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Abstract

Motivation: Recently, AlphaFold2 achieved high experimental accuracy for the majority of proteins in Critical
Assessment of Structure Prediction (CASP 14). This raises the hope that one day, we may achieve the same feat for
RNA structure prediction for those structured RNAs, which is as fundamentally and practically important similar to
protein structure prediction. One major factor in the recent advancement of protein structure prediction is the highly
accurate prediction of distance-based contact maps of proteins.

Results: Here, we showed that by integrated deep learning with physics-inferred secondary structures, co-
evolutionary information and multiple sequence-alignment sampling, we can achieve RNA contact-map prediction
at a level of accuracy similar to that in protein contact-map prediction. More importantly, highly accurate prediction
for top L long-range contacts can be assured for those RNAs with a high effective number of homologous sequences
(Nets >50). The initial use of the predicted contact map as distance-based restraints confirmed its usefulness in 3D
structure prediction.

Availability and implementation: SPOT-RNA-2D is available as a web server at https://sparks-lab.org/server/spot-

rna-2d/ and as a standalone program at https://github.com/jaswindersingh2/SPOT-RNA-2D.
Contact: zhouyq@szbl.ac.cn or jaswinder.singh3@griffithuni.edu.au or k.paliwal@griffith.edu.au
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

3D structures of non-coding RNAs are the key for understanding their
biological functions. Although these structures can be obtained by
X-ray crystallography, nuclear magnetic resonance (NMR) or cryo-
genic electron microscopy, the low throughput and costly nature of
these experimental techniques and the challenges associated with
RNA structure determinations has led to fewer than 3% deposited
structures in protein data bank (Rose et al., 2017) containing RNAs
and fewer than 0.01% of 18 million non-coding RNAs collected in
RNAcentral (Consortium, 2020) with known structures. As a result,
many computational and experimental methods have been developed
for predicting or probing RNA secondary structure and base contacts
(Cai et al., 2020; Janssen and Giegerich, 2015; Lorenz et al., 2011;
Luo et al., 2021; Reuter and Mathews, 2010; Solayman et al., 2022)
along with 1D to multi-dimensional structural probing data (Carlson

et al., 2018; Kubota et al., 2015; Tinoco and Bustamante, 1999) to
act as restraints for RNA 3D structure prediction (Watkins et al.,
2020; Zhang et al., 2020b, 2020c).

Recently, computational prediction of RNA 3D structures has
been improved by restraining distance-based contacts from direct
coupling analysis analysis (DCA) (De Leonardis et al., 2015a; Wang
et al., 2017a; Weinreb et al., 2016). DCA restraints produced by
these methods, however, were limited to <4000 families in the
RFAM (Kalvari et al., 2018) database, which provides multiple-
sequence-alignment (MSA) manually curated according to experi-
mentally determined secondary structures. Although this limitation
was removed by the development of a pipeline named RNAcmap
(Zhang et al., 2021) that searches for and aligns with co-variant
homologous sequences automatically, the accuracy of DCA predic-
tors remains low, especially for those RNAs with few homologous
sequences (Pucci et al., 2020).
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In the past few years, predicting distance-based contact maps of
proteins has been improved significantly over DCA predictors by
utilizing an ensemble of deep neural networks with improved evolu-
tionary profiles and DCA results as an input (Hanson et al., 2018;
Li et al., 2021; Wang et al., 2017b; Yang et al., 2020). Inspired by
these studies, we developed a 2D deep-learning-based predictor
SPOT-RNA (Singh et al., 2019, 2021a) for secondary and tertiary
base pairs and Sun et al. established the method for predicting
distance-based contact maps [RNAContact (Sun et al., 2021)].
RNAContact used evolutionary information; however, it neither
took advantage of correlated mutations for deeper homology search
nor used correlated mutations as input. Moreover, the method
seems to perform poorly for the RNAs with few homologous
sequences, which are the case for the majority of RNAs.

In this work, we improved the accuracy of predicting RNA
distance-based contact map with improved co-evolutionary infor-
mation from RNAcmap (Zhang et al., 2021) and multiple sequence
alignment sampling techniques used in trRosetta (Yang ez al., 2020)
and AlphaFold (Senior et al., 2020). Moreover, we used predicted
secondary structures from a single-sequence-folding-based technique
RNAfold as an input to improve the baseline performance for those
RNAs without homologs. The new method, called SPOT-RNA-2D,
substantially improves over existing methods in distance-based con-
tact prediction, even at the single-sequence level.

2 Materials and methods

2.1 Datasets

We used the same benchmark datasets from our previous work on
RNA backbone angle prediction (Singh et al., 2021b) (SPOT-RNA-
1D) for training, validation and testing. The SPOT-RNA-1D data-
sets consist of a training set (TR) of 286 RNA chains, a validation
set (VL) of 30 RNA chains, and three test sets (TS1, TS2, TS3) of
63, 30 and 54 RNA chains, respectively, all prepared by using high-
resolution RNA structures from PDB (Rose et al., 2017).

More specifically, we downloaded all the high-resolution
(<3.5A) X-ray structures from PDB on 3 October 2020. These
RNA structures were split into individual chains using a PDBParser
from Biopython (Cock et al., 2009) and then sequences clustered
using CD-HIT-EST (Fu et al., 2012) at the lowest allowed identity
cut-off of 80%. Non-clustered RNAs were kept for the validation
and test sets while the remaining clustered RNAs for the training
set.

