
RESEARCH ARTICLE

A Weibull distribution accrual failure detector

for cloud computing

Jiaxi Liu, Zhibo Wu, Jin Wu, Jian Dong*, Yao Zhao, Dongxin Wen

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province,

China

* hitljx@gmail.com

Abstract

Failure detectors are used to build high availability distributed systems as the fundamental

component. To meet the requirement of a complicated large-scale distributed system,

accrual failure detectors that can adapt to multiple applications have been studied exten-

sively. However, several implementations of accrual failure detectors do not adapt well to

the cloud service environment. To solve this problem, a new accrual failure detector based

on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed

specifically for cloud computing. It can adapt to the dynamic and unexpected network condi-

tions in cloud computing. The performance of the Weibull Distribution Failure Detector is

evaluated and compared based on public classical experiment data and cloud computing

experiment data. The results show that the Weibull Distribution Failure Detector has better

performance in terms of speed and accuracy in unstable scenarios, especially in cloud

computing.

Introduction

Cloud computing has become a new computing model that provides elastic, on-demand and

robust services [1]. Services in cloud computing may be virtualized with specific servers that

host abstracted details [2]. Many legacy applications are being migrated to the cloud comput-

ing platform [3–4]. In cloud computing, the cloud service environment can be dynamic and

unexpected because servers may be active, busy, offline or may have even crashed for various

reasons [5]. It is important to address the variability and provide an effective control scheme

to guide service conditions and cloud resources (such as energy and throughput management

[6–7]). Fault tolerance schemes are designed to provide reliable and continuous services in

cloud computing despite the failures of some servers [8–10]. As an essential building block for

cloud computing, a failure detector (FD) plays a key role in the engineering of such dependable

systems [11]. Effective failure detection can detect failures in a timely and accurate way. In

cloud computing, the FD adapts to the various network conditions. Moreover, it is necessary

to satisfy different quality of service (QoS) requirements of multiple cloud applications simul-

taneously [12].

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Liu J, Wu Z, Wu J, Dong J, Zhao Y, Wen

D (2017) A Weibull distribution accrual failure

detector for cloud computing. PLoS ONE 12(3):

e0173666. doi:10.1371/journal.pone.0173666

Editor: Houbing Song, West Virginia University,

UNITED STATES

Received: October 16, 2016

Accepted: February 25, 2017

Published: March 9, 2017

Copyright: © 2017 Liu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All data files are

available from the https://figshare.com/s/

5297ddc238766def6afc and supporting

information file.

Funding: This work is supported by National

Natural Science Foundation of China (No.

61100029 and 61370087); the website is http://

www.nsfc.gov.cn/. Jian Dong is responsible for

organizing and implementing the project

61100029, while Dongxin Wen is responsible for

organizing and implementing the project

61370087.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173666&domain=pdf&date_stamp=2017-03-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173666&domain=pdf&date_stamp=2017-03-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173666&domain=pdf&date_stamp=2017-03-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173666&domain=pdf&date_stamp=2017-03-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173666&domain=pdf&date_stamp=2017-03-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173666&domain=pdf&date_stamp=2017-03-09
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://figshare.com/s/5297ddc238766def6afc
https://figshare.com/s/5297ddc238766def6afc
http://www.nsfc.gov.cn/
http://www.nsfc.gov.cn/


The accrual FD, proposed by Defago [13], provides a flexible mechanism for failure detec-

tion in large-scale distributed systems. It allows a decoupling between the monitoring and

interpretation of traditional FDs and outputs a continuous value associated with time to repre-

sent the suspicion level of the detected process rather than binary results (trust or suspect).

Thus, this FD is suitable for deployment in cloud computing. In accrual FD, it is necessary to

compute the suspicion level based on the distribution of past heartbeat inter-arrival times. In

[14–15], the heartbeat inter-arrival time follows a normal and exponential distribution, respec-

tively. However, the cloud service environment is dynamic and unexpected; such a situation

was exacerbated when mobile cloud computing emerged. The existing distribution assump-

tions of heartbeat inter-arrival time are not reasonable for the cloud computing scenario. To

find a reasonable distribution assumption, we select two groups of actual data (from WAN

and the cloud computing platform) to analyze the distribution of heartbeat inter-arrival time.

