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Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs.
The resulting glucuronide and sulfate conjugates are generally considered inactive and
safe. They may, however, be the most prominent drug-related material in the circulation
and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have
limited cell membrane permeability and subsequently, their distribution and excretion from
the human body requires transport proteins. Uptake transporters, such as organic anion
transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and
kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast
cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the
intestinal lumen. Understanding the active transport of conjugated drug metabolites is
important for predicting the fate of a drug in the body and its safety and efficacy. The aim of
this review is to compile the understanding of transporter-mediated disposition of phase II
conjugates. We review the literature on hepatic, intestinal and renal uptake transporters
participating in the transport of glucuronide and sulfate metabolites of drugs, other
xenobiotics and endobiotics. In addition, we provide an update on the involvement of
efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we
discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys
as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug
interactions, pharmacogenetics and species differences.

Keywords: ABC transporter, acyl glucuronide, drug-drug interaction (DDI), enterohepatic recycling, solute carrier,
sulfotransferase (SULT), transporter inhibition, UDP-glucuronosyltransferase (UGT)

1 INTRODUCTION

Metabolic enzymes and membrane transporters that are expressed in the intestine, liver and kidney
have a significant impact on the absorption, distribution, metabolism and excretion of drugs and
other compounds. Drug metabolism is mediated primarily by cytochrome P450 (CYP) enzymes
(phase I metabolism) and conjugation reactions (phase II metabolism) catalyzed by uridine 5′-
diphospho-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs). UGT-mediated
glucuronidation is a major metabolic pathway for 12% of drugs, while SULTs contribute major
metabolites for ≈1% of drugs (Cerny, 2016). Furthermore, UGTs contribute to some extent to the
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metabolism of >50% of the 200 most prescribed drugs
(Guillemette et al., 2014), evidencing the potential significance
of UGTs on drug clearance and pharmacokinetics. Conjugation
reactions are also important in steroid homeostasis in humans
(Rižner, 2013) and in the elimination of natural compounds (e.g.
flavonoids) consumed in food or as dietary supplements (Manach
et al., 2004).

UGT- and SULT-mediated conjugation reactions introduce a
negative charge and reduce lipid partitioning of the substrate by
2-5 logP units (Smith et al., 1985; Manners et al., 1988; Smith and
Dalvie, 2012), which typically results in negligible passive
permeability of the formed metabolite. This is in contrast to
most phase I metabolites that possess higher lipophilicity than
conjugates (Loi et al., 2013), and therefore the disposition of
glucuronide and sulfate metabolites depends on organic anion
transporters. Conjugated drug metabolites are considered to have
a small impact on drug therapy, because they are typically
pharmacologically inactive and facilitate drug excretion from
the body. However, some phase II conjugates, such as reactive
acyl glucuronide metabolites or glucuronides capable of enzyme
inhibition, are known to affect drug efficacy and safety (Ogilvie
et al., 2006; Regan et al., 2010; Tornio et al., 2014). Human
esterases are capable of cleaving acyl glucuronides and releasing
the parent compound from the conjugate (Fukami and Yokoi,
2012). Furthermore, the glucuronide or sulfate groups of drug
conjugates can be cleaved by human β-glucuronidases or different
sulfatases expressed in tissues, resulting in a release of the parent
drug in tissues (Pang et al., 1994; Sperker et al., 1997; Mueller

et al., 2015). For example, flavonoid glucuronides may be
deconjugated in tissues and subsequently increase local parent
exposure (Perez-Vizcaino et al., 2012). The highest
deglucuronidation and desulfation activity in the body is
found in the intestine within bacteria that express numerous
different β-glucuronidases and sulfatases (Pollet et al., 2017; Ervin
et al., 2020). Intestinal deconjugation may therefore also prolong
parent drug exposure via enterohepatic recycling (Roberts et al.,
2002). Thus, understanding the combined effects of uptake and
efflux transport on phase II conjugates in different organs is
important for predicting drug disposition and possible changes
related to altered transporter function.

The aim of this review is to summarize knowledge on the
uptake and efflux transport of glucuronide and sulfate conjugates.
These conjugates are abbreviated as -G for glucuronide, -AG for
acyl glucuronide and -S for sulfate. We focus on drug conjugates,
but also include endogenous compounds and natural products.
The review highlights the interplay between uptake and efflux in
the liver and kidneys, and the role of transporters in glucuronide
and sulfate conjugate toxicity, drug-drug interactions (DDIs),
pharmacogenetics and species differences are also discussed.

2 UGTS, SULTS AND TRANSPORTERS IN
HUMAN TISSUES

Several UGT and SULT isoforms (e.g. UGT1A1, UGT1A10,
UGT2B7, SULT1A1 and SULT1B1) are involved in drug

FIGURE 1 | Localization of the main drug transporters in the human liver, kidney and intestine as well as the main phase II enzymes involved in glucuronidation and
sulfation reactions of drugs. Uptake transporters are colored in purple, efflux transporters in orange, and bidirectional transporters in green. BCRP, breast cancer
resistance protein; BSEP, bile salt export pump; MATE, multidrug and toxin extrusion protein; MRP, multidrug-resistance associated protein; NTCP, sodium/
taurocholate cotransporting polypeptide; OAT, organic anion transporter; OATP, organic anion transporting polypeptide; OSTα/β, organic solute transporter α/β;
P-gp, P-glycoprotein; SULT, sulfotransferase; UGT, uridine 5′-diphospho-glucuronosyltransferase.
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conjugation in human tissues (Oda et al., 2015; Coughtrie, 2016;
Basit et al., 2020) (Figure 1). Once formed, these conjugates rely
on transporters to cross cell membranes. Transporters are
typically divided into two families: Members of the solute
carrier (SLC) transporter family function mainly as uptake
transporters, whereas ATP-binding cassette (ABC) transporters
are primarily efflux transporters (Figure 1). Several members of
both families are recognized to play a role in drug disposition and
may affect drug safety (Giacomini et al., 2010; Hillgren et al.,
2013). These include efflux transporters breast cancer resistance
protein (BCRP, ABCG2), P-glycoprotein (P-gp, ABCB1),
multidrug and toxin extrusion proteins (MATEs) and
multidrug-resistance associated proteins (MRPs) as well as
uptake transporters organic anion transporting polypeptides
(OATPs), organic anion transporters (OATs) and organic
cation transporters (OCTs). The effects of these transporters
on drug and conjugate disposition is dependent on the
direction of transport and their polarized localization
especially in tissues where metabolism takes place.

2.1 Expression in the Intestine
Intestinal metabolism can markedly decrease the bioavailability
of drugs. For instance, the bioavailability of testosterone is
limited by intestinal UGT2B17 (Zhang et al., 2018). Other
major intestinal UGTs are UGT1A1, UGT1A10 and
UGT2B7 (Sato Y. et al., 2014; Zhang et al., 2020). The
presence of UGT1A10 in the intestine is notable, since it is
absent from the human liver and kidney, but can still contribute
significantly to glucuronidation (Cubitt et al., 2011; Troberg
et al., 2017). The three main SULTs in the intestine are
SULT1A1, SULT1A3 and SULT1B1 (Riches et al., 2009).
The uptake transporter that is most likely to affect conjugate
absorption is OATP2B1 (SLCO2B1). OATP2B1 is expressed on
the apical membrane of enterocytes, but there is controversy on
its localization, as some studies suggest basolateral expression
(Keiser et al., 2017). The main efflux transporters in the
intestine are BCRP, MRP2 (ABCC2), MRP3 (ABCC3), MRP4
(ABCC4) and P-gp (Drozdzik et al., 2019; Harwood et al.,
2019). BCRP, MRP2 and P-gp are expressed at the apical
membrane, whereas MRP3 is located at the basolateral
membrane of enterocytes. MRP4 appears to show basolateral
expression alongside MRP3 (Ming and Thakker, 2010). The
relative transport rates of conjugates by basolateral and apical
transporters determine the fraction of intestinally formed
conjugates that reaches the portal vein or is pumped back to
intestinal lumen, respectively. These rates may vary along the
intestine, with P-gp and BCRP levels increasing towards the
distal end of the small intestine, whereas the levels of MRP2,
MRP3, and OATP2B1 are similar in different intestinal sections
(Drozdzik et al., 2019).