As the 80% sequence identity cut-off may not be strict enough,
therefore, we further used the BLAST-N (Altschul et al., 1997) tool
on non-clustered RNAs against training set and within themselves
with a large e-value cut-off of 10. Any non-clustered sequence hits
with the training set were removed from the training set, and any
non-clustered sequence hits within themselves were also removed.
After the CD-HIT-EST and BLAST-N filtering on non-clustered
RNAs chains, we randomly split these RNAs chains into one valid-
ation (VL) and two test sets (TS1 and TS2).

Furthermore, we made VL and TS2 non-redundant even at the
remote-homolog level from the other datasets (TR, TS1) and within
themselves (VL, TS2). To achieve non-redundancy at the remote-
homolog level, we build a covariance model for RNAs in VL and
TS2. The covariance was built by first searching the query RNA
(from VL, TS2) against NCBI’s database for homologs using
BLAST-N. Then the multiple sequence alignment (MSA) of homo-
logs along with consensus secondary structure (CSS) from 3D struc-
tural files was used to build the covariance model using the cmbuild
program from the INFERNAL (Nawrocki and Eddy, 2013) tool.
Finally, the covariance model of VL and TS2 RNAs was searched
against the TR and TS1 using the cmsearch program from
INFERNAL with an E-value cut-off of 0.1 for VL and 10 for TS2.
Any hits of covariance models were removed from TR and TS1.
Similarly, VL and TS2 were made non-redundant at the remote-
homolog level within themselves. We used an E-value cut-off of 0.1
for VL to maintain a reasonable number of RNAs in the validation
set (VL) and 10 for TS2 to make this test set as strict as possible for

benchmarking. Tertiary structure predictions were evaluated on the
TS2 set as it represents the most challenging set of targets for SPOT-
RNA-2D.

The final X-ray dataset consists of 286, 30, 63 and 30 RNA
chains for TR, VL, TS1 and TS2, respectively. The distribution of
the datasets, such as the number of RNA chains in each set, median
and maximum sequence lengths, type of base-pairs, the average
number of distance-based contacts, is shown in Supplementary
Table S1. We used the DSSR (Lu et al., 2015) tool to extract differ-
ent base pairs from 3D structural files.

These X-ray datasets were mapped to Rfam families (using the
https://rfam.xfam.org/ website), to analyze the distribution and
overlap of datasets in terms of Rfam families. As shown in
Supplementary Table S2, few Rfam families are over-represented
compared to others. This imbalance reflects the distribution of RNA
3D structures submitted to PDB. The utilization of CD-HIT-EST
and BLAST-N to prepare test set TS1 remove Rfam family overlap
of nearly 63% RNAs in comparison to training data as shown in
Supplementary Table S2. The criterion of CD-HIT-EST and BLAST-
N to prepare test sets has been used in past by RNAsol (Sun ez al.,
2019), RNAsnap2 (Hanumanthappa et al., 2021) and RNAContact
(Sun et al., 2021) methods. In addition, we further utilized
INFERNAL to prepare datasets VL and TS2 by removing Rfam
families overlap with training data nearly 100% except 1 RNA
(2qus_A) from TS2. Moreover, we prepared another test set (TS-
rfam) which consists of 69 RNAs from TS1 and TS2 that do not
share any Rfam families overlap with training data. Performance on
the test set TS-rfam is mentioned separately in Section 3.

During the preparation of the above datasets, we purposely kept
RNA chains belong to the RNA-Puzzles (Cruz et al., 2012; Miao
etal., 2015, 2017, 2020) in the test sets as many as possible because
RNA-Puzzles RNAs are widely used for benchmarking RNA 3D
models. There are 12 RNA chains belong to RNA-Puzzles, which
was listed as a separate test set (named RNA-Puzzles) for bench-
marking the predictors.

In addition to the above three test sets (TS1, TS2 and RNA-
Puzzles), we prepared an additional test set (TS3) using NMR struc-
tures. To prepare TS3, we downloaded all the NMR structures
(707) from the PDB (Rose et al., 2017) on 5§ April 2021. We made
these RNAs non-redundant within themselves and from TR, VL,
TS1 and TS2 using the exact same criterion as TS1 and obtained 54
RNA chains for benchmarking.

To obtain the distance-based contact labels, we defined two
nucleotides in contact if the distance between the nearest-heavy
atoms of these two nucleotides is <8 A as done previously (De
Leonardis et al., 2015a; Weinreb et al., 2016; Zhang et al., 2021).
Also, the Number of EFFective (N.;) for all the RNAs were
obtained using GREMLIN tool, where N, is defined as the sum of
weights after down-weighting each sequence by the number of
neighbours above a pairwise sequence similarity cutoff of 0.8.

2.2 Input features

The input features for this work follow our previous base-pair pre-
dictor [SPOT-RNA2 (Singh et al., 2021a)], which illustrated the im-
portance of both single-sequence-based and evolutionary-profile-
based features. Both types of features were used here for RNA
distance-based contact map prediction, as shown in Figure 1A.

Single-sequence-based features include one-hot encoding of an input
RNA sequence of size L x 4, with (1,0,0,0), (0,1,0,0), (0,0,1,0)
and (0,0, 0, 1) for four nucleotides (A, U, G and C), respectively, where
L is the sequence length. Along with one-hot encoding, we used the pre-
dicted base-pair probability of size L x L from the single-sequence-
based method RNAfold (Lorenz et al., 2011). We preferred RNAfold
over other predictors because it is one of the most accurate non-
machine learning methods. We used a non-machine learning-based
method to avoid any potential bias during performance evaluation on
test sets.

