/D mutant was generated by sequential

gene deletion using auxotrophic markers (Table 1). All mutants

were tested for filamentation in solid and liquid media (Figures 1

and 2 and Table 2). Since HOS1 and RPD31 had little effect on

filamentation (data not shown), we only describe the results for the

hos2/hos2 and hda1D/D mutants.

Several different environmental conditions induce the hyphal

morphology in C. albicans. Incubation at body temperature (37uC),

alkaline pH, starvation, and serum are some of the signals that

trigger hyphal morphogenesis in this fungus [3]. Further,

incubation on solid surfaces, liquid media, or embedment in a
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matrix also impact C. albicans morphogenetic responses [25,26].

Thus, we tested the ability of the HDACs mutants to filament in

several different environmental conditions, including solid and

liquid M199 pH 8, serum, and Spider media, solid SLAD

medium, embedded agar, and liquid media supplemented with

GlcNAc. The hos2/hos2 mutants consistently showed enhanced

filamentation compared to the wild-type strain on most solid

media tested (Figure 1). On M199 pH 8, the hos2/hos2 mutants

filamented robustly, and showed a homogeneous peripheral halo

of filamentation after 48 hrs of incubation, ,24 hrs earlier than

the wild-type strain (Figure 1 and data not shown). Similar results

were observed on Spider medium, in embedded agar, and on

serum (Figure 1). On SLAD, however, the hos2/hos2 mutants

showed either no filamentation or irregular filamentation around

some colonies (Figure 1 and data not shown). Complementation of

the hos2/hos2 mutation restored filamentation to wild-type levels in

all media except SLAD. Lack of complementation on SLAD

medium may indicate haploinsufficiency of HOS2, as reported

previously for other mutants grown on SLAD, such as gap1D/D
and gpr1D/D [27,28]. An independent hos2D/D start-to-stop

deletion mutant also showed enhanced filamentation, corroborat-

ing the results of the insertional mutations (data not shown). Thus,

Table 1. List of mutants in histone deacetylases, the mutagenesis strategies, and corresponding TIGR CAG clones.

ORF19 Gene Clone ID Mutagenesis strategy pDDB# Strain

orf19.4411 HOS1 36246 Tn7 insertion clone CAGLH56 362 DAY1249

orf19.5377 HOS2 51640 Tn7 insertion clone CAGN203 363 DAY1242

orf19.5377 HOS2 17390 Tn7 insertion clone CAGFC21 357 DAY1243

orf19.2772 HOS3 65221 Tn7 insertion clone CAGR472 365 DAY1248

orf19.6801 RPD31 38517 Tn7 insertion clone CAGJX54 361 DAY1247

orf19.6801 RPD31 32377 Tn7 insertion clone CAGH755 358 DAY1246

orf19.2606 HDA1 - Start-to-stop deletion DAY694

doi:10.1371/journal.pone.0012171.t001

Figure 1. HDACs regulate filamentation on solid media. Overnight cultures of C. albicans wild-type (DAY185), hos2/hos2 (DAY1252), hos2/hos2
+HOS2 (DAY1250), hda1D/D (DAY1240), and hda1D/D +HDA1 (DAY1241) strains grown in YPD at 30uC were: spotted onto M199 buffered to pH 8;
serially diluted in PBS up to ,100 CFU and plated on Spider and SLAD media; diluted 1:1000 in 2 ml fresh YPD, incubated 4 hrs at 30uC and 8 ml were
plated in embedded agar; streaked in synthetic complete medium supplemented with 4% bovine calf serum (BCS). All plates were incubated at 37uC,
except for embedded agar which was incubated at 23uC. A minimum of three independent repetitions for each filamentation assay was performed.
doi:10.1371/journal.pone.0012171.g001

HDACs Role in Filamentation
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Hos2 functions as an inhibitor of filamentation, except in

conditions of nitrogen starvation (SLAD) in which Hos2 function

is required for morphogenesis.

The hda1D/D mutant showed poor filamentation compared to

the wild-type strain on most solid media tested (Figure 1). On

M199 pH 8 and SLAD, the hda1D/D mutant did not filament. On

Spider medium, the hda1D/D mutant showed a slight but

reproducible smoother surface than the wild-type strain. In

embedded agar, the hda1D/D mutant showed poor filamentation.