2.2 Expression in the Liver
The liver is a major site of biotransformation and excretion of
drugs. Uptake of circulating compounds from the blood into the
liver is facilitated on the basolateral (sinusoidal) membranes of
hepatocytes by OATP1B1 (SLCO1B1), OATP1B3 (SLCO1B3) and
OATP2B1, sodium/taurocholate cotransporting polypeptide

(NTCP, SLC10A1), OAT2 (SLC22A7), OAT7 (SLC22A9) and
OCT1 (SLC22A1). In the liver, the most abundant UGT is
UGT2B7, followed by UGT1A1, UGT1A4, UGT2B4 and
UGT2B15 (Fallon et al., 2013; Sato Y. et al., 2014). UGT1A4,
and the less abundant UGT2B10, are particularly significant
hepatic enzymes, because, unlike most other UGTs, they can
catalyze N-glucuronidation of amines. The two main SULTS in
the liver are SULT1A1 and SULT2A1 (Riches et al., 2009;
Ladumor et al., 2019). Compounds transported into the liver
or formed by hepatic metabolism can be effluxed either into blood
or excreted into bile. Biliary excretion enables enterohepatic
recycling where glucuronide conjugates excreted into bile can
be deconjugated by intestinal bacteria and subsequently
reabsorbed. On the basolateral membrane of hepatocytes,
efflux is mediated by MRP3 and MRP4, whereas biliary
excretion is mediated by BCRP, bile salt export pump (BSEP,
ABCB11), MRP2, P-gp and MATE1 (SLC47A1) (Giacomini et al.,
2010; Hillgren et al., 2013). BSEP, MRP2, MRP3 and P-gp are
found at high levels in the liver, while BCRP and MRP4
abundances are typically low in healthy livers (Burt et al.,
2016; Kurzawski et al., 2019; Vildhede et al., 2020). However,
MRP3 and MRP4 levels have been shown to increase in several
liver diseases (Drozdzik et al., 2020; Vildhede et al., 2020),
possibly as an alternative efflux route in hepatocytes in the
case of dysfunctional MRP2. MRP3/MRP4 efflux is also a
likely prerequisite for hydrophilic conjugates, such as
diclofenac-AG, cabotegavir-G and sulfonyloxyaristolactam,
formed in the liver, to reach the blood circulation and be
excreted into urine (Zhang et al., 2016; Chang et al., 2017;
Patel et al., 2019). The interplay between basolateral efflux and
uptake transporters in the liver results in a phenomenon called
hepatocyte hopping, where transporter substrates are shuttled
back and forth between the sinusoidal blood and hepatocytes
along the sinusoids (Iusuf et al., 2012). This co-operation between
transporters could promote the excretion of various compounds
by distributing them between hepatocytes and preventing the
saturation of metabolism and canalicular efflux. Hepatocyte
hopping is thought to protect hepatocytes from the
accumulation of metabolites produced in the liver and is
important for endogenous toxins such bilirubin and its
glucuronides (Iusuf et al., 2012; Sticova and Jirsa, 2013).

2.3 Expression in the Kidney
The kidneys excrete drugs and drug metabolites, in particular
hydrophilic conjugates, both through glomerular filtration and
transporter-mediated secretion. Conjugates can either be
transported into the proximal tubule cells by renal uptake
transporters or in some cases formed in the kidney. UGT1A6,
UGT1A9 and UGT2B7 are the major renal UGTs (Sato Y. et al.,
2014). SULTs (primarily SULT1A1, SULT1A3 and SULT1B1) are
expressed in the kidney, but the abundance is much lower than in
the intestine or liver (Riches et al., 2009). In the kidney, uptake
into proximal tubule cells is primarily mediated by OAT1
(SLC22A6), OAT3 (SLC22A8) and OCT2 (SLC22A2) (Prasad
et al., 2016; Li et al., 2019b; Oswald et al., 2019). On the apical
membranes of the proximal tubules, MATE1, MRP2, MRP4 and
P-gp, are responsible for efflux into urine (Prasad et al., 2016). For
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TABLE 1 | Drug glucuronides (-G and -AG) and sulfates (-S) studied as substrates in transporter overexpression systems.

Drug conjugatea Uptake transportersb Efflux transportersb References

Acetaminophen-G MRP3 Chloupková et al. (2007)

Brexanolone-S NTCP Abu-Hayyeh et al. (2010)

Cabotegravir-G OAT3 MRP2 Patel et al. (2019)
OATP1B1 MRP3
OATP1B3 MRP4
OAT1 (-) BCRP (-)

P-gp (-)

Cabozantinib M2a (sulfate) OAT3 MRP2 Lacy et al. (2015)
OATP1B1 BSEP (-)
OATP1B3 P-gp (-)
OAT1 (-)
OCT1 (-)
OCT2 (-)

Clopidogrel-AG MRP3 Ji et al. (2018)

Diclofenac-AG OAT1 BCRP Zhang et al. (2016); Scialis et al. (2019); Huo et al. (2020)
OAT2 MRP2
OAT3 MRP3
OAT4
OATP1B1
OATP2B1
OATP1B3 (-)

Dihydrotestosterone-G OATP1B1 BCRP Li et al. (2019a); Li et al. (2020)
OATP1B3 MRP2
OATP2B1 (-) MRP3

MRP4 (-)
P-gp (-)

E3040-G OATP1B1 BCRP Suzuki et al. (2003)
MRP2
MRP3
MRP4 (-)

Edaravone-G MRP4 Mizuno et al. (2007b)
BCRP (-)
MRP2 (-)

Edaravone-S OAT1 BCRP Mizuno et al. (2007a); Mizuno et al. (2007b)
OAT3 MRP4 (-)

Epacadostat-G OATP1B1 BCRP Zhang et al. (2017)
OATP1B3 MRP2

MRP3

Ethinylestradiol-3-G MRP2 Chu et al. (2004); Chloupková et al. (2007)
MRP3
MRP1 (-)

Ethinylestradiol-3-S OAT3 BCRP Han et al. (2010a); Han et al. (2010b)
OAT4 BSEP (-)
OATP1B1 MATE1 (-)
OATP2B1 MRP1 (-)
OAT1 (-) MRP2 (-)
OATP1B3 (-) MRP3 (-)
OCT1 (-) MRP4 (-)
OCT2 (-) P-gp (-)

Ezetimibe-G OATP1B1 MRP2 Oswald et al. (2008); Fahrmayr et al. (2012)
OATP1B3
OATP2B1 (-)

Fasiglifam-AG MRP2 Kogame et al. (2019)

(Continued on following page)
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TABLE 1 | (Continued) Drug glucuronides (-G and -AG) and sulfates (-S) studied as substrates in transporter overexpression systems.

Drug conjugatea Uptake transportersb Efflux transportersb References

Fimasartan-G BCRP Jeong et al. (2015)
P-gp
MRP1 (-)
MRP2 (-)

Gaboxadol-O-G MRP4 Chu et al. (2009)
MRP2 (-)

Gemfibrozil-AG OATP1B1 MRP2 Hirouchi et al. (2009); Kimoto et al. (2015)
OATP1B3 MRP3
OATP2B1 MRP4

6-Hydroxymelatonin-S OAT3 Huo et al. (2017)
OAT1 (-)
OCT2 (-)

4-Methylumbelliferone-G BCRP Järvinen et al. (2017)
MRP2
MRP3
MRP4

(R)-Morinidazole-G OAT3 Zhong et al. (2014)
OAT1 (-)
OCT2 (-)

(S)-Morinidazole-G OAT3 Zhong et al. (2014)
OAT1 (-)
OCT2 (-)

Morinidazole-S OAT1 Zhong et al. (2014)
OAT3
OAT1 (-)
OCT2 (-)

Morphine-3-G MRP1 van de Wetering et al. (2007)
MRP2
MRP3

Morphine-6-G MRP1 van de Wetering et al. (2007)
MRP2 (-)

Mycophenolic acid-AG OATP1B1 MRP2 (-) Michelon et al. (2010); Patel et al. (2013)

Mycophenolic acid phenyl-G (MPA-G) OAT3 MRP2 Uwai et al. (2007); Michelon et al. (2010); Picard et al. (2010);
Patel et al. (2013); El-Sheikh et al. (2014); Matsunaga et al. (2014);
Berthier et al. (2021)

OATP1B1 MRP3
OATP1B3 MRP4
OAT1 (-) MRP8 (-)

Paroxetine M1-G BCRP (-) Matsunaga et al. (2013)
BSEP (-)
MRP2 (-)

Paroxetine M1-S BCRP (-) Matsunaga et al. (2013)
BSEP (-)
MRP2 (-)

PKI166-G OATP1B1 MRP2 Takada et al. (2004)

(R)-Propranolol-G MRP3 Järvinen et al. (2017)
BCRP (-)
MRP2 (-)
MRP4 (-)

(S)-Propranolol-G BCRP Järvinen et al. (2017)
MRP3
MRP4
MRP2 (-)

Raloxifene-4′-G MRP2 Trdan Lušin et al. (2012a); Kosaka et al. (2015)
MRP3
BCRP (-)
MRP1 (-)
P-gp (-)

(Continued on following page)
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example, MRP2 and MRP4 participate in the renal excretion of
endogenous glucuronide and sulfate conjugates and may also
facilitate excretion of drug conjugates such as glucuronides of
non-steroidal anti-inflammatory drugs (NSAIDs), cabotegravir-
G and mycophenolic acid glucuronide (MPA-G) (Regan et al.,

2010; Matsunaga et al., 2014; Järvinen et al., 2018; Li et al., 2019a;
Patel et al., 2019). BCRP, MRP3, MATE2/2K (SLC47A2) and
OAT2 are present only at low levels, but may contribute to active
renal secretion (Fallon et al., 2016; Prasad et al., 2016; Li et al.,
2019b; Cheung et al., 2019; Oswald et al., 2019). Notably, in

TABLE 1 | (Continued) Drug glucuronides (-G and -AG) and sulfates (-S) studied as substrates in transporter overexpression systems.