Evolutionary-profile-based features include position-specific
scoring matrix (PSSM) of size L x 4 and 2D direct coupling analysis
(DCA) information from PLMC (Balakrishnan ez al., 2011; Hopf
et al., 2017) of size L x L. PSSM and DCA features were extracted
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Fig. 1. (A) Inputted 1D and 2D features used by the SPOT-RNA-2D; where MSA is multiple sequence alignment, CSS is predicted consensus secondary structure from
RNAfold (MFE), CM is covariance model, One-hot is the one-hot encoding of the input sequence, PSSM is the position-specific scoring matrix, PLMC is pseudo-likelihood
maximization coupling, BPs is predicted base-pairs probability from RNAfold (MFE), MFE is minimum free energy and L is the length of the RNA sequence. (B) The general-

ized deep neural network architecture of SPOT-RNA-2D

from RNAcmap (Zhang et al., 2021) generated multiple-sequence-
alignment (MSA-2) as shown in Figure 1A. RNAfold, rather than
SPOT-RNA, was employed for generating consensus secondary
structure (CSS) for RNAcmap.

All 1D features (one-hot encoding and PSSM, L x 4) were con-
verted into 2D features of size L X 16 using the outer-concatenation
function as described in RaptorX-Contact (Wang et al., 2017b).
Finally, 1D and 2D features were concatenated into a feature vector
of size L x L x 18 as an input to the deep neural network model, as
shown in Figure 1B. These input features were standardized to have
a zero mean with a unity variance according to the mean and the
standard deviation in the training set before feeding into the deep
neural network architecture.

2.3 Neural network architecture

The deep neural network architecture used in this work was inspired
by our previous work SPOT-RNA (Singh ef al., 2019) and SPOT-
RNA2 (Singh et al., 2021a) for RNA secondary structure prediction.
SPOT-RNA and SPOT-RNA2 utilized an ensemble of Residual
Convolutional Neural Networks (He et al., 2016) (ResNets). Similar
to SPOT-RNAs, we used an ensemble of ResNets based on the gen-
eralized model architecture shown in Figure 1B.

The architecture of SPOT-RNA-2D (shown in Fig. 1B) consists
of an initial convolutional layer with a kernel size of 3 x 3 and Ng
filters followed by N, ResNet blocks (Block-A). A single ResNet
block consists of two pre-activated convolutional layers with a ker-
nel size of 3 x 3 and N filters. The input to convolutional layers
was also normalized by using layer normalization (Ba et al., 2016).
A dropout rate of 50% was used to avoid overfitting of model
weights on training data.

Finally, a fully connected (FC) output layer with a single node
and a sigmoid activation function was used. It predicts the upper tri-
angular base-pair probability matrix of size L x L (as shown in
Fig. 1B), where L is the length of the input sequence. A single thresh-
old value was used to decide whether two nucleotides are in a
distance-based contact or not. The value of the threshold was
obtained by optimizing the F1-score on the validation set (VL).

We trained many models based on the architecture shown in
Figure 1B by grid search for range of ResNets blocks (N,4) and filters
(NE). Ny was varied from 1 to 20 and Ng from 32 to 96 with a step
increase of 1 and 8, respectively. Based on the performance of the
validation set, we choose the four best models for the ensemble.
Model architecture parameters for these four models are shown in
Supplementary Table S3.

All the models were implemented using Google’s TensorFlow
framework (Version-1.15) and trained using Nvidia GTX TITAN X
graphics processing unit (GPU). For training, an Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 0.005 was used. A
ELU function (Clevert et al., 2015) was used to apply non-linear ac-
tivation to the output of every layer except the output FC layer.
Model hyper-parameters such as optimizers, activation functions
and dropout rates were obtained from our previous work of RNA
secondary structure prediction (Singh et al., 2019, 2021a).

2.4 Tertiary structure modelling

RNA 3D structure models were generated with the rna_denovo ap-
plication of the Rosetta molecular modelling suite. Inputs were gen-
erated from the FARFAR2 (Watkins et al., 2020) RNA benchmark
pipeline (available: https://github.com/DasLab/rna_benchmark). In
all cases, secondary structure assignments [from RNAfold (Lorenz


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac421#supplementary-data
https://github.com/DasLab/rna_benchmark

SPOT-RNA-2D

3903

et al., 2011) or DSSR (Lu et al., 2015)] were used to pre-assemble
canonical A-form helices. Pseudoknotted base pairs were removed
with the RemovePseudoknots application from the RNAstructure
package (Reuter and Mathews, 2010). Predicted tertiary contacts
were then identified based on previously defined criteria (De
Leonardis et al., 2015b), which excludes local sequence neighbours
(Ji—j| < 5)and contacts neighbouring assigned secondary structure
pairs (k={0,1,2},/%{0,1,2}). Constraints were selected based on a
fixed probability threshold (0.3 and 0.4 for SPOT-RNA-2D and
SPOT-RNA-2D-Single). The probability threshold was optimized by
a coarse grid search (Supplementary Fig. S1) and the improvement
of SPOT-RNA-2D is reasonably robust to the specific threshold.
Ambiguous atom-pair constraints were applied to all combinations
of heavy atoms such that only the minimum-energy atom-pair
impacted the global energy during the minimization. Constraint en-
ergy terms used the long-range definition defined previously (De
Leonardis et al., 2015b) with an empirical weight of 10 (FADE -100
26 20 -20 20). Models with tertiary constraints were generated by
fragment assembly since the full atom refinement was not found to
improve model accuracy when using tertiary constraints (not
shown). Baseline models were generated with the full FARFAR2
protocol. In this work we report model accuracy as the C3° RMSD
of the native structure with the top 1 low energy model from 200
simulations.

