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Abstract: Since oxidative stress has been linked to several pathological conditions and diseases, drugs
with additional antioxidant activity can be beneficial in the treatment of these diseases. Therefore,
this study takes a new look at the antioxidant activity of frequently prescribed drugs using the HPLC-
DPPH method. The antioxidative activity expressed as the TEAC value of 82 drugs was successfully
determined and is discussed in this work. Using the obtained values, the QSAR model was developed
to predict the TEAC based on the selected molecular descriptors. The results of QSAR modeling
showed that four- and seven-variable models had the best potential for TEAC prediction. Looking at
the statistical parameters of each model, the four-variable model was superior to seven-variable. The
final model showed good predicting power (r = 0.927) considering the selected descriptors, implying
that it can be used as a fast and economically acceptable evaluation of antioxidative activity. The
advantage of such model is its ability to predict the antioxidative activity of a drug regardless of its
structural diversity or therapeutic classification.

Keywords: pharmaceuticals; antioxidative activity; DPPH; HPLC; QSAR prediction

1. Introduction

Oxidative stress can be defined as an imbalance between the production of reactive
oxygen radicals and, on the other side, the cell’s antioxidant capacity and exogenous
antioxidant intake. Free radicals are generated from endogenous and exogenous sources
and can cause significant chain chemical reactions in the body due to a quick reaction with
other molecules. Oxidative stress has been linked to several pathological conditions and
diseases, such as atherosclerosis and cardiovascular disease, cancer, neurological diseases
(i.e., Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s disease, multiple
sclerosis, depression, and memory loss), rheumatoid arthritis and respiratory diseases
(asthma and chronic obstructive pulmonary disease). The basis of effective pharmacological
treatment relies on both understanding the disease pathogenesis and the pharmacological
drug effects. Although drugs belonging to the same therapeutic group have a common
primary mechanism of action, pharmacokinetic and pharmacodynamic properties, as well
as additional mechanisms of action, may differ among them. These diversities can single
out one or more drugs as drugs of choice compared to other group members, especially in
patients with comorbidities. According to the available literature data, antioxidant activity
is especially underlined as one of the additional mechanisms of action that some drugs
showed [1,2].

Quantitative structure–activity relation (QSAR) is a powerful tool for high-throughput
virtual screening of various molecules based on the set of calculated descriptors represent-
ing each molecule [3]. Through the years, QSAR had a remarkable role in accelerating
the drug development process. It was implemented in the various stages of this complex
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process, from the initial stages of drug design to pharmacokinetic and pharmacodynamic
modeling [4–6]. The combination of a fast DPPH (2,2-diphenyl-1-picrylhydrazyl)-based
method for antioxidant activity determination and QSAR is set to become a creating model
for the prediction of the antioxidative activities of various compounds [7–11].

Since it is well recognized that reactive oxygen species are responsible for numerous
types of cell damage, the objective of this study was to evaluate the antioxidant activity
in vitro of frequently prescribed drugs in clinical practice. Accordingly, the antioxida-
tive activity of 82 prescribing therapeutic agents from different Anatomical Therapeutic
Chemical Classification (ATC) groups, such as antibiotics, antihistamines, beta-blockers,
immunosuppressants and others, was determined using our previously developed DPPH-
HPLC method [12]. Another objective was to develop a model for predicting antioxidant
activity as an additional mechanism of action. Considering the rather large pool of struc-
turally various drugs used in this high-throughput screening, obtained TEAC (TROLOX
(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) equivalent antioxidant capacity)
values were used for QSAR model development to establish the unique model for the
prediction of TEAC values. It must be pointed out that the advantage of such model is its
ability to predict the antioxidative activity of a drug regardless of its structural diversity
and therapeutic classification.

2. Results and Discussion
2.1. Method Verification

For DPPH assay monitoring, the applicability of our previously published method had
to be verified following method transfer requirements. The method showed satisfactory
linearity in the range from 0 to 0.3 mM of TROLOX (at seven concentration levels) with
the following equation, y = −3.0101 x + 0.9997, and correlation coefficient, r = 0.9998. The
accuracy of the method was examined by analyzing samples in triplicate on three different
concentration levels, covering the whole range of the calibration curve, with the recoveries
of 96.9% up to 104.1% accompanied by relative standard deviation values (RSD) no higher
than 1.9%. The precision of the method was also examined by analyzing six samples at
0.15 mM of TROLOX with the RSD values not exceeding 5.8%.

2.2. The Antioxidative Activity of Selected Pharmaceuticals

The antioxidant activity of 82 pharmaceuticals was assessed by the HPLC-DPPH
method (Table 1). According to obtained result, all analyzed drugs can be divided into
three groups: (i) below 0.100 mM TEAC (63 pharmaceuticals; 77% of all), (ii) 0.100 to
0.200 mM TEAC (eight pharmaceuticals; 10% of all), and (iii) above 0.200 mM TEAC
(11 pharmaceuticals; 13% of all).

Table 1. Description of investigated pharmaceuticals.