Drug conjugatea Uptake transportersb Efflux transportersb References

Raloxifene-6,4′-diG MRP1 Trdan Lušin et al. (2012a)
P-gp
BCRP (-)
MRP2 (-)
MRP3 (-)

Raloxifene-6-G MRP3 Trdan Lušin et al. (2012a)
BCRP (-)
MRP1 (-)
MRP2 (-)
P-gp (-)

Relebactam (sulfate) OAT3 MATE1 Chan et al. (2019)
OAT4 MATE2K
OAT1 (-) BCRP (-)
OCT2 (-) MRP2 (-)

MRP4 (-)
P-gp (-)

S8921-G OATP1B1 MRP2 Sakamoto et al. (2008)
OATP1B3
NTCP

Sorafenib-G OATP1B1 MRP2 Zimmerman et al. (2013); Vasilyeva et al. (2015); Bins et al. (2017)
OATP1B3 MRP3

MRP4

Telmisartan-AG OATP1B3 BCRP Ishiguro et al. (2008)
OATP2B1 MRP2

P-gp

Testosterone-G OATP1B1 MRP2 Li et al. (2019a); Järvinen et al. (2020); Li et al. (2020)
OATP1B3 MRP3
OATP2B1 (-) BCRP (-)

MRP4 (-)
P-gp (-)

Thienorpine-G MRP2 Kong et al. (2016)
BCRP (-)
P-gp (-)

Thyroxine-S NTCP van der Deure et al. (2008a); Visser et al. (2010)
OATP1B1

Triiodothyronine-S NTCP van der Deure et al. (2008a); Visser et al. (2010)
OATP1B1

Troglitazone-G OATP1B1 MRP2 Hirouchi et al. (2009)
MRP3
MRP4 (-)

Troglitazone-S OATP1B1 BCRP Nozawa et al. (2004); Enokizono et al. (2007)
OATP1B3
OATP2B1 (-)

Ursodeoxycholate-AG OATP1B1 Zhou et al. (2019)
OATP1B3
NTCP (-)

aThe list includes all drug conjugates identified in our literature search, which was limited to years 2007–2021 for efflux transporters. For compounds where data is available for uptake
transporters, efflux data is included even if it was published before 2007.
b(-) denotes transporters that have been identified in studies not to transport the conjugate in question.
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contrast to OAT1 and OAT3, OAT4 (SLC22A11) is expressed on
the apical membrane of the proximal tubules and may mediate
reabsorption of organic anions, such as estrone-S,
dehydroepiandrosterone-S (DHEAS) and ethinylestradiol-S
(Ugele et al., 2008; Han et al., 2010a).

3 TRANSPORT OF GLUCURONIDE AND
SULFATE CONJUGATES

The impact of efflux transporters on the disposition of
glucuronide and sulfate conjugates has been reviewed
previously (Zamek-Gliszczynski et al., 2006), while an in-depth
review of conjugates that interact with uptake transporters is
missing. A few examples of phase II drug metabolites as
substrates for hepatic and renal uptake transporters have
previously been discussed (Zamek-Gliszczynski et al., 2014;
Patel et al., 2016). Here we provide an updated comprehensive
review of both uptake and efflux transporter interactions with
sulfate and glucuronide conjugates. We searched SciFinder and
Pubmed databases for literature reports on in vitro data on uptake
and efflux transporter interactions with glucuronide and sulfate
conjugates of drugs and other compounds from studies in
transporter overexpression systems. For efflux transporters, the
search was limited to articles published after 2006 as earlier data
has been compiled by Zamek-Gliszczynski et al. (2006). The
complete results of our search, including reports on animal
transporters, are reported in Supplementary Table S1.

3.1 Uptake Transporters in Humans
In the literature search, a high number of drug as well as other
xenobiotic or endogenous glucuronides and sulfates were
identified as substrates for human organic anion uptake
transporters (Table 1, Supplementary Table S1). Hepatic
uptake transporters OATP1B1, OATP1B3, OATP2B1 and
NTCP, and renal uptake transporters OAT1, OAT3 and
OAT4 all transport both glucuronide and sulfate metabolites
of small molecule compounds. Other important uptake
transporters OAT2, OAT7, OATP1A2 (SLCO1A2), OATP4C1
(SLCO4C1) and organic solute transporter α/β (OSTα/β, SLC51A/
B) are not as well characterized in the transport of conjugated
drug metabolites and their significance in this context remains to
be fully explored (Supplementary Table S1).

Organic cation uptake transporters, OCTs and OCTNs, do not
appear to interact with conjugate metabolites. For example,
neither glucuronides of estradiol, glycochenodeoxycholate
(GCDCA) or morinidazole, nor sulfates of estrone, ethinyl-
estradiol or morinidazole are substrates for OCTs (Han et al.,
2010a, 2010b; Zhong et al., 2014; Bi et al., 2019; Neuvonen et al.,
2021). Furthermore, several glucuronides, such fevipiprant-G,
baicalein-7-G and epacadostat-G, were reported not to inhibit
OCTs and MATEs, although uremic toxin indoxyl-G inhibits
OCT2 (Xu et al., 2013; Cheung et al., 2017; Zhang et al., 2017;
Poller et al., 2019). A few reports found in the literature search
investigated glucuronide and sulfate conjugates as substrates or
inhibitors for other human transporters, such as sodium-
dependent organic anion transporter (SOAT, SLC10A6),

orphan transporter SLC22A24, apical sodium-dependent bile
acid transporter (ASBT, SLC10A2) and other OATPs (e.g.
OATP1C1 (SLCO1C1) and OATP4A1 (SLCO4A1)) (Craddock
et al., 1998; Tamai et al., 2000; Pizzagalli et al., 2002; Geyer et al.,
2007; Sakamoto et al., 2007; van der Deure et al., 2008b; Fietz
et al., 2013; Grosser et al., 2015, 2018; Yee et al., 2019).

3.1.1 Hepatic Uptake Transporters OATP1B1,
OATP1B3 and OATP2B1
Uptake transporters OATP1B1 and OATP1B3 transport glucuronide
conjugates of several drugs and other xenobiotics, such as flavonoids
(Table 1, Supplementary Table S1). Both transporters also play a key
role in homeostasis of conjugates of endogenous compounds in the
liver. Most importantly, bilirubin glucuronides are high affinity
substrates for both OATP1B1 and OATB1B3 and thus, these
transporters are partly responsible for controlling plasma levels of
conjugated bilirubin (König et al., 2000; Cui et al., 2001; van de Steeg
et al., 2010, 2012). Other endogenous conjugate substrates for these
transporters include bile acid and steroid conjugates, such as
ursodeoxycholate-AG, GCDCA-G and GCDCA-S,
glycodeoxycholate-G (GDCA-G) and estradiol-17-G (Takehara
et al., 2017; Bi et al., 2019; Zhou et al., 2019; Neuvonen et al.,
2021). Glucuronides of several drugs, such as ezetimibe,
gemfibrozil and sorafenib, are transported by OATP1B1 and
OATP1B3, which may contribute to the enterohepatic recycling of
these drugs by directing the excretion of metabolites to the bile and
feces, instead of excretion into the urine (Oswald et al., 2008; Hirouchi
et al., 2009; Zimmerman et al., 2013; Kimoto et al., 2015; Bins et al.,
2017). Similarly, metabolites of therapeutically used hormones,
including testosterone-G, dihydrotestosterone-G and
ethinylestradiol-S are transported by OATP1B1 or OATP1B3 (Han
et al., 2010b; Li et al., 2020).

The transport of drug conjugates by OATP2B1 is not as
extensively characterized as for OATP1Bs. OATP2B1 is more
widely expressed than the OATP1Bs, and it may therefore affect
drug disposition also in the intestine and blood vessels of the heart,
brain and other tissues (McFeely et al., 2019). In our literature
search, only a few drug glucuronides or sulfates were identified as
substrates ofOATP2B1 (Table 1). These include ethinylestradiol-S,
gemfibrozil-AG, telmisartan-AG and diclofenac-AG (Ishiguro
et al., 2008; Han et al., 2010b; Kimoto et al., 2015; Zhang et al.,
2016). Estrone-S is an excellent substrate for OATP2B1, while this
transporter does not transport estradiol-17-G (Tamai et al., 2001;
Bi et al., 2019). Within natural compounds, scutellarein-7-G in
particular is a good substrate for OATP2B1, and could even be a
specific substrate for this transporter as this compound is not
transported by other hepatic organic anion transporters (Gao et al.,
2012). Similarly, resveratrol-3-G is highly transported by
OATP2B1, weakly by OATP1B1 and OATP1B3 but not by
OAT2 or NTCP (Bi et al., 2019). Lastly, some drug conjugates
that are transported by OATP1B1 and OATP1B3, such as
ezetimibe-G and troglitazone-S, are not OATP2B1 substrates
(Nozawa et al., 2004; Oswald et al., 2008).

3.1.2 Hepatic Transporters NTCP and OSTα/β
NTCP is primarily a bile acid transporter, but it can also transport
several conjugate metabolites with steroid structures. For
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example, sulfates of estrone, ethinylestradiol, GCDCA and
brexanolone are substrates for NTCP (Abu-Hayyeh et al.,
2010; Han et al., 2010b; Takehara et al., 2017). Most studies
with NTCP, regarding conjugates, have focused on sulfate
metabolites and only one glucuronide, chenodeoxycholate-AG
(CDCA-AG), is reported to be a substrate for NTCP (Takehara
et al., 2017) (Supplementary Table S1). Similarly, the
bidirectional bile acid transporter OSTα/β may have a role in
the transport of sulfated metabolites. DHEAS, estrone-S and
pregnenolone-S are substrates of OSTα/β, but estradiol-17-G is
not (Seward et al., 2003; Ballatori et al., 2005; Fang et al., 2010;
Malinen et al., 2019).

3.1.3 Hepatic Uptake Transporters OAT2 and OAT7
Only three conjugate substrates of OAT2 were identified in our
literature review. DHEAS and diclofenac-AG are weakly
transported by OAT2 (Kobayashi et al., 2005; Zhang et al.,
2016), while other studies could not identify OAT2-mediated
transport of DHEAS (Hotchkiss et al., 2015; Mathialagan et al.,
2018). In contrast, estrone-S was identified as a rather good
substrate for OAT2 (Kobayashi et al., 2005; Xu et al., 2013;
Mathialagan et al., 2018; Bi et al., 2019). Several glucuronides
and sulfates of natural and endogenous compounds, such as
quercetin-S and resveratrol-G, estradiol-17-G and glucuronides
of GCDCA and GDCA are not transported by OAT2 (Wong
et al., 2011a, 2012; Xu et al., 2013; Bi et al., 2019; Neuvonen et al.,
2021).