2.5 Performance evaluation
Similar to RNA secondary structure prediction, distance-based con-
tact-map prediction is a binary classification problem. Thus, we used
precision [PR = TP/(TP + FP)], sensitivity [SN = TP/(TP + EN)]
and Fl-score [F1 = 2(PR x SN)/(PR + SN)] for non-local contacts
[|i —j| > 4] as a performance measure, where TP, FP and FN denotes
true positives, false positives and false negatives, respectively, and i
and j are the sequence positions of any two nucleotides in a sequence.
To evaluate binary classification performance metrics, the predicted
base-pair probability was converted into binary classification using a
threshold value that optimize the Fl-score on the validation set for
SPOT-RNA-2D (0.46) and SPOT-RNA-2D-Single (0.50). For other
methods, we used a threshold value that optimizes the F1 score on the
test set TS1.

In addition, for an RNA of length L, we used a mean precision
of top L/1,L/2, L/5 and L/10 long-range contacts [|i — j| > 24]
for benchmarking different predictors, where 7 and j are the of se-
quence positions of any two nucleotides in a sequence. This defin-
ition of long-range contacts [|i — j| > 24] has been utilized in past by
DIRECT (Jian et al., 2019) and RNAContact (Sun et al., 2021).
Tertiary structure models were evaluated by superimposed C3’
RMSD with the native structure computed with Biopython (Cock
etal.,2009).

2.6 Methods comparison

We compared SPOT-RNA-2D with PLMC (Balakrishnan ez al.,
2011; Hopf et al., 2017), GREMLIN (Kamisetty et al., 2013),
mean-field direct coupling analysis [mfDCA (Morcos et al., 2011;
Schug et al., 2009; Weigt et al., 2009)] and pseudolikelihood maxi-
mization [plmDCA (Ekeberg et al., 2013)] direct coupling analysis
algorithms. We downloaded the standalone program of PLMC
(https://github.com/debbiemarkslab/plmc), GREMLIN  (https://
github.com/sokrypton/GREMLIN_CPP), mfDCA and plmDCA
[from pydca (Zerihun et al., 2020) https://github.com/KIT-MBS/
pydca] and ran them locally. We also compared SPOT-RNA-2D
with the recently developed deep learning-based method
RNAContact (Sun et al., 2021). We used the RNAContact
webserver (https://yanglab.nankai.edu.cn/RNAcontact/) to obtain
predictions.

For comparison with RNA secondary structure prediction meth-
ods, we downloaded RNAfold (Lorenz et al., 2011) (from Vienna
package version 2.4.14, available at https:/www.tbi.univie.ac.at/
RNA/), SPOT-RNA (Singh et al., 2019) (available at https://github.
com/jaswindersingh2/SPOT-RNA), SPOT-RNA2 (Singh ez al., 2021a)
(available at https://github.com/jaswindersingh2/SPOT-RNA2) and

LinearPartition (Zhang et al., 2020a) (available at https:/github.com/
LinearFold/LinearPartition) and run these predictors locally with de-
fault parameters.

3 Results

3.1 Feature contribution, MSA sampling and ensemble

learning

SPOT-RNA-2D utilizes two single-sequence-based and two
evolutionary-based input features for RNA distance-based contact
map prediction, as shown in Figure 1A. Single-sequence-based
features include one-hot encoding (1D) and predicted base-pair
probability (2D) from RNAfold (Lorenz er al., 2011) (MFE).
Evolutionary-based features include position-specific scoring matrix
(PSSM, 1D) and direct coupling analysis (Balakrishnan ez al., 2011;
Hopf et al., 2017) (DCA, 2D) from RNAcmap generated multiple-
sequence-alignment (MSA-2).

Table 1 shows the effect of the different input features on dis-
tance contact prediction used by a baseline model (Model-0) with
the architecture shown in Figure 1B. This model was trained using a
training set TR, validated by a validation set VL and tested on three
non-redundant test sets TS1, TS2 and TS-rfam, all from high-
resolution X-ray structures (Singh et al., 2021b). The test set TS1 is
made non-redundant from TR, VL, TS2 and within itself using CD-
HIT-EST (Fu et al., 2012) (lowest identity cutoff of 0.8) followed by
BLAST-N (Altschul et al., 1997) (E-value =10). The test set TS2
(a harder test set) further excludes remote structural homologs by
searching the INFERNAL covariance model of TS2 sequences
against TR, VL, TS2 and within itself. The test set TS-rfam was pre-
pared from TS1 and TS2 by extracting 69 RNAs that do not overlap
with any Rfam family in the training data.

As shown in Table 1, the one-hot encoding only achieves an F1-
score of 0.71, 0.69, 0.64 and 0.66 or Matthews Correlation
Coefficient (MCC) of 0.66, 0.67, 0.62 and 0.64 for VL, TS1, TS2
and TS-rfam, respectively. An overall similar performance among
different sets, despite the difference in fractions of tertiary base pairs
and number of effective homologous sequences (Supplementary
Table S1), indicates the robustness of the training.