The results show that the Weibull distribution is a more reasonable distribution assumption

for heartbeat inter-arrival time in cloud computing.

Therefore, an accrual FD based on the Weibull distribution is proposed, called Weibull Dis-

tribution Failure Detector (WD-FD). In WD-FD, a sliding window is used to maintain the

most recent samples of the arrival time. These samples are used to estimate the parameters of

the Weibull distribution. With such situation information, the suspicion level wd is calculated

to match the recent network condition. WD-FD can adapt well to the dynamic and unstable

network conditions in cloud computing. The QoS of our algorithm has been evaluated and

compared to the existing failure detection algorithms in terms of mistake rate, detection time

and query accuracy probability. The experimental results demonstrate that WD-FD has better

performance than other FDs in cloud computing.

The rest of this paper is organized as follows. In section II, the related work of failure detec-

tors is introduced. Section III introduces the system model and presents the implementation of

WD-FD. Section IV presents experiments on WAN and cloud computing. Finally, the work is

concluded in section V.

Related work

In this section, we first introduce the failure detection QoS metrics and then present the several

existing main accrual FDs.

Failure detection QoS metrics

A FD provides an information list of suspects due to which processes have crashed [16]. FDs

are used in a wide variety of fields, such as grid computing [17], cluster management [12],

peer-to-peer networks, and cloud computing [18]. In practice, many applications require

some timing constraint on the behaviors of FDs. It is not acceptable that a process is suspected

hours after it has crashed or the FD outputs several false positives. To solve this problem, Chen

[19] proposed a series of metrics to specify the QoS of FD: how fast it detects actual failures

and how well it avoids false detections. These metrics can quantitatively represent the detec-

tion speed and accuracy. We use T or S to represent whether a process is trusted or suspected.

T-transition means that the output of the detector changes from S to T, while S-transition

means that the output of the detector changes from T to S. The following three primary metrics

are used to describe the QoS of a FD.

Detection time (TD) is the time that elapses from the moment when a process crashes to the

time when it starts being suspected, i.e., when the final S-transition occurs.

Mistake rate (λm) is the number of mistakes that a FD makes per unit time, i.e., it represents

how frequently a FD makes mistakes.

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 2 / 16

Competing interests: The authors have declared

that no competing interests exist.



Query accuracy probability (PA) is the probability that the output of a FD is correct at a ran-

dom time.

The first metric is related to a failure detector’s speed, while the remaining relate to its accu-

racy. In many cases, the mistake rate is not sufficient to describe the accuracy of a FD; simulta-

neously, the query accuracy probability is also needed. For example, Fig 1 shows that both FD1

and FD2 are detecting the process p. The two FDs have the same mistake rate (0.125) but dif-

ferent query accuracy probabilities (0.75 and 0.5).

Accrual failure detector

Defago proposed a flexible mechanism for failure detection in a large-scale system, i.e., an

accrual failure detector, which can adaptively satisfy various QoS requirements of different

applications. It outputs a continuous value (slqp(t)) to represent the suspicion level of the moni-

tored process instead of providing information regarding a conventional binary nature (trust

or suspect). An accrual FD will belong to the class �Pac if it satisfies the following properties:

Accruement: if process p is faulty, then eventually the suspicion level slqp(t) monotonously

increases at a positive rate.

Upper bound: if process p is correct, then the suspicion level slqp(t) is bounded.