Little is known about OAT7-mediated transport of conjugates.
The only identified conjugate substrates of OAT7 are DHEAS and
estrone-S (Shin et al., 2007; Ahn et al., 2015; Mathialagan et al.,
2018). Inhibition studies also indicate low interaction between
conjugates and OAT7. For example, acetaminophen-G, 4-
methylumbelliferone-G and vincristine-S did not inhibit
OAT7, while minoxidil-S, vinblastine-S and 4-
methylumbelliferone-S inhibited OAT7 moderately at best
(Shin et al., 2007).

3.1.4 Renal Uptake Transporters OAT1, OAT3 and
OAT4
OAT1 and OAT3 transport some glucuronide and sulfate
conjugates of endogenous compounds and xenobiotics, but
only a small number of drug conjugates have been identified
as their substrates (Table 1, Supplementary Table S1).
Morinidazole-S, edaravone-S and diclofenac-AG are
transported by both OAT1 and OAT3 (Mizuno et al., 2007a;
Zhong et al., 2014; Zhang et al., 2016; Huo et al., 2020). On the
other hand, OAT3, but not OAT1, transports ethinylestradiol-S
and glucuronides such as of cabotegravir-G, curcumin-G,
genistein-7-G, steviol-G and MPA-G (Uwai et al., 2007; Han
et al., 2010a; Wong et al., 2011b; Wang M. et al., 2015; Zhou
et al., 2017; Patel et al., 2019). Moreover, OAT3, but not OAT1,
transports endogenous sulfates estrone-S and DHEAS (Ueo
et al., 2005) and relebactam, which is a drug molecule
containing a sulfate group (Chan et al., 2019). Taken
together, it appears that OAT3 may have a more significant
role in the renal uptake of glucuronide and sulfate conjugates
than OAT1.

The transport profile of OAT4 towards glucuronide or sulfate
conjugates has been examined only in a few studies. Of drug
conjugates, OAT4 transports ethinylestradiol-S, diclofenac-AG
and relebactam (Han et al., 2010a; Zhang et al., 2016; Chan et al.,
2019). Other sulfate conjugates transported by OAT4 include
quercetin-3′-S and uremic toxin indoxyl-S (Enomoto et al., 2003;
Wong et al., 2012). In particular, endogenous sulfates DHEAS,
16α-hydroxy-DHEAS and estrone-S are good substrates for
OAT4 (Ugele et al., 2008; Schweigmann et al., 2014). Since
OAT4 is localized in the apical membranes of proximal tubule
cells, this transporter may have a role in the renal reabsorption of
sulfate conjugates. Interestingly, an orphan transporter encoded
by the SLC22A24 gene, and highly homologous to OAT4, was
recently identified as a potential renal apical reabsorption
transporter for glucuronide and sulfate conjugates of steroids
(Yee et al., 2019).

3.2 Efflux Transporters in Humans
The role of efflux transporters on phase II conjugate disposition
in the liver has been reviewed previously (Zamek-Gliszczynski
et al., 2006), but the understanding of conjugate transport has
increased within the last 15 years. At the time of the previous
review, many endogenous and natural compound conjugates
were well-characterized substrates of BCRP, MRP2 and MRP3,
but only a handful of drug conjugates had been identified as their
substrates in vitro (Zamek-Gliszczynski et al., 2006). Since then,
numerous drug conjugates as well as conjugated natural
compounds that are substrates of these and other efflux
transporters have emerged and are discussed below.

3.2.1 MRPs
The majority of drug glucuronides reported after 2006 as efflux
substrates are transported by MRP2 and MRP3 (Table 1). MRP2
plays an important role in the biliary excretion of many
endogenous organic anions, including estradiol-17-G and
bilirubin-Gs (Cui et al., 1999; Kamisako et al., 1999). Based on
the current literature, MRP2 may also participate in the
disposition of several drug glucuronides. Like OATP1Bs,
MRP2 transports ezetimibe-G, MPA-G, sorafenib-G and
telmisartan-G, and may contribute to their enterohepatic
recycling (Ishiguro et al., 2008; Fahrmayr et al., 2012; Patel
et al., 2013; Vasilyeva et al., 2015). In line with previous
findings (Zamek-Gliszczynski et al., 2006), MRP2 does not
appear to be a prominent sulfate conjugate transporter as only
a single sulfated drug metabolite (cabozantinib M2a) and two
sulfated natural compounds were identified as substrates of
MRP2 in our literature review (Table 1, Supplementary Table
S1). In addition to drug metabolites, MRP2 is able to transport
flavonoid glucuronides present in herbal medicines (e.g.
baicalein-7-G, scutellarein-Gs and wogonin-7-G). MRP2 also
transports glucuronides and sulfates of resveratrol, which is
found in foods, such as grapes, and used as a herbal
supplement (Li et al., 2006; Novelle et al., 2015).

MRP3 is an important transporter for many glucuronide
conjugates: Altogether 18 drug glucuronides were identified as
MRP3 substrates and only one tested drug glucuronide was
reported not to be transported (Table 1). MRP3 transports a
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wide number of sulfated bile acids (Zelcer et al., 2003; Murai et al.,
2013), but otherwise the disposition of sulfated xenobiotics by
MRP3 is poorly characterized, and we identified only a single
sulfate conjugate (sulfonyloxyaristolactam) as an MRP3 substrate
(Chang et al., 2017) (Supplementary Table S1). There is a high
degree of overlap between substrates of MRP2 and MRP3, but
MRP3 is the only transporter identified to transport
acetaminophen-G, clopidogrel-AG and (R-)-propranolol-G
(Chloupková et al., 2007; Järvinen et al., 2017; Ji et al., 2018).
In addition to drug conjugates, MRP3 transports a wide range of
glucuronidated endogenous and natural compounds
(Supplementary Table S1). Since MRP3 expels its substrates
towards the blood, it can facilitate the entry of conjugates into the
systemic circulation and increase their plasma concentrations.
For instance, MRP3 substrates epacadostat-G, raloxifene-Gs and
scutellarein-6-G all have plasma levels an order of magnitude
higher than that of their parent compounds (Chen et al., 2006;
Sun et al., 2013; Boer et al., 2016).

MRP4 is reported to transport glucuronides as well as several
sulfate conjugates. Since the previous review (Zamek-Gliszczynski
et al., 2006), eight glucuronidated drug metabolites have been
identified as MRP4 substrates, including several substrates
shared with MRP2 and MRP3 (e.g. cabotegravir-G, gemfibrozil-
AG, MPA-G and sorafenib-G) (Table 1). In addition, MRP4
transports edaravone-G and gaboxadol-O-G, neither of which
are transported by MRP2 (Mizuno et al., 2007b; Chu et al.,
2009). With respect to sulfated drug conjugates, no substrates
have been reported for MRP4 in vitro. In contrast, several sulfate
conjugates of flavonoids (e.g. chrysin-S) are transported by MRP4,
and DHEAS is also an MRP4 substrate (Li et al., 2015; Sun et al.,
2015; Järvinen et al., 2017; Kanamitsu et al., 2017). The capability of
MRP4 to transport various sulfate conjugates suggests that MRP4
might participate in the efflux of other, yet unidentified sulfate
metabolites of drugs.

Limited information is available regarding phase II conjugate
transport of other MRPs expressed in different tissues. There are
few studies on the ability of MRP1 to transport phase II drug
conjugates. Morphine-3-G and morphine-6-G have been shown
to be transported by MRP1 in vitro (van deWetering et al., 2007).
MRP1 also transports wogonin-7-G, estrone-S and estradiol-17-
G (Maeno et al., 2009; Wang et al., 2018). On the other hand, no
drug sulfate conjugates were reported to be transported by or
inhibit MRP1. Additionally, a limited number of studies
investigated the involvement of MRP5 (ABCC5), MRP6
(ABCC6), MRP7 (ABCC10), and MRP8 (ABCC11) in the
transport of various glucuronide and sulfate conjugates
(Supplementary Table S1), but only MRP7 was found to
transport a phase II conjugate, estradiol-17-G (Malofeeva
et al., 2012).

3.2.2 BCRP
BCRP was previously reported to transport both glucuronides
and sulfates of 4-methylumbelliferone and E3040 (Zamek-
Gliszczynski et al., 2006). Several new drug conjugate
substrates have been identified, such as diclofenac-AG,
raloxifene-Gs, telmisartan-AG and troglitazone-S (Table 1).
Furthermore, numerous flavonoid and endogenous compound

glucuronides and sulfates are known to be transported by BCRP
(Supplementary Table S1). Compared to MRPs, BCRP appears
to have more sulfate conjugate substrates (Supplementary Table
S1). Furthermore, whereas estradiol-17-G is a typical in vitro
probe substrate of MRPs, estrone-S is preferred for BCRP (Elsby
et al., 2011; Brouwer et al., 2013; Pedersen et al., 2017). Similarly,
17α-ethinylestradiol-3-S is a substrate of BCRP, but it is not
transported by any of the tested MRPs (Han et al., 2010b). BCRP
is, however, capable of transporting several glucuronide
conjugates of estrogens (Järvinen et al., 2018).

3.2.3 BSEP
BSEP is expressed exclusively in hepatocytes, where it excretes
bile acids into the bile canaliculi and maintains the bile flow. Only
few drugs (pravastatin, fexofenadine) are known substrates of
BSEP (Hirano et al., 2005; Matsushima et al., 2008), and no
glucuronide or sulfate conjugated drugs have been reported to be
transported by BSEP. However, glycyrrhizin, which is a
diglucuronide of enoxolone extracted from licorice root, has
been identified as a BSEP substrate (Dong et al., 2018).