Name CAS Molecular
Formula Pharmacologic Class ATC * TEAC (mM)

Acetazolamide 59-66-5 C4H6N4O3S2 Mitotic S 0.009
Amoxicillin 26787-78-0 C16H19N3O5S Antibiotic J 0.085

Antipyrine (Phenazone) 60-80-0 C11H12N2O Analgetic N 0.013
Atenolol 29122-68-7 C14H22N2O3 Beta blocker C 0.037

Atorvastatin 134523-00-5 C33H35FN2O5 Hypolipemic C 0.059
Atropine sulphate 5908-99-6 C34H50N2O11S Spasmolytic A, S 0.010

Azathioprine 446-86-6 C9H7N7O2S Immunosuppressive L 0.001
Azithromycin 83905-01-5 C38H72N2O12 Antibiotic J 0.037

Balsalazide 80573-04-2 C17H15N3O6 Aminosalicylate A 0.008
Barbital 57-44-3 C8H12N2O3 Sedative N 0.001

Benzocaine
(4-aminobenzoate) 94-09-7 C9H11NO2 Anaesthetic N 0.004

Bisoprolol 66722-44-9 C18H31NO4 Beta blocker C 0.008
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Table 1. Cont.

Name CAS Molecular
Formula Pharmacologic Class ATC * TEAC (mM)

Caffeine 58-08-2 C8H10N4O2 Analeptic N 0.013
Carvedilol 72956-09-3 C24H26N2O4 Beta blocker C 0.028
Cefalexin 15686-71-2 C16H17N3O4S Antibiotic J 0.170
Cefradine 38821-53-3 C16H19N3O4S Antibiotic J 0.152

Chloramphenicol 56-75-7 C11H12Cl2N2O5 Antibiotic J 0.041
Cimetidine 51481-61-9 C10H16N6S H2-receptor antagonist A 0.018

Ciprofloxacin 85721-33-1 C17H18FN3O3 Antibiotic J 0.155
Clarithromycin 81103-11-9 C38H69NO13 Antibiotic J 0.044

Codeine phosphate 41444-62-6 C18H24NO7P Analgetic N 0.017
Diazepam 439-14-5 C16H13ClN2O Sedative N 0.00001
Digoxin 20830-75-5 C41H64O14 Cardiotonic C 0.00001

Docetaxel 148408-66-6 C43H59NO17 Cytostatic L 0.001
Doxycycline 564-25-0 C22H24N2O8 Antibiotic J 0.302
Dopamine 62-31-7 C8H12ClNO2 Dopamine C 0.274
Ephedrine 299-42-3 C10H15NO Adrenergic C 0.002

Erythromycin 114-07-8 C37H67NO13 Antibiotic J 0.080

Febuxostat 144060-53-7 C16H16N2O3S Non-purine xanthine
oxidase inhibitor M 0.00001

Fluvastatin 93957-55-2 C24H25FNNaO4 Hypolipemic C 0.138
Folic acid 59-30-3 C19H19N7O6 Vitamin A 0.230

Furosemide 54-31-9 C12H11ClN2O5S Diuretic C 0.055
Gemcitabine 122111-03-9 C9H12ClF2N3O4 Cytostatic L 0.060

Hydrochlorothiazide 58-93-5 C7H8ClN3O4S2 Diuretic C 0.018
Ibuprofen 15687-27-1 C13H18O2 NSAID ** M 0.005

Ketoprofen 22071-15-4 C16H14O3 NSAID M 0.006
L-Ascorbic acid sodium

salt 134-03-2 C6H8O6 Vitamin A 0.267

6-Mercaptopurine 50-44-2 C5H4N4S Immunosuppressive L 0.292
Mesalazine 89-57-6 C7H7NO3 Aminosalicylate A 0.296

Metronidazole 443-48-1 C6H9N3O3 Antibiotic J 0.015
Nebivolol 99200-09-6 C22H25F2NO4 Beta blocker C 0.017

Nifedipine 21829-25-4 C17H18N2O6
Calcium channel

blocker C 0.029

Nicotinamide 98-92-0 C6H6N2O Vitamin A 0.048
O-Acetylsalicylic acid 50-78-2 C9H8O4 NSAID B, N 0.012

Oxazepam 604-75-1 C15H11N2O2Cl Sedative M 0.007
Oxytetracycline 79-57-2 C22H24N2O9 Antibiotic J 0.299

Olsalazine 6054-98-4 C14H8N2Na2O6 Aminosalicylate A 0.002
Pantoprazole 102625-70-7 C16H14F2N3NaO4S Proton-pump inhibitor A 0.030

Calcium pantothenate 443753 C18H32CaN2O10 Vitamin A 0.002
Papaverine 61-25-6 C20H22ClNO4 Spasmolytic A 0.012
Paracetamol 103-90-2 C8H9NO2 Analgetic N 0.236

Phenobarbitone 50-06-6 C12H12N2O3 Sedative N 0.038
Physostigmine salicylate 57-64-7 C22H27N3O5 Parasympathomimetic S 0.063

Piperazine 142-63-2 C4H22N2O6 Anthelmintic P 0.132
Piracetam 7491-74-9 C6H10N2O2 Antidepressant N 0.025

Pirfenidone 53179-13-8 C12H11NO Anti-inflammatory,
antifibrotic L 0.00001

Pravastatin sodium 81131-70-6 C23H35NaO7 Hypolipemic C 0.097
Procaine 51-05-8 C13H21ClN2O2 Anaesthetic N 0.024

Propyphenazone 479-92-5 C14H18N2O Analgetic N 0.003
Propranolol 525-66-6 C16H21NO2 Beta blocker C 0.00001

Quetiapine fumarate 111974-72-2 C46H54N6O8S Antipsychotic N 0.030
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Table 1. Cont.