The φ FD [14] is the first implementation of accrual FD. It uses the heartbeat detection

strategy as the basic detection strategy. Furthermore, it assumes that the heartbeat inter-arrival

time follows a normal distribution. Therefore, the value of φ can be calculated as follows:

φðTnowÞ ¼ � log10
ðPlaterðTnow � TlastÞÞ ð1Þ

where Tlast is the time when the most recent heartbeat is received, Tnow is the current time, and

Plater(t) is the probability a heartbeat will arrive more than t time units later than the previous

one. According to the assumption of heartbeat inter-arrival time, Plater(t) is given by the fol-

lowing equation:

PlaterðtÞ ¼
1

s
ffiffiffiffiffiffi
2p
p

Z 1

t
e
ðx� mÞ2

2s2 dx ¼ 1 � FðtÞ ð2Þ

where F(t) is the cumulative distribution function of a normal distribution with μ and variance

σ2. When the applications query the φ FD at time Tnow, φ FD will return a value φ to them.

Then, each application compares the value of φwith its threshold F, which is given by different

QoS requirements of multiple applications simultaneously.

The ED FD is similar to the φ FD. The difference is in the distribution assumption of heart-

beat inter-arrival time. ED FD assumes that the heartbeat inter-arrival time follows an

Fig 1. Query accuracy probability and mistake rate.

doi:10.1371/journal.pone.0173666.g001

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 3 / 16



exponential distribution. Consequently, the suspicion level is given by a value, called ed, which

is calculated as follows:

ed ¼ FðTnow � TlastÞ ð3Þ

FðtÞ ¼ 1 � e� tm ð4Þ

where Tnow, Tlast and μ have the same meaning as for the φ FD. For this FD, the threshold is

called Ed.
In this section, the related work in the area of failure detection for distribution systems has

been introduced. The implementations of accrual FD, i.e., φ FD and ED FD, are suitable for

large-scale distributed systems. However, with the emergence of cloud computing, these FDs

do not adequately comply with the new network conditions.

An accrual failure detector based on Weibull distribution

In this section, the system model is firstly introduced. Second, two groups of data from differ-

ent network conditions (WAN and cloud computing) are analyzed. Third, the implementation

of WD-FD is described precisely. Finally, the correctness of the WD-FD algorithm is proven.

System model

We consider a partially synchronous system consisting of a finite set of processes P = {P1, P2,

. . ., Pn}. Each process behaves correctly until it crashes and is unable to recover. Any two pro-

cesses can be connected by an unreliable communication channel. Because most FDs are

implemented using the UDP protocol, we assume that the communication channel between

processes is a fair-lossy channel [20], i.e., no message can be copied or modified and no new

message can be created, and if a process p continues sending a messagem to q, q will eventually

receivem.

We assume the existence of some global time (unbeknownst to processes), denoted as

global stabilized time (GST), and that processes always make progress; furthermore, at least δ
> 0 time units elapse between consecutive steps (the purpose of the latter is to exclude the case

where processes require an infinite number of steps in finite time).

To simplify the description, consider a system that consists of only two processes p and q,
where q is monitoring p. Process p sends a message to q every Δt time (sending interval) or is

subject to crashing. Process q suspects process p if it does not receive any heartbeat message

from p for a period of time determined by the freshpoint.

Analysis of heartbeat inter-arrival time

To find a reasonable distribution assumption of heartbeat inter-arrival time, two groups of

data from different platforms of WAN and cloud computing are analyzed. One group of data

from WAN is classical experimental data [21] that has been used with φ FD [14]. The experi-

ment exceeded one week, and more than 5 million samples were received. The average inter-

arrival time of received samples is 103.9 ms, with a standard deviation of approximately 104.1

ms. The other group of data from cloud computing was collected by renting the Amazon EC2.

The experiment lasted for 3 months, and 3 million samples were received. The average inter-

arrival time of received samples is 2.12 s, with a standard deviation of approximately 0.1032 s.

The cumulative distribution function of data from WAN is primarily analyzed by using the

dfittool toolbar in MATLAB. The confidence level is set to 95%; then, three classical distribu-

tions (normal, exponential and Weibull distribution) are applied to fit the data. In Fig 2, the

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 4 / 16



curve shows that the Weibull distribution is the nearest to the distribution of actual data. A

similar result is obtained in the cloud computing experimental platform, as shown in Fig 3.