On serum, the hda1D/D mutant showed a slight defect in hyphal

formation. Complementation of the hda1D/D mutation restored

filamentation to wild-type on M199 pH 8, Spider, embedded, and

serum media, and partially rescued the defects on SLAD. Thus,

Hda1 functions as an inducer of filamentation.

In liquid media, the hos2/hos2 strain filamented similarly to

wild-type in all media tested (Figure 2 and Table 2). The hda1D/

D mutant also filamented in all media tested, but the filaments of

the hda1D/D mutant appeared shorter than wild-type. Accord-

ingly, we detected a delay in hda1D/D mutant germ tube

formation in M199 pH 8 and Spider media compared to the

wild-type, hos2/hos2, and hda1D/D+HDA1 strains (Table 2). We

noted that the results obtained in liquid media were more

variable compared to solid media. Since changes in gene silencing

occurs over several generations [29,30], the rapid induction of

filamentation in liquid medium may be more susceptible to

variations than in solid media because of the differences in

incubation time (,1 hr vs .24 hrs, respectively). This difference

between liquid and solid medium filamentation may also be due

to the fact that liquid filamentation is assessed at the single cell

level while solid filamentation is assessed at the population

Figure 2. HDACs regulate filamentation in liquid media. Overnight YPD cultures of C. albicans wild-type (DAY185), hos2/hos2 (DAY1252), hos2/
hos2 +HOS2 (DAY1250), hda1D/D (DAY1240), and hda1D/D +HDA1 (DAY1241) strains were washed in PBS, diluted 1:100 in M199 pH 8, Spider,
YP+10% BCS, and YP+0.5% GlcNAc media and incubated 3 hrs at 37uC.
doi:10.1371/journal.pone.0012171.g002

Table 2. Germ tube formation delay of the hda1D/D mutant
in M199 pH 8 and Spider media.

Strain % germ tube ± SE

M199 pH 8 Spider

DAY185 Wild-type 62.562.4 71.264.3

DAY1252 hos2/hos2 69.862.8 71.064.2

DAY1250 hos2/hos2 + HOS2 66.163.4 77.563.2

DAY1240 hda1D/D 27.362.8** 55.263.8*

DAY1241 hda1D/D + HDA1 67.262.2 72.762.5

Mean (% germ tubes) 6 SE (Standard Error) of two independent experiments
(n = 6). * p,0.03, ** p,0.003. Statistical analysis was performed using two
tailed, paired T-Test.
doi:10.1371/journal.pone.0012171.t002
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(colony) level [29]. While the requirement for several generations

in order for silencing to be altered may explain the disparate

results for the hda1D/D mutant in solid vs. liquid media, it is also

possible that Hda1 might be associated with regulators of

filamentation that play a more prominent role in solid compared

to liquid media. Differences in the function of regulators of

hyphal formation in C. albicans when cells are incubated in solid,

semi-solid, or liquid media have been previously described

[25,26,31,32]. Overall, our results demonstrate that the HDACs

HOS2 and HDA1 have opposing roles in the regulation of hyphal

formation in C. albicans.

Discussion

Epigenetic mechanisms regulate virulence traits of diverse

microbes, including Trypanosoma brucei and Candida glabrata

[33,34]. Epigenetic mechanisms also regulate aspects of C. albicans

pathogenesis. Set1, a histone methyltransferase, the chromatin

remodeling complex Swi/Snf, the histone acetyltransferase NuA4

complex, and the HDAC Sin3 regulate morphogenesis, adherence

to epithelial cells, and/or are required for pathogenesis in animal

models [16,21,35]. Furthermore, histone acetylation, regulated by

the SAGA/ADA coactivator complex is required for the proper

response to oxidative stress and antifungals [23]. White-opaque

switching is regulated by transcriptional feedback loops and

HDACs [13,15,19,36]. HDACs function is also required for

antifungal resistance and adhesion to human pneumocytes

[14,17,18,20]. Therefore, epigenetic mechanisms play an impor-

tant role in the pathogenesis of C. albicans.