Name CAS Molecular
Formula Pharmacologic Class ATC * TEAC (mM)

Quinidine 56-54-2 C20H24N2O2 Antiarrhythmic agent C 0.029
Quinin sulphate 207671-44-1 C40H50N4O8S Antimalaria P 0.017

Rifampicin 13292-46-1 C43H58N4O12 Antibiotic J 0.292
Risperidone 106266-06-2 C23H27FN4O2 Antipsychotic N 0.010
Ropinirole 91374-20-8 C16H25ClN2O Anti-Parkinson’s drug N 0.285

Salicylic acid 69-72-7 C7H6O3
Anti-inflammatory,

antibacterial D 0.024

Sildenafil citrate 171599-83-0 C22H30N6O4S PDE 5 inhibitor G 0.003
Simvastatin 79902-63-9 C25H38O5 Hypolipemic C 0.141

Sulfacetamide sodium 6209-17-2 C8H11N2NaO4S Antibiotic J 0.015
Sulfadiazine 68-35-9 C10H10N4O2S Antibiotic J 0.015

Sulfamethoxazole 723-46-6 C10H11N3O3S Antibiotic J 0.077
Sulfasalazine 599-79-1 C18H14N4O5S Aminosalicylate A 0.076
Sulfathiazole 72-14-0 C9H9N3O2S2 Antibiotic J 0.035

Sulphamic acid 5329-14-6 NH2SO3H Antibiotic J 0.104
Sulphanilamide 63-74-1 C6H8N2O2S Antibiotic J 0.023
6-Thioguanine 154-42-7 C5H5N5S Immunosuppressive L 0.288
Theobromine 83-67-0 C7H8N4O2 Antiasthmatic R 0.011
Theophylline 58-55-9 C7H8N4O2 Antiasthmatic R 0.004

Thiamine 67-03-8 C12H18Cl2N4OS Vitamin A 0.115
Warfarin 81-81-2 C19H16O4 Anticoagulant B, N 0.077

Zopiclone 43200-80-2 C17H17ClN6O3 Sedative N 0.018

* ATC—Anatomical Therapeutic Chemical Clasification. ** NSAID—Non-steroidal anti-inflammatory drugs.

The significant DPPH free-radical scavenging activity (0.059–0.141 mM TEAC) ob-
served for all investigated statin (ATC class C10) drugs (atorvastatin, fluvastatin, pravas-
tatin and simvastatin) bears a close resemblance to the one presented by previous re-
search [13,14], although these authors used other experimental approaches. Our findings
confirm that next to their already well-recognized antihyperlipemic and immunomodula-
tory effects, statins have a positive impact against oxidative stress levels.

Antibiotics (ATC class J) belong to one of the largest and structurally diverse group of
pharmaceuticals. This study systematically improved our knowledge on the antioxidative
activity of these widely prescribed medicines. Obtained values were in the range from
0.037 mM (azithromycin) to 0.302 mM (doxycycline) TEAC. Furthermore, the reaction of
DPPH radicals and investigational antibiotics had not shown complete discoloration of the
solution, as is the case with amoxicillin, erythromycin, sulfamethoxazole and sulphamic
acid, but the applied HPLC method was sensitive enough to indicate small changes com-
pared to the standard. It is interesting to note that cefradine, cephalexin and ciprofloxacin
showed noticeable antioxidant activity, while oxytetracycline, doxycycline and rifampicin
showed complete decolorization of DPPH solution, and have strong antioxidant activity.
Despite antibiotics being frequently used pharmaceuticals, only a few researchers have
addressed the question of their antioxidative activity. Kladna et al. [2] examined the antirad-
ical activity of tetracyclines, including oxytetracycline and doxycycline, using DPPH, while
Karunakar et al. [1] used the HPLC-DPPH method to determine the antioxidant activity
of drugs, including rifampicin. The results showed that in the presence of rifampicin, the
concentration of DPPH peaks decreased depending on the concentration. Furthermore,
the free radical scavenging activity of rifampicin is measured by Kalpana et al. [15] and
ascorbic acid was used for comparison. Although the above-mentioned researchers used
different procedures, the results of this work are consistent with the available literature.

Analgesics (ATC class N02) are one of the most commonly self-prescribed medicines.
The benefit of the combined use of analgesics and antioxidants in the treatment of chronic
pain is attracting considerable interest [16,17]. It is well known that paracetamol is often
used in combination with vitamin C. In this study, the ability to capture the DPPH radical
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of the above analgesic was assessed (0.236 mM TEAC). Borges et al. [18] evaluated the
antioxidant activity of paracetamol and salicylic acid in experimental and theoretical
studies. In conclusion, it is stated that although both compounds are phenolic derivatives,
paracetamol showed more pronounced antioxidant properties than salicylic acid in several
models that caused oxidative stress. One of the theoretical mechanisms has shown that
hydrogen transfer is responsible for a more pronounced antioxidant effect in paracetamol.
On the other hand, there are numerous examples in the available literature of the toxicity
of paracetamol, which is widely used as an analgesic and antipyretic. Although seemingly
safe if used at the recommended therapeutic doses, higher doses of paracetamol can cause
severe liver and kidney damage in humans and experimental animals.