3.2.4 P-gp
P-gp has a negatively charged binding pocket, which is thought to
repel anionic compounds (Li et al., 2014; Deng et al., 2020) and is
therefore an unlikely candidate for glucuronide and sulfate transport.
This is supported by a plethora of studies where conjugates were
shown not to be transported by P-gp (Table 1). While a few in vitro
reports suggest that some endogenous compound and drug
glucuronides are P-gp substrates, the involvement of P-gp in the
disposition of conjugates is likely low (Supplementary Table S1).

3.2.5 MATEs
Similarly to P-gp, the anionic properties of glucuronide and
sulfate conjugates are outside the substrate preferences of
MATE1 and MATE2K. One sulfate, relebactam, has been
shown to be transported by MATE1 and MATE2K, and not
by other drug efflux transporters (e.g. BCRP) (Chan et al., 2019).
Additionally, estrone-S is transported by MATE2K, but data on
MATE1 transport is contradictory (Tanihara et al., 2007; Shen
et al., 2016).

4 INTERPLAY OF UPTAKE AND EFFLUX
TRANSPORT IN DRUG CONJUGATE
DISPOSITION
Phase II metabolism in the liver, intestine and kidney can greatly
affect drug exposure. The systemic exposure of conjugated
metabolites depends on the metabolic clearance of a parent
drug in tissues and the interplay of different transporters
expressed on the basolateral and apical membranes of cells
(Figure 1 and Figure 2). For instance, some conjugates
formed in the intestine may reach the systemic circulation
only at low levels if they have high net transport into the
intestinal lumen from enterocytes or into hepatocytes over the
hepatic basolateral membrane (i.e. high uptake and low efflux).
Moreover, high net transport into hepatocytes combined with
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high biliary efflux typically leads to biliary excretion of glucuronides,
which contributes to enterohepatic recycling and prolonged half-life
of the parent compound (Figure 2A). In contrast, low hepatic uptake
and biliary efflux, together with high basolateral efflux, leads to
glucuronide levels that may exceed the levels of the parent drug in
plasma, and typically result in urinary excretion of the drug
conjugate (Figure 2B). Using four examples, below we highlight
how consideration of the interplay of uptake and efflux transporters
in conjugate transport can help to explain the observed
pharmacokinetic properties of drugs.

4.1 Sorafenib-G
Sorafenib is a tyrosine kinase inhibitor that is primarily
metabolized by CYP3A4 to sorafenib N-oxide and by
UGT1A9 to sorafenib-G (Food and Drug Administration,
2005; Lathia et al., 2006). However, sorafenib exposure was
unaltered by ketoconazole in humans, indicating a minor role
for oxidative metabolism in its clearance. Approximately 15% of
orally administered sorafenib is excreted as sorafenib-G in urine
in humans, but most of the dose (77%) is recovered in feces
primarily as unchanged drug (50%). Enterohepatic recycling
contributes to the pharmacokinetics and long half-life

(25–48 h) of sorafenib. Sorafenib-G is a substrate for human
MRP2, MRP3 and MRP4 (Table 1), which means that it can both
be effluxed into the blood and undergo biliary excretion in the
liver, as demonstrated in sandwich-cultured human hepatocytes
(Swift et al., 2013). Sorafenib-G is also a substrate of OATP1B1
and OATP1B3 (Table 1), which together with MRP3-mediated
hepatocyte hopping may explain the low levels of sorafenib-G
found in human plasma (European Medicines Agency, 2006;
Vasilyeva et al., 2015). Moreover, UGT1A9 is highly expressed in
the kidney and it is likely that direct renal glucuronidation may
contribute to the urinary excretion of sorafenib-G. The low levels
of sorafenib-G in feces may be explained by bacteria-mediated
deconjugation of the conjugate in the intestine. This is supported
by a 54% reduction in sorafenib area under the concentration
time curve (AUC) after administration of the antibiotic neomycin
in humans (European Medicines Agency, 2006), which also
highlights the role of sorafenib-G in the enterohepatic
recycling and prolonged exposure of sorafenib.

4.2 Raloxifene-Gs
Raloxifene is a selective oestrogen receptor modulator indicated
for osteoporosis treatment and prevention in postmenopausal

FIGURE 2 | Illustration of the interplay of uptake and efflux transporters in the small intestine, liver, and kidney after oral administration of a parent compound that
undergoes glucuronidation. The movement of the parent and its glucuronide conjugate are shown with blue and pink arrows, respectively. The movement of both
compounds is shown with half-blue/half-pink arrows. The UGT-mediated glucuronidation of the parent and the enzymatic deconjugation of glucuronidated compounds
by bacterial β-D-glucuronidases in the gut are indicated with black arrows. The passive diffusion of compounds over membranes is abbreviated as Diff., and the
transporters mentioned in the illustration are considered to be the most relevant transporters for glucuronide disposition in that particular tissue. Examples of uptake and
efflux transporter interplay on the disposition of the parent and its glucuronide conjugate are presented in subpanels (A,B). High hepatic uptake and biliary efflux activity,
and low hepatic basolateral efflux (A) leads to enterohepatic recycling of parent compound (blue line) and favors the fecal excretion of glucuronide conjugate (pink bar).
Low hepatic uptake and biliary efflux activity, and high basolateral efflux (B) leads to elevated plasma concentration and renal excretion of the glucuronidated compound
(pink line and bar).
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TABLE 2 | Drug glucuronides (-G and -AG) and sulfates (-S) studied as inhibitors in transporter overexpression systems.

Drug conjugate Inhibited uptake transportera Inhibited efflux transportera References

Abiraterone-N-oxide-S OAT3 (Ki � 1 µM) Zou et al. (2021)
OAT1 (-)

Abiraterone-S OAT1 (Ki � 38 µM) Zou et al. (2021)
OAT3 (Ki � 2 µM)

Brexanolone-S NTCP (Ki � 8 µM) Abu-Hayyeh et al. (2010)

Cabozantinib M2a (sulfate) OAT1 (IC50 � 4 µM) BSEP (IC50 � 50 µM) Lacy et al. (2015)
OAT3 (IC50 � 4 µM) MATE1 (IC50 � 17 µM)
OATP1B1 (IC50 � 6 µM) MATE2K (IC50 � 65 µM)
OATP1B3 (IC50 � 21 µM) MRP2 (IC50 � 79 µM)
OCT1 (-) P-gp (-)
OCT2 (-)

Clopidogrel-AG OATP1B1 (IC50 � 11-51 µM) Tamraz et al. (2013); Shebley et al. (2017)

Diclofenac-AG OAT1 (IC50 � 265 µM) BCRP (20% at 100 µM) Nozaki et al. (2007); Kawase et al. (2016); Iwaki et al. (2017)
OAT3 (IC50 � 3 µM) MRP2 (IC50 � 19 µM)

MRP4 (IC50 � 140 µM)

Epacadostat-G OATP1B1 (IC50 � 262 µM) BCRP (-) Zhang et al. (2017)
OATP1B3 (IC50 � 27 µM) P-gp (-)
OAT1 (-)
OAT3 (-)
OCT2 (-)

Ezetimibe-G OATP1B1 (IC50 � 0.2 µM) BCRP (IC50 � 52 µM) Oswald et al. (2006); Oswald et al. (2008); de Waart et al.
(2009)OATP1B3 (IC50 � 0.3 µM) MRP2 (IC50 � 34 µM)

OATP2B1 (IC50 � 0.1 µM) MRP3 (IC50 � 7 µM)
P-gp (60% at 100 µM)

Fasiglifam-AG OATP1B1 (IC50 � 1 µM) BSEP (IC50 � 33 µM) Otieno et al. (2018); Ackerson et al. (2019)
OATP1B3 (IC50 � 1 µM) MRP2 (IC50 � 1 µM)

MRP3 (IC50 � 0.2 µM)
MRP4 (IC50 � 0.9 µM)

Fevipiprant-AG OAT3 (Ki � 16 µM) Poller et al. (2019)
OATP1B1 (Ki � 31 µM)
OATP1B3 (Ki � 12 µM)
OAT1 (-)

(R)-Flurbiprofen-AG OAT1 (IC50 �198 µM) MRP2 (IC50 � 30 µM) Kawase et al. (2016); Iwaki et al. (2017)
OAT3 (IC50 � 19 µM) MRP4 (IC50 � 3 µM)

(S)-Flurbiprofen -AG OAT1 (IC50 � 174 µM) MRP2 (IC50 � 22 µM) Kawase et al. (2016); Iwaki et al. (2017)
OAT3 (IC50 � 32 µM) MRP4 (IC50 � 93 µM)

Gemfibrozil-AG OAT3 (IC50 � 20 µM) Hirano et al. (2006); Nakagomi-Hagihara et al. (2007a,
2007b)OATP1B1 (Ki � 8-23 µM)

(R)-Ibuprofen -AG OAT1 (IC50 � 791 µM) MRP2 (IC50 � 208 µM) Kawase et al. (2016); Iwaki et al. (2017)
OAT3 (IC50 � 60 µM) MRP4 (IC50 � 4 µM)

(S)-Ibuprofen-AG OAT1 (IC50 � 960 µM) MRP2 (IC50 � 81 µM) Kawase et al. (2016); Iwaki et al. (2017)
OAT3 (IC50 � 57 µM) MRP4 (IC50 � 67 µM)

(S)-Ketoprofen-AG OAT1 (Ki � 40 µM) Zou et al. (2021)
OAT3 (Ki � 8 µM)

Micafungin (sulfate) BCRP (IC50 � 21 µM) Lempers et al. (2016)
BSEP (IC50 � 85 µM)
MRP1 (IC50 � 21 µM)
MRP2 (IC50 � 148 µM)
MRP3 (IC50 � 42 µM)
MRP4 (IC50 � 4 µM)
MRP5 (IC50 � 22 µM)
P-gp (IC50 � 45 µM)

MK-8666-AG BSEP (28% at 25 µM) Hafey et al. (2020)

(Continued on following page)
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TABLE 2 | (Continued) Drug glucuronides (-G and -AG) and sulfates (-S) studied as inhibitors in transporter overexpression systems.