Adding base-pairing probabilities from RNAfold (MFE)
improves the Fl-score by more than 6%, 4%, 13% and 13% for
VL, TS1, TS2 and TS-rfam, respectively. For the evolution-based in-
formation, adding 1D PSSM and 2D DCA from PLMC
(Balakrishnan ez al., 2011; Hopf et al., 2017) improves Fl-score
more than 3%, 6%, 8% and 6% for VL, TS1, TS2 and TS-rfam, re-
spectively. Combining both single-sequence-based and evolutionary-
based features further increases the performance on test sets TS1,
TS2 and TS-rfam. Note the performance on VL seems to reach a
limit without (one hot encoding + RNAfold only) or with evolution-
ary information (one hot encoding + RNAfold + PSSM + DCA),
largely due to the very low Ng-value of VL (median Ng=2,
Supplementary Table S1).

To further extract the evolution information, we performed
MSA sampling during training that was found effective for protein
structure prediction by Alphafold (Senior et al., 2020) and trRosetta
(Yang et al., 2020). This was done by using 20 random samples of
50, 100, 200, 500, 1000 RNAs from the full MSA alignment (MSA-
2 in Fig. 1A). We chose 20 random seeds because SPOT-RNA-2D
models took about 20 epochs to converge. PSSM and DCA features
were evaluated for these sampled MSA before training. As shown in
Table 1, MSA sampling improved the performance of the baseline
model for validation (VL) and two test sets (TS1 and TS2). The
amount of performance improvement observed was most for the
TS1 because of relatively higher Neg-value (median N.g=40) in
TS1 than in VL (median N g=2) and TS2 (median N g=9).

Finally, we used ensemble learning by performing the average en-
semble of the outputs of the best four models from many models
trained using the generalized architecture shown in Figure 1B. As
shown in Table 1, ensemble learning further improves for the
performance for validation (VL), and three test sets (TS1, TS2 and
TS-rfam). Supplementary Table S4 shows Rfam family-wise
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Table 1. Performance of the individual models according to Matthews Correlation Coefficient (MCC), F1-score, precision and sensitivity on the validation set VL1, and two test sets TS1, TS2 and

TS-rfam

TS-rfam

TS2

TS1

VL1

Predictor

Precision  Sensitivity

Precision Sensitivity MCC F1 Precision Sensitivity MCC F1

Precision Sensitivity MCC F1

MCC F1

0.555
0.647
0.631

0.826
0.890
0.797

0.645 0.664
0.734 0.750

0.812 0.529
0.618

0.883

0.622 0.640
0.713 0.727

0.581
0.670 0.696

0.853

0.671 0.691

0.622
0.672
0.661

0.835

0.663 0.713
0.710 0.756

0.684 0.736

Single Sequence (SS)

0.633

0.872
0.826
0.779

0.713 0.733
0.719 0.748

0.702 0.736

0.863

SS + RNAfold (SPOT-RNA-2D-Single)

SS + PSSM

0.618 0.676 0.704

0.797

0.683

0.830

0.642
0.674
0.693
0.684

0.795

0.681 0.710
0.730 0.752

0.808 0.650
0.657
0.729 0.755

0.838

0.694 0.720
0.714 0.737
0.713  0.739
0.735 0.754

0.698

0.808 0.677
0.683

0.681 0.737
0.697 0.749

SS + DCA (PLMC)

0.851

0.687

0.830

0.724 0.752

0.828

SS + RNAfold + PSSM + DCA

0.829
0.888

0.675

0.815

0.763
0.757

0.854

0.782 0.806

0.698

0.827
0.845

SS + RNAfold + PSSM + DCA + MSA Sampling 0.705 0.757

0.755 0.773

0.665

0.870

0.893

0.800 0.819

0.691

SS + RNAfold + PSSM + DCA + MSA Sampling 0.712 0.760

+ Ensemble (SPOT-RNA-2D)

Note: Bold indicates the best performance metric of a model.

performance of SPOT-RNA-2D on 93 RNAs from TS1 and TS2
with families overlap with training data highlighted in color red.
There is no obvious trend of higher performance on families that
exists in training in comparison to families that do not exist in train-
ing data. This shows the robustness of trained model to generalize
across Rfam families that are not in training data.

3.2 Comparison with other predictors

Two methods SPOT-RNA-2D and SPOT-RNA-2D-Single were
developed with and without evolution information, respectively.
They were compared to four existing direct coupling analysis (DCA)
predictors (PLMC, mfDCA, plmDCA and GREMLIN) on two high-
resolution (<3.5 A) non-redundant test sets (TS1 and TS2) derived
from PDB X-ray structures and one non-redundant test set (TS3)
derived from PDB NMR structures. Another test set TS-rfam pre-
pared from TS1 and TS2 by extracting 69 RNAs without any Rfam
family overlap with training set (TR). Test sets TS1 and TS2 contain
12 RNA-Puzzles RNAs with results also shown separately. To fur-
ther compare with the recently developed deep learning-based
RNAContact (Sun et al., 2021) without biases, we removed redun-
dant sequences in TS1, TS2, TS3, RNA-Puzzles and TS-rfam to the
RNAContact training set and led to 21, 9, 52, 7 and 20 RNAs, re-
spectively. We also downloaded the test set TS80 prepared by
RNAContact. After removing the sequence identity of TS80 with
our training data (TR) using the same criterion as RNAContact, we
obtained 10 RNAs in TS80. We compared to DCA predictors on
full test sets and to RNAContact on reduced test sets.