Based on the obtained results (Table 1), aminosalicylates (ATC class A07) stand out as
an interesting group of investigated drugs. Sulfasalazine (0.076 mM TEAC) and mesalazine
(5-ASA; 0.296 mM TEAC) showed measurable antioxidant activities, while the antioxidant
activities of olsalazine and balsalazide were not measurable by the proposed HPLC-DPPH
method. Rafael et al. [19] used the DPPH radical in the analysis of mesalazine to quantify
the content of the drug in finished, commercially available pharmaceutical forms using
the spectrophotometric method. Additionally, a literature survey reveals that mesalazine
had a potent radical scavenger activity compared to paracetamol and salicylic acid, as
antipyretic and anti-inflammatory drugs [20]. Interestingly, the intensity of the antioxidant
effect of mesalazine was similar to ascorbate, in contrast to salicylate, which did not react
with the DPPH radical. Furthermore, these results suggest that most of the antioxidant
activity of aminosalicylates is derived from 5-ASA. By being released from the prodrug
structure due to the enzymatic degradation of the azo bond, the antioxidant activity could
be part of the therapeutic effect of sulfasalazine, olsalazine and balsalazide, even if their
prodrug activity was much weaker than 5-ASA alone. The highest antioxidative activity
was found for 0.1 mM mesalazine (up to 310 times stronger than others), followed by
aminosalicylates, sulfasalazine and balsalazide. On the other hand, olsalazine has shown
no antioxidant activity.

According to the results of this study, the antioxidative activity of immunosuppressant
drugs (ATC class L04) was observed: 6-mercaptopurine and 6-thioguanine showed twice
as much antioxidative power compared to prodrug azathioprine.

As already mentioned, oxidative stress plays an important role in the degeneration
of dopaminergic neurons in Parkinson’s disease. Ropinirole is a non-ergoline D2/D3
dopamine agonist (ATC class N04) used to treat symptoms of Parkinson’s disease and
showed increasing free radical scavenging activity with increasing concentrations. Our
results share a number of similarities with Selva et al.’s findings, as this group showed that
ropinirole had good free radical scavenging activity and could play a role of a neoadjuvant
antioxidant in a wide variety of neurodegenerative disorders [21].

Vitamins have been recognized as one of the essential antioxidants. Folic acid (vitamin
B9) had significant antioxidant activity (0.230 mM TEAC), and other B vitamins, such
as thiamine (vitamin B1) and nicotinamide, a form of vitamin B3, showed measurable
antioxidant activity (0.115 mM TEAC and 0.048 mM TEAC, respectively). The obtained
results extended our knowledge of them and demonstrated the highest antioxidant activity
of L-ascorbic acid sodium salt (0.267 mM TEAC) compared to other investigated vitamins.

2.3. Development of QSAR Model for the Prediction of Antioxidative Activity of Drugs

The following uses the procedure described in Section 3.3. In the statistical procedure,
we approached the development of the QSAR model using the obtained TEAC values and
calculated descriptors. Data splitting to create training and the test set was performed
using the rational splitting method based on activity value, to cover the whole range of
TEAC values [22]. As a result, one- to eight-variable models were obtained. Equations of
the developed models are presented in Table 2.
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Table 2. Selected 1- to 8-variable models for prediction of TEAC on the training set.

Variable
No. Equation

1 TEAC = 0.1739(±0.0687) × C-018 + 0.0500(±0.0156)
2 TEAC = 0.1760(±0.0595) × C-018 + 0.1487(±0.0673) × H7s + 0.0287(±0.0166)
3 TEAC = 0.1835(±0.0529) × C-018 + 0.1464(±0.0580) × CATS2D_06_AL − 0.1050(±0.0487) × Mor24e + 0.0458(±0.0157)

4 TEAC = −0.0851(±0.0533) × Mor16e − 0.1511(±0.0964) × RDF145p + 0.1489(±0.0526) × C-018 + 0.1991(±0.0694) ×
CATS2D_06_AL + 0.0396(±0.0156)

5 TEAC = −0.1657(±0.0819) × RCI − 0.1458(±0.0848) × RDF145p − 0.0847(±0.0469) Mor16e + 0.1484(±0.0463) × C-018
+ 0.2113(±0.0613) × CATS2D_06_AL + 0.1292(±0.0463)

6 TEAC = −0.1686(±0.0768) × RCI − 0.1695(±0.0811) × RDF145p − 0.0801(±0.0456) × Mor16e + 0.1388(±0.0788) ×
H7s + 0.1579(±0.0435) × C-018 + 0.1061(±0.0712) × CATS2D_04_AL + 0.1175(±0.0439)

7 TEAC
= −0.1700(±0.0728) × RCI − 0.1717(±0.0764) × RDF145p − 0.0965(±0.0481) × Mor16u + 0.1412(±0.0745) ×
H7s + 0.2087(±0.0625) × C-018 + 0.1086(±0.0682) × CATS2D_04_AL − 0.1046(±0.0952) × F03[N-F] +
0.1194(±0.0416)