Drug conjugate Inhibited uptake transportera Inhibited efflux transportera References

Mycophenolic acid-AG OAT1 (13% at 100 µM) Wolff et al. (2007)
OAT3 (IC50 � 3 µM)

Mycophenolic acid phenyl-G
(MPA-G)

OAT1 (IC50 � 223-512 µM) MRP2 (IC50 � 1037 µM) Takekuma et al. (2007); Uwai et al. (2007); Wolff et al. (2007)
OAT3 (IC50 � 15-69 µM)

(R)-Naproxen-AG OAT1 (IC50 � 639 µM) MRP2 (IC50 � 771 µM) Kawase et al. (2016); Iwaki et al. (2017)
OAT3 (IC50 � 129 µM) MRP4 (IC50 � 2 µM)

(S)-Naproxen-AG OAT1 (IC50 � 747 µM) BCRP (20% stimulation at
100 µM)

Nozaki et al. (2007); Kawase et al. (2016); Iwaki et al. (2017);
Zou et al. (2021)

OAT3 (Ki � 5 µM) MRP2 (IC50 � 475 µM)
MRP4 (IC50 � 49 µM)

Probenecid-AG OAT1 (Ki � 130 µM) Zou et al. (2021)
OAT3 (Ki � 20 µM)

Raloxifene-4′-G OATP1B1 (65% at 10 µM)
OATP1B3 (100% at 10 µM)

BCRP (IC50 � 0.3 µM) Trdan Lušin et al. (2012a); Trdan Lušin et al. (2012b)
MRP1 (IC50 � 4 µM)
MRP2 (IC50 � 2 µM)
MRP3 (IC50 � 8 µM)
P-gp (IC50 � 6 µM)
BSEP (-)

Raloxifene-6,4′-diG OATP1B1 (54% at 4 µM)
OATP1B3 (100% at 4 µM)

BCRP (IC50 � 3 µM) Trdan Lušin et al. (2012a); Trdan Lušin et al. (2012b)
MRP1 (IC50 � 2 µM)
MRP2 (50% at 4 µM)
MRP3 (IC50 � 0.5 µM)
P-gp (IC50 � 0.8 µM)
BSEP (-)

Raloxifene-6-G OATP1B1 (-) BCRP (IC50 � 40 µM) Trdan Lušin et al. (2012a); Trdan Lušin et al. (2012b)
OATP1B3 (-) MRP1 (IC50 � 1 µM)

MRP3 (IC50 � 10 µM)
P-gp (IC50 � 10 µM)
BSEP (-)
MRP2 (-)

Relebactam (sulfate) OAT1 (-) BSEP (12% at 500 µM) Chan et al. (2019)
OAT3 (-) P-gp (16% at 300 µM)
OATP1B1 (-) BCRP (-)
OATP1B3 (-) MATE1 (-)
OCT2 (-) MATE2K (-)

Rosiglitazone-5-hydroxy-S OAT1 (Ki � 34 µM) Zou et al. (2021)
OAT3 (Ki � 1 µM)

SN-38-G OATP1B1 (13% at 10 µM) Nozawa et al. (2005)

Thyroxine-G OATP2B1 (IC50 � 45 µM) Meyer Zu Schwabedissen et al. (2018)

Tolmetin-AG OAT1 (Ki � 7 µM) Zou et al. (2021)
OAT3 (Ki � 3 µM)

Troglitazone-G OATP1B1 (69% at 10 µM) Nozawa et al. (2004)
OATP1B3 (12% at 10 µM)

Troglitazone-S OATP1B1 (95% at 10 µM) MRP4 (Ki � 8 µM) Nozawa et al. (2004); Yang et al. (2015); Malinen et al. (2019)
OATP1B3 (83% at 10 µM)
OSTα/β (IC50 � 191 µM)

Vericiguat-G OATP1B1 (IC50 � 26 µM) MATE1 (-) Boettcher et al. (2020)
OATP1B3 (IC50 � 17 µM) MATE2K (-)

P-gp (-)

aInhibition reported as inhibitory constant (Ki), half-maximal inhibitory concentration (IC50) or inhibition percentage at a defined concentration of the inhibitor. (-) denotes transporters that
have been shown not to be inhibited.
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women. It has low absolute bioavailability (2%) due to extensive
first-pass glucuronidation and most of the raloxifene in human
plasma is in the form of raloxifene-4′-G, raloxifene-6-G and
raloxifene-6,4′-di-G (Hochner-Celnikier, 1999; Snyder et al.,
2000; Trdan Lušin et al., 2012b). Unconjugated raloxifene
represents less than 1% of total drug material in human
plasma. The half-life of raloxifene is long (30 h) and secondary
plasma peaks of raloxifene appear in human plasma indicating
enterohepatic recycling. The main excretion pathway of
raloxifene and its glucuronides is in feces and less than 6% of
the dose is excreted as glucuronides in urine. Intestinal
metabolism contributes significantly to raloxifene clearance
and even exceeds the clearance measured in human liver
microsomes in vitro (Gufford et al., 2015). From enterocytes,
raloxifene-4′-G and raloxifene-6-G can reach the portal
circulation via MRP3-mediated transport, whereas MRP2
could efflux raloxifene-4′-G to the intestinal lumen (Trdan
Lušin et al., 2012a; Kosaka et al., 2015). No reports on uptake
transport of raloxifene glucuronides are available, but raloxifene-
4′G and raloxifene-6,4′-di-G strongly inhibit OATP1B1 and
OATP1B3 (Table 2), showing that these glucuronides interact
with OATPs, which may mediate their hepatic uptake. In the
liver, raloxifene-Gs are likely to be excreted into bile by MRP2.
While MRP3 can efflux raloxifene-Gs into blood from
hepatocytes, the high recovery of administered raloxifene in
feces supports predominant biliary excretion as a consequence
of high MRP2 transport and high net uptake into hepatocytes,
likely mediated by OATPs. Although raloxifene undergoes sulfate
conjugation in human enterocytes, intestinal microsomes and
liver microsomes, raloxifene sulfates were not detected in human
plasma (Food and Drug Administration, 1999; Hui et al., 2015;
Davies et al., 2020). The systemic absorption of raloxifene sulfates
may be limited by apical efflux transporters (Jeong et al., 2004;
Zhou et al., 2015).

4.3 Epacadostat-G
Epacadostat is an indoleamine 2,3-dioxygenase inhibitor being
developed for cancer treatment. Its most abundant metabolite is
epacadostat-G, which is formed by UGT1A9 in the liver. At
steady state, epacadostat-G is found at 8-fold levels compared to
epacadostat in human plasma, which can be explained by efficient
basolateral efflux by MRP3 (Boer et al., 2016; Zhang et al., 2017).
Epacadostat exhibits a pharmacokinetic profile with double
peaking that indicates enterohepatic recycling of the drug.
Epacadostat-G is likely involved in this recycling as it is
excreted into bile by MRP2 and BCRP and hydrolyzed
completely in incubations with human feces (Boer et al., 2016;
Zhang et al., 2017). Epacadostat-G is also a substrate of OATP1B1
and OATP1B3, which may enhance its biliary excretion and
contribution to the enterohepatic recycling of epacadostat (Zhang
et al., 2017). The renal clearance of epacadostat and its
metabolites is minimal at least in preclinical species (Zhang
et al., 2017), but human excretion data is not available.

4.4 Cabotegravir-G
Cabotegravir is a newly approved integrase strand transfer
inhibitor for HIV treatment, which is glucuronidated primarily

in the liver by UGT1A1 and UGT1A9 to form cabotegravir-G
(Bowers et al., 2016). Cabotegravir-G is a substrate of MRP2, and
cabotegravir-G was found in the bile of some human subjects,
whereas the parent drug was found in all bile samples in line with
its primary excretion in feces (47%) in humans (Bowers et al.,
2016; Patel et al., 2019). Cabotegravir-G also undergoes
sinusoidal efflux by MRP3 and MRP4 (Patel et al., 2019).
Approximately 20% of the oral dose is recovered in urine as
cabotegravir-G, but cabotegravir-G levels in the systemic
circulation are negligible (Bowers et al., 2016). This behavior is
explained by efficient renal elimination of cabotegravir-G that is
mediated by OAT3 on the apical and MRP2 and MRP4 on the
basolateral membranes of renal proximal tubule cells (Patel et al.,
2019). In addition, renal glucuronidation of cabotegravir by
UGT1A9 and direct efflux of the metabolite into urine may
contribute to the renal excretion of cabotegravir-G.