Table 2 shows that RNAContact, SPOT-RNA-2D and SPOT-
RNA-2D-Single (F1>0.58) are all substantially better than DCA
predictors (F1 ~ 0.3) for all test sets. SPOT-RNA-2D improves over
RNAContact in F1-score by 18%, 3.5%, 32%, 22%, 16% and 8%
on the reduced test sets TS1, TS2, TS3, RNA-Puzzles, TS80 and TS-
rfam, respectively. In fact, even the single-sequence-based predictor
(SPOT-RNA-2D-Single) improves over RNAContact in F1-score by
1-3% better on TS1 and TS2 and 6-30% better on the TS3, RNA-
Puzzles, TS80 and TS-rfam.

Overall, test sets TS2 and TS3 are more difficult to predict com-
pared to the other test sets (TS1, RNA-Puzzles and TS80) for all the
predictors. This is mainly due to the relatively low Ngvalue of TS2
(median Ng=9, see Supplementary Table S1) and TS3 (median
N.g=4, see Supplementary Table S1). Unlike evolutionary-profile-
based predictors, SPOT-RNA-2D-Single is more consistent
irrespective of Ngvalue, showing the usefulness of a single-sequence-
based predictor where evolutionary information is not available.

The large improvement of SPOT-RNA-2D over DCA methods
can be further illustrated by the precision—recall curve (Fig. 2A) on
combined 147 RNAs from three test sets TS1, TS2 and TS3. Both
SPOT-RNA-2D and SPOT-RNA-2D-Single are significantly better
than all DCA predictors for any threshold values. In Figure 2B,
RNAContact was compared to SPOT-RNA-2D separately on the
combined reduced test sets (82 RNAs). SPOT-RNA-2D-Single offers
a large improvement over RNAContact with a 12% increase in the
area under the precision—recall curve, and SPOT-RNA-2D provides
an additional improvement of 11% over SPOT-RNA-2D-Single.
Similar large improvements can be illustrated with the receiver
operating characteristic curves shown in Supplementary Figure S2A
and B.

Another way to measure the method performance in contact
prediction is the fraction of true positions in top L, L/2, L/5 and 1L/10
predictions (Precision). The most important contacts are those contacts
with large differences in sequence positions (long-range or non-local
contacts). Figure 3A and B compares the precisions in long-range
contacts [(i —j) > 24] given by DCA methods and RNAContact, re-
spectively, with those by SPOT-RNA-2D and SPOT-RNA-2D-Single
for five test sets (TS1, TS2, TS3, RNA-Puzzles and TS80). Again, a
large improvement is observed.

To illustrate the impact of homologous sequences, Figure 4
shows the mean precision of long-range contacts as a function of
Nege-value. The mean precisions for SPOT-RNA-2D and DCA pre-
dictors (Fig. 4A) increase with N.g-value with a large gap between
them. Meanwhile, the performance of SPOT-RNA-2D-Single does


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac421#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac421#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac421#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac421#supplementary-data
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Fig. 2. Precision-recall (PR) curves given by SPOT-RNA-2D and SPOT-RNA-2D-Single (A) along with four DCA predictors on 147 RNAs from three test sets TS1, TS2 and
TS3, (B) further comparison with RNAContact on 82 RNAs from three reduced test sets TS1, TS2 and TS3 after removing the sequences overlapping with RNAContact train-

ing data
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Fig. 3. Mean precision of long-range contacts (i —j > 24) given by various methods as labelled (A) on full test sets TS1, TS2, TS3, RNA-Puzzles and TS80, (B) on reduced test
sets TS1, TS2, TS3, RNA-Puzzles and TS80 after removing the sequences overlapping with RNAContact training data

comparison, SPOT-RNA-2D-Single and RNAContact can only
achieve a precision of 0.64 and 0.59, respectively, whereas
RNAContact missed the central helix region.

Figure SD-F shows the prediction of Varkud satellite ribozyme
(Suslov et al., 2015) (Chain A in PDB ID 4r4v, Puzzle-7) with no
evolutionary information (N.g=1) by RNAContact, SPOT-RNA-
2D-Single and SPOT-RNA-2D, respectively. For this RNA, SPOT-
RNA-2D-Single is the most accurate within top L long-range con-
tacts with a precision of 0.83, followed by SPOT-RNA-2D (0.82)
and RNAContact (0.42), respectively. This example illustrates

SPOT-RNA-2D can essentially recover SPOT-RNA-2D-Single for
low N RNAs. RNAContact misses most structural features,
whereas SPOT-RNA-2D captures most contact features.