Here, we show that Hos2 and Hda1 regulate the yeast-to-

hyphal transition in opposing ways. Previously, Hos2 and Hda1

were reported to have opposing effects on white-opaque switching

[15,19]. This suggests that Hos2 and Hda1 may inversely govern a

common set of genes. Histone deacetylation is usually associated

with transcriptional repression [37,38]. However, HDACs are also

required for gene expression, and it has been proposed that

acetylation and deacetylation cycles are responsible for maintain-

ing promoter activity [39–41]. HDACs can deacetylate histones

globally (non-targeted deacetylation) or at specific promoters to

which they are tethered in complex with specific transcription

factor and other DNA binding proteins (targeted deacetylation)

[42,43]. Thus, one possible mechanisms of Hos2 and Hda1

function on filamentation in C. albicans is through the association

with transcriptional regulators of hyphal formation, including the

positive regulators Cph1, Cph2, Efg1, Tec1, Bcr1, Czf1, and/or

Rim101, and the negative regulators Nrg1, Tup1, Rfg1, and/or

Sfl1 [3,25,44–47]. For example, Hos2 and Hda1 have been

associated with Tup1 and Efg1 function in S. cerevisiae and C.

albicans, respectively. [48,49,50]. HDACs could also impact

filamentation by affecting the expression of the regulators

themselves [19,22] or by deacetylating transcription factors and

other non-histone proteins that have a direct or indirect role in

morphogenesis [40,43,51–55]. Thus, Hos2 and Hda1 might

impact hyphal formation through a diverse array of mechanisms.

Why is HOS2 required for filamentation in SLAD but acts as an

inhibitor of hyphal formation in all other conditions tested? In C.

albicans, hyphal formation on SLAD is modulated by transcription

factors, some of which function specifically during nitrogen

Table 3. C. albicans strains.

Strain Parent/Background Genotype Reference

DAY1 (BPW17) SC5314 ura3::limm434/ura3::limm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG [59]

DAY185 DAY286 ura3::limm434/ura3::limm434 pHIS1::his1::hisG/his1::hisG
ARG4::URA3::arg4::hisG/arg4::hisG

[24]

DAY1242 DAY1 ura3::limm434/ura3::limm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG
hos2::Tn7::ARG4/hos2::Tn7::URA3

This study

DAY1243 DAY1 ura3::limm434/ura3::limm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG
hos2::Tn7::ARG4/hos2::Tn7::URA3

This study

DAY1246 DAY1 ura3::limm434/ura3::limm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG
rpd31::Tn7::ARG4/ rpd31::Tn7::URA3

This study

DAY1247 DAY1 ura3::limm434/ura3::limm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG
rpd31::Tn7::ARG4/ rpd31::Tn7::URA3

This study

DAY1249 DAY1 ura3::limm434/ura3::limm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG
hos1::Tn7::ARG4/hos1::Tn7::URA3

This study

DAY694 DAY1 ura3::limm434/ura3::limm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG
<ra3::limm434/ura3::limm434 pHIS1::his1::hisG/his1::hisG arg4::hisG/arg4::hisG
hos2::Tn7::ARG4/hos2::Tn7::URA3

This study

DAY1241 DAY694 ura3::limm434/ura3::limm434 pHIS1::HDA1::his1::hisG/his1::hisG
arg4::hisG/arg4::hisG hda1::ARG4/hda1::URA3-dpl200

This study

DAY1240 DAY694 ura3::limm434/ura3::limm434 pHIS1::his1::hisG/his1::hisG arg4::hisG/arg4::hisG
hda1::ARG4/hda1::URA3-dpl200

This study

DAY1305 DAY1249 ura3::limm434/ura3::limm434 pHIS1::his1::hisG/his1::hisG arg4::hisG/arg4::hisG
hos1::Tn7::ARG4/hos1::Tn7::URA3

This study

DAY1306 DAY1246 ura3::limm434/ura3::limm434 pHIS1::his1::hisG/his1::hisG arg4::hisG/arg4::hisG
rpd31::Tn7::ARG4/ rpd31::Tn7::URA3

This study

DAY1307 DAY1247 ura3::limm434/ura3::limm434 pHIS1::his1::hisG/his1::hisG arg4::hisG/arg4::hisG
rpd31::Tn7::ARG4/ rpd31::Tn7::URA3