According to these outcomes, it is clear that the Weibull distribution is the closest to real fig-

ures. Therefore, the Weibull distribution is a more reasonable assumption for the approxima-

tion of heartbeat inter-arrival time under unstable network conditions.

Weibull distribution failure detector

Based on the above analysis of heartbeat inter-arrival time, we can assume that the heartbeat

inter-arrival time follows the Weibull distribution. Therefore, the suspicion level of an accrual

FD can be calculated as follows:

wdðTnowÞ ¼ FðTnow � TlastÞ ð5Þ

where F(t) is a Weibull distribution function and one has

RðtÞ ¼ 1 � FðtÞ ¼ e� ðt=aÞb ð6Þ

Fig 2. Probability distribution vs. inter-arrival time in WAN.

doi:10.1371/journal.pone.0173666.g002

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 5 / 16



when t> 0, and the parameters α and β can be computed via the least square method, which is

described as follows.

According to Eq (6), the corresponding reliability function is

RðtÞ ¼ 1 � FðtÞ ¼ e� atb ð7Þ

To achieve a Weibull distribution transformation, we can consider the following equations:

y ¼ lnð� lnð1 � FðtÞÞÞ ð8Þ

x ¼ lnt ð9Þ

Thus, Eq (7) is eventually converted to

y ¼ yðxÞ ¼ bðx � lnaÞ ð10Þ

Fig 3. Probability distribution vs. inter-arrival time in cloud computing.

doi:10.1371/journal.pone.0173666.g003

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 6 / 16



For the samples of heartbeat inter-arrival time (t1, t2, � � �, tn) in the sliding window, the

value of R(ti) (i = 1, 2, � � �, n) in Eq (7) can be computed based on the reliability estimation of

complete data. We have

RðtiÞ ¼ 1 � ði � 0:5Þ=n ð11Þ

According to Eq (7), we can obtain the array column ((t1, F(t1)), (t2, F(t2)), � � �, (tn, F(tn))). It

is converted to a new array column ((x1, y1), (x2, y2), � � �, (xn, yn)) by using Eqs (8) and (9). The

sums of squared deviations are defined as

Q ¼
Xn

i¼1
ðyi � bðti � lnaÞÞ

2

ð12Þ

The aim of the least square method is to find the estimated values of α and β that can mini-

mize the sums of squared deviations. Specifically, we need to take the partial derivatives of

parameters α and β and set the partial derivatives to 0. Then, we can get

b ¼
Lty
Ltt
¼

Xn

i¼1
ðti � �tÞðyi � �yÞ

Xn

i¼1
ðti � �tÞ2

ð13Þ

a ¼ expð�t � �y=bÞ ð14Þ

In Eqs (13) and (14), the parameters �t and �y can be calculated by solving �t ¼ 1

n

Xn

i¼1

ti and

�y ¼ 1

n

Xn

i¼1

yi.

As an accrual FD, the method used in WD-FD is quite simple. After the warm-up period,

when a new heartbeat arrives, the inter-arrival time is put into a sliding window; simulta-

neously, the former oldest one is pushed out of the sliding window. Afterwards, the arrival

time in the sliding window is used to calculate the parameters α and β of the Weibull distribu-

tion. Then, based on Eqs (5) and (6), we can calculate the current value of wd. Eventually,

applications will compare the wd value with its thresholdWd; then, they will carry out some

actions or start to suspect the process. Detailed information regarding the implementation of

WD-FD is shown in Fig 4.

WD-FD is unable to get the communication delay from the sender to the receiver when it is

lost. To ensure the effectiveness of the proposed approach, considering the influence of the

message loss, we use the time theory to fill in the gap. Specifically, we fill in the gaps with a

value computed by solving di = (Δ � hi) + di−1, where Δ represents the average inter-arrival time

in the sliding window and himeans the average number of observed adjacent gaps.

Correctness proof

From the theory point-of-view, the WD-FD can satisfy the accruement property and upper

bound property. Therefore, our FD belongs to class �Pac, which is sufficient to solve the con-

sensus problem. The WD-FD implements a FD of class �Pac under the condition of the system

model defined in section III. The evidence is as follows.