8 TEAC
= −0.1880(±0.0673) × RCI − 0.1821(±0.0703) × RDF145p − 0.0861(±0.0442) × Mor16u + 0.0811(±0.0753) ×
H7s + 0.0606(±0.0386) × nR = Ct + 0.1483(±0.0383) × C-018 + 0.1236(±0.0622) × CATS2D_04_AL +
0.0764(±0.0529) × F06[N-F] + 0.1241(±0.0384)

The values of the statistical parameters of selected one-, two-, three-, four-, five-, six-,
seven- and eight-variable QSAR models for the training and the test set are presented in
Table 3. To satisfy the fitting criteria of the model, parameters should act as follows: R2

values should tend to be as high as 1, implying that calculated values are similar to the
observed ones. The acceptable R2 value of a model should be ≥0.6 (equivalent to r ≥ 0.774).
The minimum acceptable R2

ext is ≥0.6 as well; CCC ≥ 0.85; RMSE and MAE as close to zero
as possible and RMSEtr should be of smaller value than RMSEcv. Robust QSAR models
should have R2 yscr > Q2 yscr [23].

Table 3. Statistical parameters of obtained one- to eight-variable models.

Model No. 1 2 3 4 5 6 7 8

Ntr 58 58 58 58 58 58 58 58
Nex 14 14 14 14 14 14 14 14

Fitting Criteria

R2 0.316 0.496 0.599 0.643 0.729 0.767 0.794 0.835
R2

adj 0.304 0.478 0.578 0.616 0.703 0.739 0.766 0.808
s 0.0576 0.0499 0.0499 0.0428 0.0377 0.0353 0.0334 0.0302
F 25.885 27.109 26.986 27.846 27.974 27.977 27.629 31.059
p <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000

Kxx 0.000 0.016 0.034 0.232 0.187 0.318 0.359 0.309
∆K 0.562 0.337 0.238 0.154 0.135 0.073 0.053 0.060

RMSEtr 0.056 0.49 0.043 0.041 0.036 0.033 0.031 0.028
MAEtr 0.042 0.037 0.034 0.033 0.028 0.025 0.023 0.021
CCCtr 0.480 0.664 0.750 0.886 0.843 0.868 0.783 0.910

Internal Validation Criteria

Q2
LOO 0.227 0.339 0.462 0.539 0.632 0.687 0.724 0.748

RMSEcv 0.060 0.056 0.050 0.047 0.041 0.038 0.036 0.034
MAEcv 0.044 0.041 0.038 0.037 0.032 0.030 0.028 0.026

PRESScv 0.210 0.180 0.146 0.126 0.100 0.085 0.075 0.068
CCCcv 0.419 0.564 0.663 0.854 0.786 0.821 0.845 0.862
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Table 3. Cont.

Model No. 1 2 3 4 5 6 7 8

External Validation Criteria

RMSEext 0.049 0.052 0.052 0.030 0.043 0.034 0.031 0.042
MAEext 0.040 0.043 0.041 0.026 0.033 0.029 0.024 0.033

PRESSext 0.033 0.038 0.038 0.013 0.026 0.015 0.013 0.025
R2

ext 0.657 0.618 0.639 0.859 0.759 0.822 0.839 0.784
Q2

F1 0.606 0.544 0.551 0.845 0.687 0.809 0.840 0.707
Q2

F2 0.601 0.539 0.546 0.843 0.684 0.807 0.839 0.704
Q2

F3 0.498 0.419 0.429 0.803 0.601 0.756 0.797 0.627
CCCext 0.703 0.784 0.792 0.913 0.777 0.883 0.907 0.805

In addition, plots of obtained correlation coefficients, r, in relation to the number of
variables in the obtained QSAR models are shown in Figure 1.
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The r values for the training set models increase with the increment of variable number
in the model (from 0.562 for the one-variable model, up to 0.914 for the eight-variable
model); however, r values of obtained test set models have shown that four- and seven-
variable models have highest values (0.927 and 0.916, respectively) compared to other
models (from 0.778 to 0.907). Although the seven-variable model exhibits a higher r value
of the training set (0.891) and a somewhat similar r value for the test set, the four-variable
model showed better predictive power. Both have a similar performance of external
and internal validation parameters; however, a crucial part in deciding which model is
more suitable for the prediction of TEAC played was the cross-correlation matrix of the
seven-variable model. Table 4 shows that several descriptors are highly correlated (H7s vs.
CATS2D_04_AL, r = 0.759 and C-018 vs. F03[N-F], r = 0.766), meaning that both descriptors
have the same contribution to the model outcome, thus one of them is unnecessary in the
model, which is not the case in the four-variable model, in which the highest correlation of
descriptors is 0.586, implying that every descriptor contributes to calculation of the TEAC
value. On the other hand, generating models with more than eight variables would increase
r of the training set; however, in the case of test sets, lower r values would be obtained, as
is the case in the eight-variable model, due to the overtraining of the model. Therefore,
building higher models with more than eight variables would not be efficient. The list of all
descriptors included in one- to eight- variable models are presented and will be described
in detail in the following section.
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Table 4. Correlation matrix of included descriptors in best four- and seven-variable QSAR models
predicting TEAC for the entire set of compounds (72).