Figure 5G-I shows the results of another low N (N g=3) RNA
hatchet ribozyme (Zheng et al., 2019) (Chain A in PDB ID 6jq3,
Puzzle-22) by the RNAContact, SPOT-RNA-2D-Single and SPOT-
RNA-2D, respectively. This RNA is relatively difficult to predict for
all the predictors. The precision for top L long-range contacts was
0.35, 0.34 and 0.28 for SPOT-RNA-2D, SPOT-RNA-2D-Single and
RNAContact, respectively. This RNA is more challenging because
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Table 3. Performance comparison in terms of mean F1-score for base pairs and non-local [(i — j) > 6] non-base pairs with DCA predictors
(PLMC, mfDCA, piImDCA and GREMLIN) and secondary structure predictors (RNAfold and LinearPartition) on full test sets TS1 (63 RNAs),

TS2 (30 RNAs) and TS3 (54 RNAs)

TS1 TS2 TS3
Base pairs Non-base pairs Base pairs Non-base pairs Base pairs Non-base pairs

Full test sets

GREMLIN 0.414 0.170 0.365 0.176 0.305 0.229

plmDCA 0.445 0.200 0.401 0.196 0.341 0.240

mfDCA 0.454 0.203 0.417 0.202 0.348 0.240

PLMC 0.427 0.205 0.388 0.205 0.331 0.241

RNAfold 0.603 0.165 0.656 0.188 0.776 0.243

LinearPartition 0.623 0.166 0.668 0.179 0.764 0.258

SPOT-RNA-2D-Single 0.566 0.531 0.568 0.555 0.680 0.717

SPOT-RNA-2D 0.690 0.642 0.643 0.590 0.711 0.730
Reduced test sets

SPOT-RNA 0.660 0.199 0.670 0.192 0.778 0.407

SPOT-RNA2 0.676 0.263 0.709 0.251 0.781 0.350

SPOT-RNA-2D-Single 0.556 0.523 0.560 0.545 0.680 0.717

SPOT-RNA-2D 0.668 0.615 0.658 0.588 0.711 0.730
Reduced test sets

RNAContact 0.408 0.474 0.446 0.508 0.358 0.457

SPOT-RNA-2D-Single 0.532 0.491 0.620 0.546 0.674 0.711

SPOT-RNA-2D 0.701 0.635 0.635 0.588 0.705 0.725

Note: Comparison with SPOT-RNA and SPOT-RNA2 on reduced test sets TS1 (35 RNAs), TS2 (15 RNAs) and TS3 (54 RNAs) after removing the sequences
overlapping with SPOT-RNA’s training data. Comparison with RNAContact on reduced test sets TS1 (21 RNAs), TS2 (9 RNAs) and TS3 (52 RNAs) after remov-

ing the sequences overlapping with RNAContact training data. Bold indicates the predictor with the best performance.



3908

J.Singh et al.

60

50

40

30

20

RNAContact

N

10 20 30 40 50 60

RNAContact

SPOT-RNA-2D-Single

SPOT-RNA-2D

10 20 30 40 50 60

SPOT-RNA-2D-Single

10 20 30 40 50 60

SPOT-RNA-2D

100 100

50 50

150

100

50

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8

0.7
06
3 05
T 0.4
= 03

p 02

5 .
:EQ 0.1

50 100 150 50 100 150

RNAContact

50 100 150

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

Fig. 5. Comparison of predicted contact maps given by RNAContact (A, D, G), SPOT-RNA-2D-Single (B, E, H) and SPOT-RNA-2D (C, F, I) predicted contact map (in the
lower triangle) with native contact map (in the upper triangle) for 2’-dG-II riboswitch (Chain A in PDB ID 6p2h), Varkud satellite ribozyme (Chain A in PDB ID 4r4v) and
Hatchet Ribozyme (Chain A in PDB ID 6jqS5) from RNA-Puzzles test set. Color bar indicates probability of predicted distance-based contact map in lower triangle.

Highlighted orange circles indicate correctly predicted long-range contacts. Cartoon Figures indicate corresponding native 3D structure of upper triangular matrix on the left
with long-range contacts highlighted by color orange and remaining contacts in color red (A color version of this figure appears in the online version of this article.)

the contact map is dominated by many short-isolated contacts.
These fragmented contacts were missed by all methods.

3.4 Tertiary structure modelling

Supplementary Table S5 summarizes the average RMSD of models
from TS2 generated by Rosetta with the different input information.
The baseline models [FARFAR2 (Watkins et al., 2020)] rely only on
a predicted secondary structure to guide minimization and yield an
average RMSD of 16.9 A for the top 1 low energy models. For TS2
it appears that there is not much advantage to using the true second-
ary structure labels compared with those predicted by RNAfold
when few tertiary constraints are available (FARFAR2 and SPOT-
RNA-2D-Single). Using the RNAfold predicted secondary structure
combined with tertiary contacts predicted by SPOT-RNA-2D
improves the mean RMSD to 14.6 A (16% reduction). Results are
much better if RNA complex structures are excluded (25 targets
remained) with a 20% reduction from the mean RMSD of 15.5 A by
FARFAR2 to 12.7A by SPOT-RNA-2D. We also report the typical
time taken to generate a single model by SPOT-RNA-2D compared
with FARFAR?2 in Supplementary Figure S5. Despite the computa-
tional overhead associated with evaluating tertiary constraints, the
SPOT-RNA-2D computational time is comparable with FARFAR2
by forgoing the costly full atom refinement stage. Models were

generated using a single core Intel(R) Xeon(R) CPU ES5-2670 0 @
2.60 GHz. Models generated with DSSR secondary structure and
constraints derived from true contacts in the native structure repre-
sent a lower bound on modelling performance within the proposed
framework. However, even with perfect contact prediction and a
perfect secondary structure, only a mean RMSD of 8.1A (6.5A
excluding complex structures) can be achieved. This suggests that
even using perfect contact information is not sufficient to fold with
Rosetta.