If process p is faulty, the most recent arrival time of heartbeat tlast is constant; at time slot tk,
the suspicion level wd will be

slqpðtkÞ ¼ wdðtkÞ ¼ 1 � e� ððtk � tlastÞ=aÞb ð15Þ

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 7 / 16



As time passes, in time slot tk+1, the suspicion level is

slqpðtkþ1Þ ¼ wdðtkþ1Þ ¼ 1 � e� ððtkþ1 � tlastÞ=aÞb ð16Þ

Because tk< tk+1, we get

� ððtkþ1 � tlastÞ=aÞ
b
� � ððtk � tlastÞ=aÞ

b
ð17Þ

Fig 4. WD-FD algorithm.

doi:10.1371/journal.pone.0173666.g004

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 8 / 16



e� ððtkþ1 � tlastÞ=aÞb � e� ððtk � tlastÞ=aÞb ð18Þ

Accordingly,

1 � e� ððtkþ1 � tlastÞ=aÞb � 1 � e� ððtk � tlastÞ=aÞb ð19Þ

This means that

slqpðtkþ1Þ � slqpðtkÞ ð20Þ

At time slot tk+Q, Q> 0, tk+Q> tk, using the above method and conclusion, we can get

slqpðtkþQÞ > slqpðtkÞ ð21Þ

Therefore, the WD-FD satisfies the accruement property. Next, we continue to prove that

the WD-FD satisfies the upper bound property.

If process p is correct, based on the system model, process p always makes progress in finite

steps after some global time GST, i.e., q eventually receives the heartbeat from p. In other

words, there exists tmax when the heartbeat from p arrives at q. At any arbitrary time t, where t
� tmax,

slqpðtmaxÞ ¼ wdðtmaxÞ ¼ 1 � e� ððtmax � tlastÞ=aÞb ð22Þ

slqpðtÞ ¼ wdðtÞ ¼ 1 � e� ððt� tlastÞ=aÞb ð23Þ

Based on the accruement property, we know that slqp(t)� slqp(tmax) = SLmax. Thus, the

WD-FD satisfies the upper bound property.

Performance evaluation

To evaluate and analyze the performance of WD-FD, we choose similar φ FD and ED FD for

comparative experiments, both of which are accrual FDs. To increase the authenticity of the

comparative experiments, we first used classical experimental data obtained from a WAN

environment and applied φ FD and ED FD. The experimental data were obtained in a WAN

environment. Furthermore, we rented the cloud services of Amazon and built the experimen-

tal platform to present the performance of WD-FD. We referred to the method in paper [2],

i.e., making use of the same trace files to replay the different schemes of FDs, and calculated

the QoS metrics. This method could ensure that all of the schemes of FDs are compared under

the same network conditions.

For the WAN scenario, the experiment involved two computers: one located in Japan and

the other in Switzerland. The two computers communicated through a normal intercontinen-

tal Internet connection. One machine was responsible for sending heartbeats while the other

for recording the arrival time of each heartbeat. Neither machine failed during the experiment.

The heartbeats were sent with a target of one heartbeat every 103.501 ms (standard deviation:

0.19 ms; min.: 101.7 ms; max.: 234.3 ms). During the experiment, the round-trip time (RTT)

was measured to be at a low rate. The average RTT was 283.3 ms, with a standard deviation of

207.3 ms, minimum of 270.2 ms, and maximum of 717.8 ms. More than 5 million heartbeats

were received, and the loss rate was approximately 0.4%.

