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Abstract: Preeclampsia (PE) is an obstetric complication associated with significant health implica-
tions for the fetus and mother. Studies have shown a correlation between lung disease development
and PE. Gas6 protein is expressed in the lung and placenta, and binds to the AXL Tyrosine kinase
receptor. Recently, our laboratory utilized Gas6 to induce preeclamptic-like conditions in rats. Our
objective was to determine the role of Gas6/AXL signaling in the maternal lung during PE devel-
opment. Briefly, pregnant rats were divided into control, Gas6, or Gas6 + R428 (an AXL inhibitor).
Immunofluorescence was performed to determine AXL expression. Bronchoalveolar lavage fluid
(BALF) was procured for the assessment of inflammatory cell secretion. Western blot was performed
to detect signaling molecules and ELISA determined inflammatory cytokines. We observed increased
proteinuria and increased blood pressure in Gas6-treated animals. AXL was increased in the lungs
of the treated animals and BALF fluid revealed elevated total protein abundance in Gas6 animals.
Extracellular-signal regulated kinase (ERK) and protein kinase B (AKT) signaling in the lung appeared
to be mediated by Gas6 as well as the secretion of inflammatory cytokines. We conclude that Gas6
signaling is capable of inducing PE and that this is associated with increased lung inflammation.

Keywords: preeclampsia; lung; inflammation; Gas6; AXL

1. Introduction

Proper placenta function is important for a successful pregnancy. Several obstetrics
complications are associated with placental dysfunction such as those observed during
PREECLAMPSIA (PE). PE is an obstetric complication characterized by high blood pres-
sure after the 20th week of pregnancy; 140 mm Hg (systolic) or 90 mm Hg (diastolic)
and increased protein in the urine (≥300 mg in 24 h) [1]. This obstetric complication
accounts for up to 20% of preterm births, increased intrauterine fetal demise (IUFD), and
the development of adult hypertension, heart disease, stroke, and diabetes [2–5]. Recent
research has shown that there is an increase in Gas6 protein in the serum of preeclamptic
patients, highlighting Gas6 as a perpetuation factor in PE severity [6]. Gas6 is a vitamin
K-dependent protein expressed in the lung, heart, kidney, and intestine, and is detectible
in human plasma [7]. Gas6 serves as a ligand to the Tyro3, AXL, and Mer Tyrosine kinase
receptors, having the highest affinity for AXL receptors [7,8]. AXL is a transmembrane re-
ceptor tyrosine kinase (RTK), and Gas6/AXL pathways are known to be involved in several
diseases including cardiovascular pathologies [9]. Recently our laboratory has developed a
rodent Gas6 model of PE [1]. This model showed PE-like characteristics including increased
blood pressure, increased proteinuria, increased placental-derived inflammation, decreased
trophoblast invasion, and an increase in placental apoptosis (gas6 paper). Inhibition of
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the Gas6 receptor AXL, reduced these PE-like characteristics observed in this rat model of
PE [1]. Together these studies suggest an important role for Gas6 and its receptor AXL in
the development of this obstetric complication. Although the AXL receptor is expressed in
the placenta, its expression is much higher in the lung. This caused us to question the role
of the Gas6/AXL pathway in the lung in this model of PE. This is important as previous
reports had shown the development of lung diseases, such as lung edema, and the presence
of placental syncytial aggregates in the lungs of mothers during preeclampsia [10–17].
Many of the Gas6/AXL studies have concentrated on lung cancer, but not much is known
about other different environments where Gas6 and AXL are affected as those observed
during PE. Our objective was to determine Gas6/AXL signaling in the maternal lung in
this Gas6-induced model of PE.

2. Materials and Methods
2.1. Animals and Tissue Preparation

Brigham Young University Animal Care and Use Committee (IACUC) approved this
study (Approval number PRE21-0012). Pregnant Holtzman Sprague Dawley (HSD) rats
(Weight-matched; ~400 g) were necropsied at 18.5 days of gestation (dGA). At this point,
placental, and fetus weights were recorded, and placental and lung tissues collected in liq-
uid nitrogen for protein analysis. Lung tissues were paraformaldehyde (PFA) inflation fixed
prior to processing, embedding, and sectioning for immunofluorescence (IF) analysis [18].
Lung and placental tissue samples were stored at −80 ◦C until used.