This study

DAY414 (L40) S. cerevisiae MATa his3D200 trp1-901 leu2-3,-112 ade2 LYS2::(lexAop)4-HIS3
URA3::(lexAop)8-lacZ GAL4

[60]

doi:10.1371/journal.pone.0012171.t003
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starvation, such as Gln3. It is possible that Hos2 is required for the

function of these specific transcription factors. Alternatively, loss of

Hos2 may promote expression of genes that inhibit morphogenesis

during nitrogen starvation. Thus, the hos2D/D effect on morpho-

genesis in C. albicans varies with the environmental conditions, a

phenomenon that has also been observed for the histone

deacetylase Set3 [50].

HDAC inhibitors have been proposed as antifungal adjuvants,

due to their effect on preventing antifungal resistance in vitro

[14,17,20]. However, no studies have shown the efficacy of HDAC

inhibitors as antifungals in vivo. These types of experiments become

even more critical in lieu of our and others findings that HDACs

have differential effects on hyphal formation. Previous reports

show conflicting in vitro results on the effect of different HDAC

inhibitors on germ tube formation in liquid serum [14,18].

However, inhibiting HDAC function could enhance filamentation

in semi-solid surfaces (Figure 1) (such as mucosas), possibly leading

to enhanced tissue invasion and biofilm formation, with the

potential to cause more damage and increase antifungal resistance

[56]. On the contrary, the use of specific HDAC inhibitors might

enhance antifungal effectiveness by limiting hyphal development

(e.g. against Hda1 (Figure 1)), or by limiting yeast development

(e.g. against Hos2 (Figure 1) and [55]). The critical role of HDACs

in C. albicans pathogenesis and survival to antifungal treatment

underscores the necessity to study HDAC function in this

organism. A combination of in vitro and in vivo studies that assess

the role of HDACs in biofilm development, genomic instability,

colonization, survival, and pathogenesis could determine the

potential of HDAC inhibitors as antifungal drugs. Overall, our

results contribute to demonstrate the importance of epigenetic

regulators in governing virulence traits in C. albicans, and support

the potential of HDAC inhibitors to prevent and/or treat candidal

infections.

Materials and Methods

Strains and plasmids
All C. albicans strains used in this study derive from C. albicans

strain BWP17 (Table 3). The hos1/hos1, hos2/hos2, and rpd31/

rpd31 strains were generated using the Tn7::UAU1 insertional

mutagenesis system [24] using clones obtained from TIGR.

Mutagenesis and selection of Tn7::UAU1 transformants was

performed using primers in Table 4 as previously described

[24]. The hda1D/D mutant DAY694 was constructed by

sequentially deleting both HDA1 alleles from the start to the stop

codon from BWP17 strain, using hda1::ARG4 and hda1::URA3-

dpl200 disruption cassettes PCR amplified with primers HDA1

5DR and HDA1 3DR (Table 4). The complemented and

prototrophic strains (Table 3) were constructed by transformation

with NruI digested plasmids pDDB503 for HOS2 complementa-

tion, pDDB504 for HDA1 complementation, and empty vector

pDDB78.

The HOS2 and HDA1 complementation vectors pDDB503 and

pDDB504 were constructed as follows. Wild-type HOS2 and

HDA1 open reading frames (ORF), together with ,1kb upstream

and 0.5kb downstream of the HOS2 and HDA1 ORF, were

amplified in high fidelity PCRs (Pfu Turbo DNA polymerase,

Stratagene) from BWP17 DNA using primers HOS2 DDB78

Table 4. Primers used in this study.

Name Sequence (59to 39) Reference

HOS2 DDB78 comp 59 acgacggccagtgaattgtaatacgactcactatagggcgccaatcacagaactcaaggc This study

HOS2 DDB78 comp 39 aagctcggaattaaccctcactaaagggaacaaaagctggctatcttgttaattgatggg This study

HDA1 59 comp aagctcggaattaaccctcactaaagggaacaaaagctggtcatctgctctccattgacg This study

HDA1 39 comp acgacggccagtgaattgtaatacgactcactatagggcggaatttaatgaacccgatgg This study