For the cloud computing scenario, an experimental platform was built by renting the Ama-

zon EC2. Some servers located in Tokyo, Singapore, and Oregon (USA) were selected to pro-

vide a query service based on the Web. These servers were equipped with a 2.5 GHz Intel Xeon

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 9 / 16



processor, 1 GHz of memory and the Red Hat Linux 7.2 operating system. We assumed that

the client had already known the network address of the three servers. The client in Harbin

(China) connected the server first in Oregon and then in Singapore and Tokyo; the service was

stopped via the fault injection method. The experimental environment is shown in Fig 5. The

sending interval was set to 2 s, while the measured sending rate was actually one heartbeat

every 2.092 s (standard deviation: 0.019 s; min.: 1.964 s; max.: 5.239 s). During the experiment,

the average RTT was 0.1792 s, with a standard deviation of 0.0086 s, minimum of 0.1187 s, and

maximum of 14.505 s. More than 3 million heartbeats were received, with a loss rate of approx-

imately 0.72%.

In the experiments, each FD scheme applied a sliding window to save past samples to com-

pute their future suspicion levels. All of the experiments for the three FDs shared the same

fixed window size (WS = 1000). Furthermore, we did not analyze the sampled data until the

sliding window was full, as the behavior of the FDs is stable only after that moment.

The parameters of FDs are configured as follows: to find the best QoS and compare with

the others, here, Ed 2 [10−4,10] for ED FD, as in [15]; for φ FD, the parameters are the same as

those in [14]: F 2 [0.5, 16];Wd 2 [0, 1] for WD-FD.

In the experiments, the mistake rate, detection time and query accuracy probability were

selected as the key performance metrics. Different values of these metrics were obtained in

each experiment based on the respective parameters.

In all experiments, we calculate an estimation for average detection time TD as follows.

Assuming that a crash would occur exactly after successfully sending a heartbeat (worst-case

scenario), we measure the time elapsed until the FD would report a suspicion for each analyzed

sample. With φ, ED and WD FDs, we consider the algorithms’ threshold values (F, Ed and

Wd) and reverse the computation of φ, ed and wd to obtain the equivalent timeout each time a

new heartbeat is received and take the mean value Δto. We estimate the mean propagation time

Δtr based on RTT. Then, for each sample, we compute the average (worst-case) detection time

as follows.

TD � Dto þ Dtr ð24Þ

Fig 5. The experimental environment of cloud computing.

doi:10.1371/journal.pone.0173666.g005

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 10 / 16



Experiment in a WAN

Fig 6 shows the results of the mistake rate λM vs. detection time TD in the WAN scenario. The

x-coordinate represents the detection time, and the y-coordinate represents the mistake rate.

Fig 7 shows the results of query accuracy probability PA vs. detection time TD in the same

scenario.

From the figures, we found that all of the FDs follow the same general tendency. However,

our FD outperforms the others in the WAN scenario. This improvement is because most late

heartbeats were caught by the corresponding thresholds under the same network conditions.

In Fig 6, when 0.25s< TD< 0.285s, φ FD has a lower mistake rate than ED FD. In the WAN

scenario, losing a single heartbeat is considered a normal situation [14]. The lost heartbeats

influenced the calculation of the timeout value Δto. More heartbeats were caught by φ FD;

thus, it has a lower mistake rate than ED FD during that period. The Weibull distribution can

be converted to an exponential distribution when the parameter β = 1. Moreover, the Weibull

distribution is similar to the normal distribution when the parameter β> 1. Thus, our pro-

posed FD can catch more heartbeats than other FDs such that the mistake rate is reduced.

Fig 6. Mistake rate vs. detection time in WAN.

doi:10.1371/journal.pone.0173666.g006

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 11 / 16



From Fig 7, when TD< 0.345s, our FD has higher query accuracy probability than the others.

With increasing detection time, our FD and ED FD have similar query accuracy probability

when 0.345s< TD< 0.46s. In the aggressive range (TD< 0.5s), our FD presents the lowest mis-

take rate (an improvement up to 20%), as well as the best query accuracy probability for the

most measured detection time.

Experiment in cloud computing

Figs 8 and 9 show the results of the mistake rate λM and query accuracy probability PA vs.

detection time TD in the cloud computing scenario. Similar to the result in the WAN scenario,

the mistake rate and query accuracy probability of all of the FDs have an identical tendency

with increasing detection time. In Fig 8, φ FD and ED FD turn earlier compared with WD-FD.