2.2. Animal Treatments

PE pregnancy was generated as previously performed in our lab [1]. PE was observed
by the i.p. administration of recombinant Gas6 protein (R&D, Minneapolis, MN, USA) to
pregnant rats. The dose of Gas6 was in accordance with several other research endeavors
that pursued a Gas6 dose-response and disease modeling in rats, which we have previously
reported [1]. Briefly, starting at day 7.5 dGA, pregnant rats were injected with Gas6 (at
a concentration of 4 µg/kg of body weight) for 11 days (to day 17.5 dGA; Gas6 animal
group; n = 10). A Control group of pair-fed animals was administered saline injections
(n = 10). For AXL inhibition studies, Gas6-treated pregnant animals (n = 10) were treated
with a daily i.p. injection of R428 (and 75 mg/Kg; APExBIO, Houston, TX, USA) for 4 days
(Gas6 + R428 group, treatment starting at day 13.5 dGA to day 17.5 dGA).

2.3. Blood Pressure

A CODA monitor system (CODA tail-cuff blood pressure system; Kent Scientific
Corporation; Torrington, CT, USA) was used to measure blood pressure as previously
performed in our laboratory [1]. This system includes a heating pad and a fully automated
occlusion tail cuff. During blood pressure measurements, animals were restrained for 5 min
by a medium-sized clear column crafted by Kent Scientific. Blood pressure measurements
were performed daily in the control and treated (Gas6 and Gas6 + R428) animals.

2.4. Proteinuria

Proteinuria levels (n = 10 per group) were determined using a dipstick approach to
confirm PE (characterized by detecting proteinuria at the +3 and +4 levels). At the time of
necropsy, urine was collected and dipstick color development was evaluated. The urine
dipstick test (Siemens Urinalysis Test Uristis® strips; Siemens; Malvern, PA, USA) was
performed following the manufacturer’s instructions. Categories included negative, trace,
+1 (30 mg/dL), +2 (100 mg/dL), +3 (300 mg/dL), and +4 (≥2000 mg/dL).

2.5. RNA Isolation and Analysis

Isolation and analysis of RNA were performed as previously performed in our lab [1].
Briefly, after isolation, RNA was quantified using a Nanodrop. Bio-Rad iTaq (Universal
SYBR® Green One-Step Kit was used to amplify cDNA (Bio-Rad, Hercules, CA, USA). A
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Bio-Rad Single-Color Real-Time PCR detection system (Bio-Rad Laboratories, Hercules, CA,
USA) was used for data analysis. The following primers were synthesized by Invitrogen
Life Technologies (Grand Island, NY, USA): AXL (For-CTAC GAG ACG TCA TGG TAG
and Rev-GCT CTG ATC TTG TGC AGA TG), and β-actin (For-ACA GGA TGC AGA AGG
AGA TTA C and Rev- CAC AGA GTA CTT GCG CTC AGG A).

2.6. Immunofluorescence

Paraffin-embedded lung sections (n = 5) were used for Immunofluorescence (IF)
studies as previously performed in our laboratory [1]. In summary, after blocking, lung
slides were incubated overnight with a mouse primary antibody against AXL. The next
day, a secondary donkey anti-mouse Texas Red (TR; Santa Cruz Biotechnology, Santa Cruz,
CA, USA) was incubated for an hour. IF detection was performed using a BX6 microscope.

2.7. Bronchoalveolar Lavage Fluid (BALF)

BALF was performed in treated and control pregnant rats (n = 10) as outlined previ-
ously with slight modifications [19]. Briefly, control and treated animal lungs were inflated
and fixed with 4% PFA for lavage to procure BALF. This was specifically harvested through
the installation and recovery of seven boluses of PBS with a syringe attached to a catheter
for a total of 30 mL/kg. BALF samples were centrifuged for 10 min and supernatants
were assayed for total protein using a bicinchoninic acid (BCA) total protein kit (Thermo
Scientific). Pelleted cells were counted and stained with a modified Wright–Giemsa stain
(Diff-Quik; Baxter, McGaw Park, IL, USA) for a blinded manual differential cell count in
which 200 cells were counted per slide to determine the percent of total cells.