HDA1 5-1 comp atatatccatatccggctgg This study

HDA1 3-1 comp ttctggtatgcacgacggtg This study

ARG4-detect ggaattgatcaattatcttttgaac This study

FC21 5detect tttttacaatcgataactcc This study

FC21 3detect acgttggttgaaatttcgtg This study

N203 5detect ccaatatataaccataggag This study

N203 3detect ggcaatatctgacattcctg This study

H755 5detect gctgatattgggaattatgc This study

H755 3detect gcttcttcaacaccatcacc This study

JX54 5detect gccgccagattgaatcgtgg This study

JX54 3detect ccaccaactaccatcattgg This study

R472 5detect gcatttgaaacaacattgac This study

R472 3detect gccaataatcgttgtggacg This study

LH56 5detect cccgtccaataagggaagac This study

LH56 3detect caaccccatccccatgatgc This study

HDA1 3DR caatcttcggaagaggagtagtcttcaattgaatctaatatgaaatctactccttcatcgtggaattgtgagcggata This study

HDA1 5DR atgtcgactggtcaagaagaacatctagattctaagctagaaaatcaaatctcagaggatttcccagtcacgacgtt This study

HDA1 5-detect atagaagctaccattttcac This study

HDA1 3-detect agagatttcctagttatgtg This study

doi:10.1371/journal.pone.0012171.t004

HDACs Role in Filamentation
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comp 59 and HOS2 DDB78 comp 39, and HDA1 59 comp, HDA1

5-1 comp, HDA1 3-1 comp and HDA1 39 comp (Table 4). The

resulting PCR products were in vivo recombined in S. cerevisiae

strain L40 into a NotI/EcoRI-digested pDDB78 to generate

plasmids pDDB503 and pDDB504.

Media and growth conditions
C. albicans was routinely grown at 30uC in YPD (2% Bacto-

peptone, 2% dextrose, 1% yeast extract). For selection of Ura+,

Arg+, His+ or Trp+ transformants, synthetic medium without

uridine, arginine, histidine or tryptophan was used (0.17% yeast

nitrogen base without ammonium sulfate (Q-BioGene), 0.5%

ammonium sulfate, 2% dextrose, and supplemented with a

dropout mix containing amino and nucleic acids except those

necessary for the selection [57]). M199 medium (Gibco BRL) was

buffered at the indicated pH using 150mM HEPES. The

filamentation assays in solid media were performed in M199

medium buffered at pH 8, SLAD (0.17% yeast nitrogen base

without ammonium sulfate (Q-BioGene), 50 mM ammonium

sulfate, 2% dextrose), Spider medium (1% mannitol, 1% nutrient

broth, 0.2% K2HPO4, pH 7.2 before autoclaving) [58], embedded

agar (2% Bacto-peptone, 2% sucrose, 1% yeast extract) [25], and

synthetic medium supplemented with 4% bovine calf serum (BCS).

The filamentation assays in liquid media were performed in M199

pH 8, Spider, YP +0.5% N-acetyl glucosamine (GlcNAc), and YP

+ 10% fetal bovine serum (FBS) (Gibco). Filamentation assays

were conducted at 37uC except for embedded agar which was

incubated at 23uC. The liquid assays for filamentation were

performed as follows. Strains were grown overnight in liquid YPD

at 30uC, pelleted, resuspended in an equal volume of PBS and

diluted 1:100 in M199 pH 8, Spider, YP+GlcNAc or YP+FBS.

Samples were incubated at 37uC. The samples from Spider

medium were gently sonicated to disrupt clumping. The

percentage of cells forming germ tubes in M199 pH 8 medium

at 60 min or in Spider medium at 45 min was determined by

counting 300 cells/sample, in triplicate.

All media except that for selection of Ura+ transformants were

supplemented with 80 mg/ml uridine. For solid media, 2% Bacto-

agar was added, except for Spider medium and embedded agar

which required 1.35% and 1% Bacto-agar, respectively.

Microscopy
Pictures of colonies were taken using a Canon Powershot A560

digital camera on a Zeiss Opton microscope. Images of liquid

cultures were captured using a Zeiss Axio camera, Axiovision 4.6.3

software (Zeiss), and a Zeiss AxioImager fluorescence microscope.

All images were processed with Adobe Photoshop 7.0 software.
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