4-Variable Model

Mor16e RDF145p C-018 CATS2D_06_AL
Mor16e 1 0.154 0.247 0.005

RDF145p 1 0.058 0.586
C-018 1 0.011

CATS2D_06_AL 1

7-Variable Model

RCI RDF145p Mor16u H7s C-018 CATS2_04_AL F03[N-F]
RCI 1 0.110 0.007 0.157 0.010 0.115 0.008

RDF145p 1 0.155 0.558 0.058 0.585 0.045
Mor16u 1 0.056 0.247 0.150 0.219

H7s 1 0.016 0.759 * 0.008
C-018 1 0.091 0.766 *

CATS2D_04_AL 1 0.092
F03[N-F] 1

* >cross-correlation Rij = 0.7.

Based on the facts stated above, the four-variable model was chosen as the best one for
the prediction of TEAC. Model accuracy, as well as the domain of applicability, is presented
in Figure 2. Figure 2A shows a plot of predicted TEAC values versus the measured ones,
resulting in a distribution of values that show a linear trend. The points are distributed
along the diagonal line, representing the accuracy of the model as well as the fact that
the model was able to predict similar TEAC values, especially for the molecules that
have shown strong antioxidative power. One cluster comprised molecules that exhibit
low antioxidative power. On the other hand, the Williams plot detects both the response
outliers (Y-outliers) and molecular structure outliers (X-outliers) [24]. As can be seen in
Figure 2B, there are no response outliers since none of the values exceed ± 3δ. On the other
hand, structurally influential molecules were observed (three in the test set and four in
the training set), which is acceptable considering the structural diversity in the pool of
examined molecules.

The model was further validated using the “Y-scrambling” method (Figure 2C). The
“Y-scrambling” test showed that R2 and Q2

LOO values of selected models are different than
those calculated. The observed R2

Y-SCRAMBLING and Q2
Y-SCRAMBLING are of low value, indi-

cating the validity of the calculated model. Additionally, the R2
Y-SCRAMBLING > Q2

Y-SCRAMBLING
criteria are satisfied.

Pharmaceuticals 2022, 15, 791 9 of 14 

Figure 2. Plots representing (a) model linearity, (b) Williams plot and (c) validation using “Y-scram-

bling”. 

The model was further validated using the “Y-scrambling” method (Figure 2C). The 

“Y-scrambling” test showed that R2 and Q2LOO values of selected models are different than 

those calculated. The observed R2Y-SCRAMBLING and Q2Y-SCRAMBLING are of low value, indicating 

the validity of the calculated model. Additionally, the R2Y-SCRAMBLING > Q2Y-SCRAMBLING criteria 

are satisfied. 

2.4. Structural Characteristics Determining the Antioxidative Value of Selected Compounds 

The list of descriptors in the one- to eight-variable models is presented in Table 5. In 

this section, the focus will be primarily on the descriptors found in the four-variable 

model, which was chosen as the best one for the prediction of TEAC. 

Considering the observed equation describing the four-variable model: 

TEAC = −0.0851(±0.0533) × Mor16e − 0.1511(±0.0964) × RDF145p + 0.1489(±0.0526) × C-018 + 0.1991(±0.0694) 

× CATS2D_06_AL + 0.0396(±0.0156) 

descriptors of interest are the following: Mor16e, RDF145p, C-018 and CATS2D_06_AL, 

belonging to the 3D-MoRSE, Radial Distribution Function, =CHX and CATS 2D type of 

descriptors, respectively (Table 5). 

Figure 2. Cont.



Pharmaceuticals 2022, 15, 791 9 of 13

Pharmaceuticals 2022, 15, 791 9 of 14 

Figure 2. Plots representing (a) model linearity, (b) Williams plot and (c) validation using “Y-scram-

bling”. 

The model was further validated using the “Y-scrambling” method (Figure 2C). The 

“Y-scrambling” test showed that R2 and Q2LOO values of selected models are different than 

those calculated. The observed R2Y-SCRAMBLING and Q2Y-SCRAMBLING are of low value, indicating 

the validity of the calculated model. Additionally, the R2Y-SCRAMBLING > Q2Y-SCRAMBLING criteria 

are satisfied. 

2.4. Structural Characteristics Determining the Antioxidative Value of Selected Compounds 

The list of descriptors in the one- to eight-variable models is presented in Table 5. In 

this section, the focus will be primarily on the descriptors found in the four-variable 

model, which was chosen as the best one for the prediction of TEAC. 

Considering the observed equation describing the four-variable model: 

TEAC = −0.0851(±0.0533) × Mor16e − 0.1511(±0.0964) × RDF145p + 0.1489(±0.0526) × C-018 + 0.1991(±0.0694) 

× CATS2D_06_AL + 0.0396(±0.0156) 

descriptors of interest are the following: Mor16e, RDF145p, C-018 and CATS2D_06_AL, 

belonging to the 3D-MoRSE, Radial Distribution Function, =CHX and CATS 2D type of 

descriptors, respectively (Table 5). 

Figure 2. Plots representing (a) model linearity, (b) Williams plot and (c) validation using “Y-
scrambling”.