5 CONJUGATES AS INHIBITORS OF
TRANSPORTERS

Transporters are known to mediate DDIs (Gessner et al., 2019).
In vitro inhibition studies can identify compounds that affect
transporter activity and might cause DDIs or other transporter-
mediated toxicity. A list of transporter inhibitors within
glucuronide and sulfate conjugates are compiled in Table 2 for
drug conjugates and the full list is available in Supplementary
Table S1. Among phase II conjugates, some strong inhibitors of
hepatic uptake and efflux transporters have been identified. For
example, ezetimibe-G, a substrate of OATPs and MRP2, is also a
strong inhibitor of OATPs (half maximal inhibitory
concentration (IC50) <0.5 µM) and can inhibit BCRP, MRP2
and MRP3 (Oswald et al., 2008; de Waart et al., 2009).
Another drug conjugate with strong inhibition potential for
both OATP1Bs and MRPs is fasiglifam-G, which has IC50

values ≤1 µM for these transporters (Otieno et al., 2018;
Ackerson et al., 2019). Raloxifene-4′-G and raloxifene-6,4′-di-
G appear able to inhibit all of the major hepatic drug transporters
with IC50 values <10 µM, but interpretation warrants caution as
values for the efflux transporters are based on changes in ATPase
activity and not inhibition of transport (Trdan Lušin et al., 2012a;
2012b). Interestingly, the third raloxifene glucuronide,
raloxifene-6-G, did not inhibit OATP1B1, OATP1B3 or MRP2.

Reports on transporter inhibition by drug sulfates are scarce,
but the sulfate conjugate of a metabolite of tyrosine kinase
inhibitor cabozantinib (cabozantinib M2a) inhibits efflux
transporters BSEP, MATE1, MATE2K and MRP2 with IC50

values of 17–79 µM (Lacy et al., 2015). Cabozantinib M2a also
inhibits renal and hepatic uptake transporters OAT1, OAT3,
OATP1B1 and OATP1B3 with IC50 values of 4–21 µM (Lacy
et al., 2015). Micafungin, a large antifungal compound which
contains a sulfate group, inhibits BCRP, BSEP, P-gp, and several
MRPs (Lempers et al., 2016). The strongest inhibition was
towards MRP4 with an IC50 value of 4 µM. MRP4 and rat
Bsep are inhibited by troglitazone-S, which contributes to the
hepatotoxicity of troglitazone (Funk et al., 2001; Masubuchi,
2006; Yang et al., 2015). Importantly, despite having a low
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number of drug substrates, BSEP is susceptible to drug-induced
inhibition, which may lead to intrahepatic accumulation of bile
acids and drug-induced liver injury (Kenna et al., 2018).
Therefore, the inhibitory potential of conjugate metabolites
should be considered.

In the kidney, acyl glucuronides of flurbiprofen, ibuprofen and
naproxen inhibit OAT3 with IC50 values 19–129 µM (Iwaki et al.,
2017). Stronger inhibition (IC50 <3 µM) was observed by
diclofenac-AG, tolmetin-AG and mycophenolic acid-AG
(Wolff et al., 2007; Iwaki et al., 2017; Zou et al., 2021). Sulfate
conjugates may also strongly inhibit OAT3. Sulfates of
abiraterone, abiraterone-N-oxide and 5-hydroxy-rosiglitazone
inhibit OAT3 with inhibitory constant (Ki) values below 2 µM
(Zou et al., 2021). Although OAT1 has fewer conjugate substrates
than OAT3, conjugated metabolites can inhibit OAT1.
Diclofenac-AG, flurbiprofen-AG, naproxen-AG and ibuprofen-
AG have IC50 values between 174–960 µM towards OAT1. More
potent OAT1 inhibitors are abiraterone-S, (S)-ketoprofen-AG,
rosiglitazone-5-hydroxy-S and tolmetin-AG with Ki values
between 7–40 µM (Zou et al., 2021).

Many natural compounds found either in foods or herbal
supplements are known to inhibit transporters (Supplementary
Table S1). BCRP and MRP2, in particular, are inhibited by
several glucuronide and sulfate conjugated natural compounds.
For example, chrysin-7-G, hesperitin-3′-G, hesperitin-7-G and
quercetin-3-G all inhibit BCRP and MRP2 with IC50 <50 µM.
Quercetin-Gs also inhibit OAT1 and OAT3 with IC50 values even
below 1 µM (Wong et al., 2011b). Baicalein-7-G is a well-
characterized inhibitor of both uptake and efflux transporters,
with IC50 values <20 µM for BCRP, MRP3, MRP4 OATP1B3,
OATP2B1, OAT3 and OAT4 (Xu et al., 2013; Kalapos-Kovács
et al., 2015). Scutellarein-7-G (scutellarin) is an inhibitor of
OATP2B1 with IC50 of 2–5 µM (Wen et al., 2016; Iijima et al.,
2018) and it also inhibits BCRP and MRP2 (Gao et al., 2012).
Chrysin-7-S is a potent inhibitor of BCRP, OATP1B1 and
OATP2B1 (IC50 <1 µM) and inhibits MRP2, but not as well as
chrysin-7-G (Mohos et al., 2020a). Furthermore, quercetin-3′-S
inhibits OATP1B1, OATP2B1, OAT1 and OAT3 with IC50

<1 µM (Wong et al., 2011b; Mohos et al., 2020b).

6 CLINICAL DRUG INTERACTIONS
INVOLVING CONJUGATES

To date, little data is available on clinically significant DDIs, in
which conjugates act as victims or perpetrators. Given the role
of transporters in drug disposition and the potential of
glucuronide and sulfate metabolites to inhibit these
transporters in vitro (Table 2), clinical DDIs might be
mediated by phase II metabolites. Inhibition of conjugate
transport, on the other hand, may reduce excretion or
enterohepatic recycling of the drug conjugates, which can
increase conjugate levels, but decrease exposure of the parent
and thus reduce treatment efficacy. DDIs can be of special
concern for phase II conjugates as victim drugs for those drugs
with potentially serious side effects, such as opioid or kinase
inhibitor conjugates (e.g. morphine-6-G and sorafenib-G).

Several of the known drug interactions involving drug
conjugates (e.g. disruption of enterohepatic recycling of
MPA-G by cyclosporine or inhibition of BSEP mediated
biliary excretion of bile acids by troglitazone-S) have been
reviewed previously (Zamek-Gliszczynski et al., 2014; Patel
et al., 2016), but some new findings are discussed below.

6.1 Sorafenib-G: Altered Conjugate
Disposition due to Transporter Inhibition
As described in Section 4.1, sorafenib-G is excreted into bile by
MRP2 and undergoes OATP1B1- and OATP1B3-mediated
reuptake into hepatocytes, after basolateral efflux by MRP3, to
enhance biliary excretion. When this re-uptake was interrupted
with the OATP inhibitor rifampicin (600 mg once daily twice) in
healthy volunteers, the systemic exposure to sorafenib-G rose
over 2-fold, while there were no significant differences in
sorafenib parameters (Bins et al., 2017). Increased sorafenib-G
exposure was also observed in Oatp1b2-deficient mice, indicating
that OATP inhibition was the mechanism of the observed
rifampicin interaction (Bins et al., 2017). This serves as an
example of in vivo OATP inhibition affecting conjugate
disposition. Long-term treatment with rifampicin leads to a
decrease in sorafenib AUC by 37% (Food and Drug
Administration, 2005), which may be caused by several
reasons, such as induction of glucuronidation and hepatic
efflux transport. However, many compounds can inhibit
OATPs (Karlgren et al., 2012) and not all of them are
inducers of metabolic enzymes or transporters. Recently,
administration of probenecid with sorafenib was shown to
increase the ratio of sorafenib-G to sorafenib in plasma due to
a reduction in sorafenib exposure (Hussaarts et al., 2020). This
was suggested to be caused by disrupted enterohepatic recycling
caused by inhibition of OATP1B1, as with rifampicin, but
surprisingly the plasma concentrations of the glucuronide were
unaffected.

6.2 Clopidogrel-AG: Inhibition of Transport
by a Drug Conjugate
Even though conjugate-mediated transporter inhibition
might not be the primary mechanistic source of many
DDIs, they can be complicit in adding to complex DDIs.
Clopidogrel-AG is a mechanism-based inhibitor of
CYP2C8, but also a substrate and inhibitor of transporters
(Table 1 and Table 2, (Tornio et al., 2014)). Co-
administration of clopidogrel increased repaglinide AUC by
5.1-fold (Tornio et al., 2014). While mechanism-based
inhibition of CYP2C8 by clopidogrel-AG is the primary
contributor to this interaction, OAT1B1 inhibition by
clopidogrel and its acyl glucuronide increases the severity
of the interaction by 1.5-fold based on pharmacokinetic
simulations. Although there are no clinical reports, MRP3
function may also affect this interaction by modulating the
intracellular concentrations of clopidogrel-AG. Indeed, the
liver-to-plasma ratio of clopidogrel-AG was 11-fold higher in
Mrp3 knockout mice compared to wild type, supporting the
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role of MRP3 in sinusoidal efflux (Ji et al., 2018). This was
observed also in a clinical setting, where the plasma AUC of
clopidogrel-AG was 1000 times higher than of the parent
(Tornio et al., 2014). It is unknown if clopidogrel-AG itself
undergoes re-uptake into hepatocytes by uptake transporters
from the blood circulation.

6.3 Conjugates as Biomarkers of Drug
Inhibition
The use of endogenous transporter substrates as biomarkers of
transporter function can help to avoid dedicated DDI studies and
be used to assess DDI risks of drugs that have ethical and practical
limitations when it comes to conventional DDI trials (Chu et al.,
2018). Many endogenous conjugates, primarily bile acid
conjugates, have been studied for their utility as biomarkers to
assess the inhibitory effects of drugs on transporters. Although
this may be challenging considering the overlap between
transporters, some promising conjugates have been identified,
especially for OATP1Bs.