2.8. Immunoblotting

RIPA protein lysis buffer (Fisher Scientific, Pittsburg, PA, USA) was used to homogenize
lung tissues (n = 6 per group) used for the detection of extracellular signal-regulated kinase
(ERK) and protein kinase B (AKT) protein-signaling molecules as previously described
in our laboratory [9]. Briefly, lung protein lysates (20 mg) were separated using a Mini-
PROTEANVâ TGXTM Precast gel (Bio-Rad Laboratories, Hercules, CA, USA) followed by
transfer to nitrocellulose membranes. Membranes were incubated overnight with antibodies
against phospho ERK and AKT proteins (Cell Signaling, Danvers, MA, USA). Fluorescence
tagged secondary antibodies were added for one hour and fluorescence emission was
digitally recorded using a C-DiGitVâ Blot Scanner (LI-COR, Inc., Lincoln, Nebraska). To
confirm loading consistencies, each membrane was stripped and re-probed utilizing an
antibody against actin (Cell Signaling, Danvers, MA, USA). Average band densities (of
at least twice in triplicate experiments) were normalized to b-actin densities prior to
performing statistical tests.

2.9. ELISA

BALF collected at the time of necropsy (n = 10) was used to screen inflammatory
mediators. Secreted Interleukin 1 alpha (IL-1α), Interleukin 2 (IL-2), and tumor necrosis
factor alpha (TNFα) levels were assessed using colorimetric high-throughput fast activated
cell-based ELISA assays (RayBiotech; Peachtree Corners, GA, USA) using an Epoch Mi-
croplate reader (Biotek Instruments Inc.; Agilent; Santa Clara, CA, USA). For this, equal
volumes of lung BALF were assessed in each experimental group of treated and control
animals as directed by the manufacturer.

2.10. Statistical Analysis

Differences in ER and AKT protein activation, and cytokine protein expression were
determined between control and treated (Gas6 and Gas6 + R428) pregnant animals using
Mann–Whitney tests. GraphPad Prism 7.0 software (GraphPad; Santa Clara, CA, USA) was
used for statistical analysis and significant differences in the data are shown as means ± SE.
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3. Results
3.1. Gas6 Induces PE in Rats

To induce PE, pregnant rats were treated with Gas6 for 11 days [1]. We observed that
Gas6 treatment increased both Systolic and Diastolic blood pressure in pregnant dams at
the time of necropsy (Figure 1A,B). This increase in blood pressure was reversed when the
AXL receptor was inhibited by treatment with R428 (Figure 1A,B). We next investigated
proteinuria in the urine of control and treated animals. There was significantly increased
proteinuria (+3 to +4) in Gas6 animals compared to controls, which was reversed to basal
levels (trace to +1) when the AXL receptor was inhibited (Figure 1C).
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Figure 1. Blood Pressure and proteinuria during Gas6 treatment in the pregnant rat. There was an
increase in blood systolic (A) and diastolic pressure (B) and urine proteinuria (+3 and +4) (C) in
treated animals as compared to controls (n = 10). Systolic (A) and Diastolic (B) blood pressures
and proteinuria (C) returned to basal levels in animals treated with Gas6 and the Axl inhibitor as
compared to those treated with Gas6 alone. Representative data are shown with p ≤ 0.05.

3.2. Lung and Gas6 Treatment

We first determined AXL levels in the lungs of treated animals vs. controls. Lung histology
is shown in Figure 2A. We observed an increase in AXL mRNA (5.7-fold; p < 0.02) in Gas6-
treated animals as compared to controls (Figure 2B). This increase in gene activation was
reduced with the addition of the AXL inhibitor (Figure 2B). Next, we used immunofluores-
cence to determine AXL expression patterns in the lungs of control and PE animals. We
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observed that AXL protein expression was increased in the animals treated with Gas6 as
compared with the controls and that the addition of the AXL inhibitor reduced AXL pres-
ence in the lungs of these treated animals (Figure 2C). BALF was used to determine lung
cell infiltration due to AXL activation by Gas6. We observed that the number of infiltrating
cells (leukocytic cells) was increased (1.8-fold; p < 0.003) in the lung of the PE animals as
compared to controls (Figure 3A). This increase in cell counts was decreased to basal levels
when the AXL receptor was inhibited (Figure 3A,B). Similarly, BALF protein quantification
showed an increase in protein levels (1.5-fold; p < 0.05) during Gas6 treatment that was
reduced to basal levels by the addition of the AXL inhibitor.
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Figure 2. Lung AXL expression during Gas6 treatment in the pregnant rat. Hematoxylin staining
was performed for lung structure determination (A). There was an increase in AXL mRNA in the
treated animals as compared to controls (B). This increase was also observed in AXL protein levels in
the lung of treated animals as compared to controls (C).
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3.3. Lung-Signaling Molecules and Released Cytokines