2.4. Structural Characteristics Determining the Antioxidative Value of Selected Compounds

The list of descriptors in the one- to eight-variable models is presented in Table 5. In
this section, the focus will be primarily on the descriptors found in the four-variable model,
which was chosen as the best one for the prediction of TEAC.

Table 5. Names and definitions of descriptors included in the best one–eight variable models for
prediction of TEAC.

Descriptor Name Model Descriptor Definition Descriptor Type

C-018 1-, 2-, 3-, 4-, 5-, 6-, 7- and
8-variable =CHX Atom-centred fragments

H7s 2-, 6-, 7- and 8-variable H autocorrelation of lag
7/weighted by I-state GETAWAY descriptors

CATS2D_06_AL 3-, 4- and 5-variable CATS2D Acceptor-Lipophilic at
lag 06 CATS 2D

Mor24e 3-variable signal 24/weighted by Sanderson
electronegativity 3D-MoRSE descriptors

Mor16e 4-, 5- and 6-variable signal 16/weighted by Sanderson
electronegativity 3D-MoRSE descriptors

RDF145p 4-, 5-, 6-, 7- and 8-variable
Radial Distribution

Function—145/weighted by
polarizability

RDF descriptors

RCI 5-, 6-, 7- and 8-variable ring complexity index Ring descriptors

CATS2D_04_AL 6-, 7- and 8-variable CATS2D Acceptor-Lipophilic at
lag 04 CATS 2D

Mor16u 7- and 8-variable signal 16/unweighted 3D-MoRSE descriptors

F03[N-F] 7-variable Frequency of N—F at topological
distance 3 2D Atom Pairs

nR = Ct 8-variable number of aliphatic tertiary
C(sp2) Functional group counts

F06[N-S] 8-variable Frequency of N—S at topological
distance 6 2D Atom Pairs

Considering the observed equation describing the four-variable model:

TEAC = −0.0851(±0.0533) × Mor16e − 0.1511(±0.0964) × RDF145p + 0.1489(±0.0526) × C-018 + 0.1991(±0.0694)
× CATS2D_06_AL + 0.0396(±0.0156)
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descriptors of interest are the following: Mor16e, RDF145p, C-018 and CATS2D_06_AL,
belonging to the 3D-MoRSE, Radial Distribution Function, =CHX and CATS 2D type of
descriptors, respectively (Table 5).

The first descriptor found in our four-variable model is the Mor16e descriptor, belong-
ing to the group of 3D-MoRSE descriptors, which stands for 3D-Molecule Representation
of Structures based on electron diffraction. These descriptors were developed based on
the idea of obtaining information from the 3D atomic coordinates by use of the transform
used in electron diffraction studies for preparing theoretical scattering curves. The MoRSE
descriptors have been shown to have good modeling power for different biological and
physicochemical properties and can be used even for the simulation of infrared spectra [25].
In our model, we can see the negative contribution of the Mor16e descriptor, which repre-
sents signal16/weighted by Sanderson electronegativity. According to Sanderson’s theory,
a compound that exhibits high electronegativity, due to the equalization of electronegativity
between two atoms, is associated with low reactivity; therefore, the lower the Mor16e value
associated with the compound, the more pronounced its antioxidative potential is [26].
3D-MoRSE type descriptors were also part of models obtained in the previously published
studies for the prediction of antioxidative activity [23].

The second descriptor found in the obtained model is RDF145p. Radial Distribution
Function (RDF) descriptors are based on the geometrical interatomic distance and constitute
a radial distribution function code, and they show some characteristics in common with
the 3D-MoRSe descriptors [25]. They contain information about the interatomic distances
in a molecule, unweighted or weighted by different atomic properties, such as atomic mass,
electronegativity, van der Waals volume and atomic polarizability [27]. We can see that
increase in those properties of the molecule can negatively affect the antioxidative power
of a compound due to the negative value in the obtained model.

The third descriptor in our model, C-018, belongs to the atom-centered fragment type
of descriptors. Each atom type is an atom in the molecule described by its neighboring
atoms. Hydrogen and halogen atoms are classified by the hybridization and oxidation
state of the carbon atom to which they are bonded. Carbon atoms are classified by their
hybridization state and depending on whether their neighbors are carbon or heteroatoms. C-
018 is defined as =CHX atom-centered fragment, where X can represent any electronegative
atom (O, N, S, P, Se, halogens) as well as an aromatic bond, as in benzene [28]. This
descriptor strongly contributes to the TEAC values calculated by our model.

The last descriptor found in our model is from the group of CATS 2D descriptors,
named CATS_2D_AL. The CATS 2D (Chemically Advanced Template Search) descriptors
are a type of autocorrelation descriptors, where the atom-type definition is related to
potential pharmacophore points (PPP). CATS2D descriptors are widely used for similarity
search 17. The names of the CATS2D descriptors are coded as follows: “CATS2D_”,
“distance2D_”, and “type atom pair”. Thus, “CATS2D_06_AL” means the count of all
molecular graph distances (6) between atom pairs are acceptor lipophilic (AL) [29]. It is
visible that this descriptor has a positive impact on predicted TEAC values.