This is because the heartbeats loss tends to occur during the period of switching servers. In

such a network condition, WD-FD can catch more heartbeats than the others. It presents the

lowest mistake rate (an improvement of up to 80%) when TD> 2.42s. In Fig 9, our FD has an

obvious improvement (approximately 6%) compared with ED FD. Furthermore, when the

Fig 7. Query accuracy probability vs. detection time in WAN.

doi:10.1371/journal.pone.0173666.g007

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 12 / 16



mistake rate or query accuracy probability is the same, our FD has a shorter detection time. In

cloud computing, WD-FD behaves better than the other FDs in terms of low mistake rate,

short detection time and high query accuracy probability.

From all of the above results, the WD-FD presents the best performance in scenarios of

unstable network conditions (especially in cloud computing) when compared to the most rele-

vant existing algorithms for failure detection. WD-FD is an effective improvement over ED

FD and φ FD in terms of low mistake rate, short detection time and high query accuracy

probability.

Conclusion

Failure detection plays a very important role in dependable distributed systems. In this paper,

we introduced the WD-FD based on the Weibull distribution. It has been proven that WD-FD

is an accrual FD of class �Pac. By using the Weibull distribution to estimate the distribution of

heartbeat inter-arrival time, the WD-FD can adapt well to changing network conditions (espe-

cially the cloud service environment) and the requirements of any number of concurrently

running applications. Moreover, the information of processes’ failures is useful to guide service

Fig 8. Mistake rate vs. detection time in cloud computing.

doi:10.1371/journal.pone.0173666.g008

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 13 / 16



conditions and cloud resources in cloud computing. Through comparative experiments, the

results showed that WD-FD demonstrates a better performance in terms of false detections

when compared to existing accrual FDs in cloud computing. Therefore, WD-FD is a suitable

layout in cloud computing for providing the failure detection service.

Supporting information

S1 File. Cloud.zip.

(ZIP)

S2 File. Wan.zip.

(ZIP)

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61100029

and 61370087).

Fig 9. Query accuracy probability vs. detection time in cloud computing.

doi:10.1371/journal.pone.0173666.g009

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173666.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173666.s002


Author Contributions

Conceptualization: JL JD.

Data curation: JL JW.

Formal analysis: JL.

Funding acquisition: JD DW.

Investigation: JL YZ.

Methodology: JL JD.

Project administration: JL.

Resources: JL JD JW YZ.

Software: JL JW.

Supervision: JL ZW JD DW.

Validation: JL ZW DW.

Writing – original draft: JL.

Writing – review & editing: JL ZW JD DW.

References
1. Lin R, Wu B, Yang F, Zhao Y, Hou J. An efficient adaptive failure detection mechanism for cloud plat-

form based on volterra series. China Communications. 2014 June 9; 11(4): 1–12.

2. Xiong N, Vasilakos AV, Wu J, Yang YR, Rindos A, Zhou Y, et al. A self-tuning failure detection scheme

for cloud computing service. Proceedings of 26th IEEE Internaitoal Parallel and Distributed Processing

Symposium (IPDPS 2012); 2012 May 21–25; Shanghai, China: IEEE, 2012. p. 668–679.

3. Butun I, Erol-Kantarci M, Kantarci B, Song H. Cloud-centric multi-level authentication as a service for

secure public safety device networks. IEEE Communications Magazine. 2016 Apr. 19; 54(4): 47–53.

4. Shojafar M, Canali C, Lancellotti R, Abawajy J. Adaptive Computing-plus-Communication Optimization

Framework for Multimedia Processing in Cloud Systems. IEEE Transactions on Cloud Computing.

2016 Oct. 13: 1–1.

5. Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S. Dcell: a scalable and fault-tolerant network structure for

data centers. Proceedings of 2008 ACM SIGCOMM 2008; 2008 Aug. 17–22, Seattle, USA: ACM; 2008.

p. 75–86.

6. Wei W, Fan X, Song H, Fan X, Yang J. Imperfect Information Dynamic Stackelberg Game Based

Resource Allocation Using Hidden Markov for Cloud Computing. IEEE Transcations on Services Com-

puting. 2016 Feb. 29:1–1.