We next wanted to determine lung-signaling molecules in this model of PE. Specif-
ically, we studied levels of ERK and AKT kinases that signal transduction and are
activated in Gas6/AXL signaling [8,20]. A characteristic Western blot for ERK and AKT
is shown in Figure 4A,C. Gas6 treatment significantly increased ERK activation (1.7-fold;
p < 0.03; Figure 4B) when compared to controls. Similarly, AKT activation was increased
(3.2-fold; p < 0.07) by Gas6 in the lungs of treated animals when compared to untreated
controls (Figure 4D). The activation of these signaling molecules was decreased to basal
levels when the AXL inhibitor was added to the treated animals (Figure 4B,D). Because
increased infiltration of cells in the lungs was observed in Gas6 treatment and that previous
studies have shown a correlation between ERT and AKT proteins and the modulation of
inflammation, we decided to determine levels of secreted lung-associated inflammatory
cytokines in this model of PE [20–22]. Interleukin 1 alpha (IL-1α) is a pro-inflammatory
cytokine that is known to be increased during damage to the epithelium of the lung and has
been suggested as a driver of inflammation in disease [23]. IL-1α secretion was significantly
increased (1.4-fold; p < 003) in the lung of PE animals as compared to controls (Figure 5A).
These levels were decreased to basal levels when R428 (AXL inhibitor) was added to the
Gas6-treated animals (Figure 5A). Interleukin 2 (IL-2) is a powerful pro-inflammatory cyt
okine that promotes the growth and development of peripheral immune cells in an immune
response [24–26]. It has been suggested to control lung-specific inflammation [26]. Secreted
IL-2 levels were significantly increased (1.2-fold; p < 0.03) in the lungs of treated animals
as compared to controls (Figure 5B). The increased IL-2 was reduced to basal levels with
addition of the AXL inhibitor to the Gas6 animals (Figure 5B). Tumor Necrosis Factor alpha
(TNFα) is a potent cytokine that can lead to the exacerbation of inflammatory responses
with significant roles in many diseases, including pulmonary disorders [27,28]. TNF was
significantly increased (1.3-fold; p < 0.02) with Gas6 treatment and reduced when the AXL
inhibitor was added to these animals (Figure 5C). The coefficient of variation (CV) for the
cytokines studied is shown in Figure 5D.
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Figure 5. Inflammatory cytokines in the serum of control and treated animals. Serum levels of
IL-1α (A), IL-2 (B), and TNFα (C) were increased in Gas6-treated animals compared to controls
(n = 10). Cytokines were deceased in animals co-treated with R428. Coefficients of variations for the
experiments are found in (D). Representative data are shown with p≤ 0.05.

4. Discussion

To our knowledge, this is the first report correlating lung signaling to PE driven
by Gas6/AXL interaction. The vitamin K-dependent protein Gas6 is a secreted protein
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expressed in the liver, kidneys, lungs, and placenta [29,30]. This protein has a high affinity
for the transmembrane receptor tyrosine kinase (RTK) AXL. Besides the placenta, the AXL
receptor is expressed in the lung and is known to be implicated in lung diseases such
as cancer [31–33]. Gas6/AXL signaling is involved in biological pathways such as cell
invasion, metabolism, and immune responses [9,34–36]. As previously mentioned, Gas6
is increased in human PE (Gas 6 serum). Interestingly, there are also reports that showed
increased AXL during this disease suggesting a role for Gas6/AXL interactions and the
development of human PE [37]. PE is a pregnancy-associated hypertensive syndrome
known to be associated with a substantial risk for maternal cardiovascular disease (CVD)
later in life [34–36,38,39]. Previous reports also established high blood pressure as a risk
factor of CVD, which suggest that this could be a possible contributor to CVD development
in PE patients [40]. As such, the mechanisms of these diseases and disease consequences
still need to be evaluated.