3. Materials and Methods
3.1. Chemicals and Reagents

Standards of pharmaceuticals selected for this study (Table 1) were obtained by the
following manufacturers: Sigma-Aldrich (St. Louis, MO, USA), Fluka (Buchs, Switzerland),
TCI (Tokyo, Japan), Ph. Eur. 7.0 and Pliva d.o.o. (Zagreb, Croatia). DPPH (95%), a free radi-
cal, and TROLOX (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a synthetic
antioxidant and water-soluble analog of vitamin E, were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Methanol (98–100%; HPLC grade) was delivered by Merck (Darmstadt,
Germany). Ultra-pure water from a Mili-Q water purification system (Millipore, St. Louis,
MO, USA) with a resistivity of 18.2 MΩ cm (25 ◦C) was used.
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3.2. HPLC-DPPH Method

The antioxidative activity of selected drugs was determined using the DPPH method
followed by chromatographic analysis. Briefly, after 250 µL of 2.5 mM DPPH methanolic
solution was added to 1 mL of 1 mM drug solution, the reaction mixture was stirred
and stored in the dark for 30 min at room temperature. A chromatographic analysis
was conducted on Agilent 1100 HPLC system (Agilent Technologies, Santa Clara, CA,
USA) with diode array detector using our previously published method adopted for these
specific samples [12]. For this reason, method verification was performed to confirm the
applicability of the method to the different chromatographic systems. Determination of the
antioxidant activity of the drug was performed in triplicate.

The ability of each drug sample to scavenge the ‘stable’ free DPPH radical was deter-
mined from the difference in the peak area of the initial solution of the radical itself and
the solution of the radical after reaction with the sample. TROLOX was used as a standard
antioxidant and the results were expressed as TEAC values determined from a standard
calibration curve.

3.3. Statistical Procedure
3.3.1. Data Set and Calculation of Descriptors

A set of 82 pharmaceuticals with accompanying TEAC values was used in the QSAR
study. The set was divided into the training set, comprising 68 structurally various drugs,
and the prediction set, which also included 14 structurally various drugs.

For calculation of descriptors, 3D structures of selected compounds were created in
Chem3D Pro software (ChemOffice v15.0, Perkin Elmer, Waltham, MA, USA). Molecular
conformations were optimised by the AM1 method using the MOPAC2012 interface. A
total of 3242 molecular descriptors were calculated using the DRAGON v6.0 software
(Milano chemometrics & QSAR research group, Milano, Italy), describing the chemical
diversity of the studied set as well as capturing the relevant structural characteristics.

3.3.2. Statistical Correlation

To calculate the correlation between TEAC (response values used in QSAR) and
DRAGON-generated structurally related descriptors, Genetic Algorithm (GA) and Multiple
Linear Regression Analysis (MLRA) methods were used. The combination of the GA-MLRA
methods was applied for the selection of descriptors and construction of one-, two-, three-,
four-, five-, six-, seven- and eight-variable models using QSARINS v2.2. (QSAR Group,
University of Insubria, Varese, Italy). GA variable selection technique started with a
population of 200 random models and 2000 iterations to the evolution, with the mutation
probability specified as 20%. All descriptors used in calculations of models were expressed
as their normalized values for easier comparison of their contribution to QSAR responses.
To exclude the models with highly cross-correlated descriptors as well as models with low
correlation, filtering through the QUIK rule built-in QSARINS software was performed.
Additionally, models with over-correlated descriptors as well as non-significant correlation
coefficients were excluded from further study.

The best models were selected according to their correlation coefficients (r), model
variance (R2), F-ratio, leave-one-out cross-validation (Q2), standard error (s) and standard
error of the predictive residue of sum of squares (SPRESS). The validation of the model
was performed using leave-many-out (LMO) and “Y-scrambling” tests. A Williams plot
was used to visualize the applicability domain (AD) of developed models. Such a plot
of standardized cross-validated residuals (RES) vs. leverage (Hat diagonal) values (HAT)
depicts both the response outliers (Y outliers) and structurally influential compounds (X
outliers) in a model.

4. Conclusions

In this study, the applied HPLC-DPPH method has proven to be rapid and effective for
determining the antioxidant activity of eighty-two pharmaceuticals in order to investigate
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additional mechanisms of their action that are widely used in clinical practice. In total,
23% of the analyzed pharmaceuticals had good free radical scavenging activity (above
0.100 mM TEAC) and could play the role of a neoadjuvant antioxidant.

Results of QSAR modelling showed that four- and seven-variable models had the
best potential for prediction of TEAC. Looking into statistical parameters of each model,
four-variable model showed to be superior to seven-variable model, due to the fact that
seven-variable model showed highly cross-correlated descriptors, meaning that there
is a lack of information variability. The chosen model showed good linearity and was
successfully validated and tested. With the correlation coefficient of 0.927 for predicted
TEAC values, it is shown that this model is adequate for the prediction of TEAC values
considering the descriptors included in the model.

The conducted study systematically improved the knowledge of the antioxidative ac-
tivity of these widely prescribed medicines and provide a scientific basis for the subsequent
elucidation of the pharmaceuticals and their additional mechanism activities. Overall, the
results lay the foundation for in-depth research on the antioxidative activity of drugs with
high TEAC values. Furthermore, this research strategy can be used for the drug characteri-
zation according to various antioxidant tests and for enabling the further development and
utilization of these pharmaceuticals.
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