An example that demonstrates the efficacy of the SPOT-RNA-
2D predicted contacts is the 2’-dG riboswitch (Pikovskaya ez al.,
2011) (Supplementary Fig. S6). Black dots in the upper diagonal of
the contact maps represent base-paired nucleotides predicted by
RNAfold and derived from DSSR in the native structure. The black
color in the lower diagonal represents constraints that are satisfied
by the top 1 model and the blue color is used to indicate constraints
that were not satisfied by the respective model. While the secondary
structure is correctly assigned by RNAfold, relative helix orienta-
tions are not recovered by the naive FARFAR2 protocol which leads
to a poor RMSD of the top 1 model with the native structure
(17.7 A). The SPOT-RNA-2D predicted contact map includes critic-
al tertiary interactions which enforce the correct antiparallel helical
configuration when applied as constraints and significantly improve
the RMSD to 6.6 A. The evolution-derived, residue constraints bias
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the conformation sampling toward the native structure leading to a
characteristic “folding funnel” which is not observed when ignoring
tertiary constraints or when using those derived from SPOT-RNA-
2D and SPOT-RNA-2D-Single (Supplementary Fig. S7).

4 Discussion

Initial advances in protein structure prediction using deep learning
[CASP11 (Monastyrskyy et al., 2016) and CASP12 (Schaarschmidt
et al., 2018)] can be largely attributed to the large improvement in
protein contact-map prediction. Thus, it is critical to improve the
prediction of RNA contact map for advancing RNA structure pre-
diction. Most previous work on RNA base-base contacts was lim-
ited to base pairs in terms of secondary structure prediction,
evolutionary coupling analysis or deep learning on the evolutionary-
derived 1D profile. Here, we developed SPOT-RNA-2D that pro-
vides integrated deep learning on physics-derived base pairs and
evolutionary-derived direct coupling for improving distance-based
contact prediction. The new method substantially improves over
existing techniques across different test sets regardless of the
structures were determined by X-ray crystallography or NMR
techniques.

One nice feature of SPOT-RNA-2D is that it can recover the
performance of the single-sequence-based method SPOT-RNA-2D-
Single when few homologous sequences are available. This is sup-
ported by the dependence of the performance of SPOT-RNA-2D
and SPOT-RNA-2D-Single on the number of effective homologous
sequences (Fig. 4). Thus, SPOT-RNA-2D is able to better generalize
performance across different N g-values due to MSA sampling used
during training. By comparison, the performance of RNAContact
does not have a strong dependence on N, suggesting that a 1D
PSSM profile based on sequence-derived homolog is insufficient to
capture the full extent of evolution information. More importantly,
when Ng>50, SPOT-RNA-2D can make highly accurate perform-
ance (80% precision for top L long-range contact prediction).

One limitation of SPOT-RNA-2D is due to its usage of RNAcmap
to derive evolution information. RNAcmap uses BLAST-N to make
the first round of sequence-based search for homologs, followed by
INFERNAL to perform the second round of sequence-profile and
secondary-structure-based search. This method is computationally
prohibitive for RNA sequences >1000 bases. As a result, our model
was trained with a maximum sequence length of 418. For example,
RNAcamp can take 5-6 h on 40 CPU threads for 418 bases RNA se-
quence, which will be the same for all the alignment-based predictors.
After that, SPOT-RNA-2D only takes 92.68 s for making the predic-
tion of all RNAs in the test set TS1. For time-sensitive calculations,
SPOT-RNA-2D-Single can be used, which takes only 43.76s for full
test set TS1 prediction from single-sequence and performs better than
the RNAContact and DCA predictors, and comparable to SPOT-
RNA-2D on low N g RNAs.

One disappointing result is that even with perfect secondary-
structure base-pair assignment and tertiary contact accuracy, the
average RMSD is still 8.1 A for targets in TS2 (6.5 A after excluding
complex structures). This highlights a potential limitation of the cur-
rent modelling framework. One likely reason is the lack of backbone
restraints, which has been proven important as secondary structure
restraints in protein structure prediction. Our recent result shows
that backbone angles can be predicted with reasonable accuracy
(Singh et al., 2021b), suggesting the possibility of using both pre-
dicted backbone angles and contact maps as restraints for RNA
structure prediction. Another possibility is to make an end-to-end
the prediction like AlphaFold2 (Jumper ef al, 2021) and
RoseTTAfold (Baek et al., 2021). However, it is not clear if there
are sufficient structural data to make an accurate inference.

To place the accuracy for RNA contact prediction in context, we
compare it to the accuracy of protein contact prediction. The aver-
age number of RNA contacts is about 3L (Supplementary Table
S§1), compared to 1.37L for 669 proteins in SPOT-2018 (Singh
et al., 2021c) set based on an 8 A cutoff. That is, RNAs have about
twice contacts than proteins for the same cutoff. In other words, top
L/2 contacts of proteins would cover a similar fraction of native

contacts for top L contacts of RNAs. According to recent work in
protein contact predictions trRosetta, the precision for top L/2 long-
range contacts is 54-67% for CASP-13 FM targets by RaptorX-
Contact (Wang et al., 2017b), TripletRes (Li et al., 2021), trRosetta
(Yang et al., 2020) and 66-72% on the CAMEO set by trRosetta
models. By comparison, the precision for top L long-range contacts
for RNAs given by SPOT-RNA-2D is 66-74% for three test sets
(TS1, TS2, TS3). Thus, the overall accuracy for RNA contact predic-
tion has reached the same level as that for protein contact predic-
tion. In other words, the time has come to use predicted RNA
contacts as restraints for RNA structure prediction.
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