We previously reported the development of PE-like symptoms when pregnant rats
were treated with Gas6, showing characteristics such as increased proteinuria, and increased
inflammation [1]. Knowing that Gas6 and AXL are expressed in the lung and that lung
inflammation is suggested as a modifiable risk factor for CVD, we became interested in
finding lung responses in this Gas6-induced model of PE [41–43]. We first confirmed the
development of PE-like characteristics with Gas6 treatment. As previously reported by our
lab, we observed increased blood pressure and increased proteinuria in treated pregnant
rats as compared to controls. These markers were reduced when the AXL receptor was
inhibited, again suggesting a role for PE development in these animals. When examining
maternal lungs, we detected lung AXL mRNA and protein levels to be increased in the
lungs of the Gas6-treated mothers suggesting lung-derived GAS6/AXL signaling in this
model of PE.

To determine inflammatory profiles, we conducted BALF experiments to initially
evaluate to what extent Gas6 treatment contributed to lung inflammation. BALF revealed
characteristics previously observed during inflammatory lung conditions. Leukocytic cell
quantification revealed increases in total cell quantity and Polymorphonuclear Neutrophils
(PMN) abundance in the Gas6-treated animals. Evaluation of total BALF protein abundance
was increased during the treatment of pregnant dams. This suggests a possible augmented
vascular permeability, which has been associated with airway inflammation. Interestingly
we discovered that both total cellular abundance and protein concentration were signifi-
cantly decreased when the AXL inhibitor was co-administered to mice exposed to Gas6.
This suggested a role for GAS6/AXL signaling and the development of lung inflammation
in this model of PE. Inflammation modulating molecules are differentially expressed in the
lungs in different diseases. Interestingly, rats exposed to Gas6 showed increased levels of
the inflammatory cytokines IL-1α, TNF-α, and IL-2. IL-1α is a cytokine involved in both
the innate and adaptive immune responses [44,45]. In the lung, IL-1α is associated with
inflammation during lung injuries and diseases such as chronic obstructive pulmonary
disease (COPD) [46,47]. TNFα is involved in the development of inflammatory diseases
such as atherosclerosis, rheumatoid arthritis, and various pulmonary disorders [27]. IL-2
has a novel pro-inflammatory cytokine function for its ability to induce a large panel of
trafficking receptor genes for lung inflammation [26]. All of these confirm the infiltration
of pro-inflammatory cytokines in the maternal lungs in this model of PE. Furthermore,
the fact that the lung infiltration and pro-inflammatory cytokines are reduced during AXL
inhibition confirms a possible direct role for Gas6/AXL signaling in lung inflammation
and the development of PE. This finding is of importance not only in this model of PE, but
also during human PE where levels of Gas6 have been found to be increased in the plasma
of the preeclamptic mother [6]. Although studies of lungs during PE are scarce, recent
reports have shown that pregnant women infected by the virus COVID-19 (which mostly
affects the lungs) have increased lung inflammation and this correlates with obstetric com-
plications such as miscarriages, restricted fetal growth, and most relevant to our studies,
the development of PE-like symptoms [48–50]. This also correlates with increased serum
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Gas6 and increased lung AXL in patients affected by this virus [51]. These together suggest,
again, a role for lung inflammation and the development of obstetrics complications such
as PE. While these experiments clearly show the inducibility of lung inflammation during
PE related to Gas6/AXL signaling, this implicates a link between both the lung and the
placenta that was previously unknown. We do acknowledge a weakness of this manuscript,
in that this was conducted in a PE rodent model of pregnancy rather than a human PE
pregnancy. We were aware of this limitation, but our studies originated with findings
observed in human studies and modeled in hemochorial placentation, which allowed us
to perform studies that could not be otherwise conducted in humans. Follow-up research
should focus on aspects of Gas6 and AXL signaling to clarify a possible model to regulate
inflammatory responses between lung and placenta. This exploration could provide ways
to help ameliorate the effects of PE that require immediate medical intercession.
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