7. Shojafar M, Cordeschi N, Baccarelli E. Energy-efficient adaptive resource management for real-time

vehicular cloud services. IEEE Transcations on Services Computing. 2016 Apr. 7: 1–1.

8. Tomsic A, Sens P, Garcia J, Arantes L, Sopena J. 2W-FD: A failure detector algorithm with qos. Pro-

ceedings of 30th IEEE Internaitoal Parallel and Distributed Processing Symposium (IPDPS 2015); 2015

May 25–29; Chicago, USA: IEEE; 2015. p. 885–893.

9. Ganga K, Karthik S. A fault tolerent approach in scientific workflow systems based on cloud computing.

Proceedings of 2013 International Conference on Pattern Recognition, Informatics and Mobile Engi-

neering (PRIME 2013); 2013 Feb. 21–22; Salem, India: IEEE; 2013. p. 387–390.

10. Fetzer C, Raynal M, Tronel F. An adaptive failure detection protocol. Proceedings of 8th Pacific Rim

International Symposium on Dependable Computing (PRDC 2001); 2001 Dec. 17–19; Seoul, Korea:

IEEE; 2001. p. 146–153.

11. Takeuchi K, Tanaka T, Yano T. Asymptotic analysis of general multiuser detectors in MIMO DS-CDMA

channels. IEEE Journal on Selected Areas in Communications. 2008 Apr. 3; 26(3): 486–496.

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 15 / 16



12. Lavinia A, Dobre C, Pop F, Cristea V. A failure detection system for large scale distributed systems. Pro-

ceedings of 4th International Conference on Complex, Intelligent and Software Intensive Systems

(CISIS 2010); 2010 Apr. 15; Krakow, Poland: IEEE, 2010. p. 482–489.

13. Défago X, Urbán P, Hayashibara N, Katayama T. Definition and specification of accrual failure detec-

tors. Proceedings of 35th International Conference on Dependable Systems and Networks (DSN’ 05);

2005 June 28-July 1; Yokohama, Japan: IEEE, 2005. p. 206–215.

14. Hayashibara N, Defago X, Yared R, Katayama T. The φ accrual failure detector. Proceedings of 23rd

IEEE International Symposium on Reliable Distributed Systems; 2004 Oct. 18–20; Florianpolis, Brazil:

IEEE, 2004. p. 66–78.

15. N. Xiong, X. Défago. “ED FD: Improving the Phi accrual failure detector,” JAIST, 2007.

16. Chandra TD, Toueg S. Unreliable failure detectors for reliable distributed systems. Journal of the ACM

(JACM). 1996 Mar. 4; 43(2), 225–267.

17. Horita Y, Taura K, Chikayama T. A scalable and efficient self-organizing failure detector for grid applica-

tions. Proceedings of 6th IEEE/ACM International Workshop on Grid Computing; 2005 Nov. 13–13;

Washington, USA: IEEE, 2005. p. 202–210.

18. Wang F, Jin H, Zou D, Qiang W. FDKeeper: A Quick and Open Failure Detector for Cloud Computing

System. Proceedings of the 2014 International C* Conference on Computer Science & Software Engi-

neering; 2014 Aug. 3–5; Montreal, Canada: ACM, 2014. p. 14.

19. Chen W, Toueg S, Aguilera MK. On the quality of service of failure detectors. IEEE Transactions on

computers. 2002 Aug. 7. 51(5), 561–580.

20. Felber P, Défago X, Guerraoui R, Oser P. Failure detectors as first class objects. Proceedings of 1st

International Symposium on Distributed Objects and Applications; 1999 Sept. 6–6; Edinhurgh, UK:

IEEE, 1999. p. 132–141.

21. https://figshare.com/s/5297ddc238766def6afc.

WD-FD and cloud computing

PLOS ONE | DOI:10.1371/journal.pone.0173666 March 9, 2017 16 / 16

https://figshare.com/s/5297ddc238766def6afc