The bile acid conjugate GCDCA-S has been proposed as a
biomarker for several transporters. As a biomarker of OAT1/
OAT3-mediated DDIs, probenecid reduced the renal clearance of
GCDCA-S in a dose-dependent manner. The degree of reduction
was similar to changes for the OAT1/OAT3 probe drug benzyl
penicillin, even though apically expressed MRP2 in the proximal
tubules might also be involved in the decreased GCDCA-S
excretion (Tsuruya et al., 2016). GCDCA-S and other bile acid
conjugates have also been studied as OATP1B biomarkers for
detecting DDIs. A 600 mg single dose of rifampicin increased
GCDCA-S AUC over 20-fold (Takehara et al., 2018). A dose-
dependent effect of rifampicin on the AUCs of GCDCA-S,
GCDCA-G and CDCA-AG was later confirmed (Mori et al.,
2020b). The utility of bile acid conjugates as biomarkers for
OATP1B-mediated DDIs was additionally investigated with
paclitaxel at therapeutic doses in non-small cell lung cancer
patients (Mori et al., 2020a). In this study, the AUC of several
sulfate and glucuronide conjugates (e.g. GCDCA-S, GCDCA-G,
CDCA-AG and GDCA-S) increased over 2.5-fold with paclitaxel
administration. It should be noted however, that some of these
compounds are also substrates of efflux transporters (Neuvonen
et al., 2021), which may complicate interpretation. Clinical
studies to identify biomarkers for OATP1B3 have not yet been
conducted, but testosterone-G and androsterone-G were recently
identified to be primarily transported by OATP1B3 and have
been proposed as potential OATP1B3 biomarkers (Li et al., 2020).
Plasma levels of DHEAS, a testosterone precursor, appear to be
insensitive towards OATP1B inhibition by rifampicin in humans
(Shen et al., 2017).

7 CONJUGATE TOXICITY INVOLVING
TRANSPORTER-MEDIATED DISPOSITION

Some phase II conjugates have been linked to drug toxicity, since
molecules containing carboxylic acid moieties can be metabolized
into reactive, electrophilic acyl glucuronides andmay thus require

safety assessment (Food and Drug Administration, 2020). Acyl
glucuronides are formed from many widely used drugs (e.g.
NSAIDs, mycophenolic acid, valproic acid and gemfibrozil)
and they can covalently bind to proteins and DNA, increase
oxidative stress or trigger an immune response contributing to
the risk of idiosyncratic drug toxicity (Regan et al., 2010).
Transporters play a key role in regulating intracellular acyl
glucuronide levels and transporter function may therefore
influence their toxicity risk. Furthermore, transporters may
also affect the toxicity of environmental toxins that form
reactive sulfate conjugates (Glatt, 2000).

7.1 Fasiglifam-AG
Fasiglifam (TAK-875) is a free fatty acid receptor 1 agonist that
was in development for the treatment of type 2 diabetes (Kaku
et al., 2015). It is a recent example of a drug with an acyl
glucuronide that was withdrawn during phase III clinical trials
due to safety concerns regarding drug-induced liver injury
(DILI). Formation of fasiglifam-AG is the major metabolic
pathway for fasiglifam in humans and in vitro studies have
indicated that its high risk for DILI is attributable mainly to
this metabolite (Kaku, 2013) (Thompson et al., 2012). Fasiglifam-
AG showed nonlinear accumulation in rat livers with dose
escalation, suggestive of saturation of biliary efflux, likely from
inhibition of Mrp2 (Otieno et al., 2018; Kogame et al., 2019). The
role of uptake transporters in fasiglifam-AG disposition is
unknown, but it is an inhibitor of several hepatic uptake and
efflux transporters (Table 2). Based on observed plasma and liver
concentrations of fasiglifam-AG in rats, it is likely to inhibit
hepatic efflux transporters in vivo, but not uptake transporters.
Moreover, fasiglifam-AG is a more potent inhibitor of human
than rat MRPs/Mrps, as the IC50 values were over 10- and 50-fold
higher for rat Mrp2 andMrp4 than for humanMRP2 andMRP4,
while MRP3 inhibition was more similar (Otieno et al., 2018). In
addition to direct fasiglifam-AG-mediated liver toxicity,
fasiglifam and fasiglifam-AG can alter bile acid homeostasis by
inhibiting MRP2, MRP3, MRP4, NTCP and BSEP, possibly
contributing to DILI (Wolenski et al., 2017).

7.2 Diclofenac-AG
Diclofenac is used widely (e.g. in the treatment of osteoarthritis)
and has been associated with enteropathy, kidney toxicity and
rare but severe idiosyncratic hepatotoxicity (Banks et al., 1995;
Douros et al., 2018; Watanabe et al., 2020). Histological samples
collected from patients having adverse reactions to diclofenac
showed hepatocellular injury in over 70% of the samples (Banks
et al., 1995). Diclofenac-AG is formed in the liver by UGT2B7
(King et al., 2001) and transporters play a key role in its
disposition (Table 1). In the liver, diclofenac-AG is excreted
into bile by BCRP and MRP2, whereas MRP3 serves as an
alternative pathway if biliary excretion is impaired (Lagas
et al., 2010). In humans, diclofenac-AG is primarily excreted
in urine. After efflux into the blood by MRP3 in hepatocytes,
diclofenac-AG is taken up by OAT1/3 in the kidney and can be
transported on the apical side by OAT4 (Zhang et al., 2016). This
uptake can lead to renal accumulation and predispose the tubular
cells to direct cytotoxicity, which in addition to the reduction in
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afferent arterial flow caused by diclofenac is considered to be one
of the main mechanisms of diclofenac nephrotoxicity. In vitro,
the toxicity of diclofenac-AG could be reduced by OAT1/3
inhibition by cilastatin (Huo et al., 2020). Diclofenac-AG can
increase diclofenac exposure, as acyl glucuronides can be
deconjugated non-enzymatically or by esterases both in the
liver and plasma (Suzuki et al., 2010; Ito et al., 2014). Due to
this conversion, cilastatin increased the AUC of both diclofenac
and diclofenac-AG in mice, even though diclofenac itself is not an
OAT1/3 substrate (Huo et al., 2020). MRP3 in the intestine may
also protect against diclofenac induced enteropathy. Intestinal
ulceration is a classic adverse effect of NSAIDs caused by their
pharmacological mode of action and the accumulation of AG
metabolites can aggravate it. Studies in Mrp3 knockout mice
showed that intestinal injuries caused by diclofenac were
consistently more severe in knockout compared to wild type
mice (Niu et al., 2015). Ulceration was also reduced in Mrp2
knockout rats compared with wild type rats, presumably due to
decreased diclofenac-AG biliary clearance (Seitz and Boelsterli,
1998).

7.3 Other Toxins
Aristolochic acids are a group of toxic phytochemicals found in
the Aristolochiaceae plant family. These herbs used in Chinese
medicine are associated with urothelial carcinoma and can cause
end-stage renal failure. Aristolochic acid I, a potent nephrotoxin,
is metabolized by several enzymes, including SULTs in the liver.
This hepatic bioactivation has been shown in vitro in a
microphysiological system to be the key factor in aristolochic
acid I toxicity through the formation of the sulfate conjugate
sulfonyloxyaristolactam (Chang et al., 2017). Even more
importantly, transporters play a critical role in the renal
toxicity of this compound. Sulfonyloxyaristolactam is
transported out of hepatocytes by MRP3 and MRP4 and
concentrated by OAT1 and OAT3 from blood, and by OAT4
from urine, into the proximal tubular epithelial cells, where this
toxin reacts to form DNA adducts at high levels. Inhibition of
OATs by probenecid, decreased the toxicity in kidney cells by
50–60% in the microphysiological in vitro system (Chang et al.,
2017).

Transporter-mediated enhancement of toxicity has also been
observed with other reactive sulfate conjugates. 1-
sulfooxymethylpyrene is a sulfate metabolite of 1-
methylpyrene, a procarcinogen present for example in
cigarette smoke. In vitro, 1-sulfooxymethylpyrene accumulated
into OAT1-or OAT3-overexpressing cells resulting in 4.6- and
3.0-fold higher DNA adduct formation, respectively, compared to
control cells (Bakhiya et al., 2006). OAT-inhibitor probenecid
abolished this effect, indicating that the OAT-mediated uptake of
1-sulfooxymethylpyrene is important for its renal toxicity. Similar
results have been seen with 5-sulfooxymethylfurfural, a reactive
sulfate metabolite of inactive 5-hydroxymethylfurfural, which is
found in many foods (Bakhiya et al., 2009). Like 1-
sulfooxymethylpyrene, 5-sulfooxymethylfurfural is a substrate
for OAT1 and OAT3. OAT-mediated uptake was found to
significantly increase its cytotoxicity, whereas the inhibition of

OATs by probenecid reduced the cytotoxic effects (Bakhiya et al.,
2009).

8 EFFECTS OF PHARMACOGENETICS ON
CONJUGATE DISPOSITION

Genetic variation in transporter genes can cause alterations in
transporter abundance, localization or function, leading to altered
disposition of their substrates, including glucuronide and sulfate
conjugates. Transporter variants have a well-described role in two
benign bilirubin syndromes involving bilirubin conjugates: 1) In
people with Rotor syndrome, decreased hepatic uptake by
OATP1B1 and OATP1B3 loss-of function variants increases
circulating levels of total bilirubin (van de Steeg et al., 2012)
and 2) loss-of-function variants of MRP2 cause the Dubin-
Johnson syndrome, where decreased biliary excretion increases
conjugated bilirubin levels in the serum and liver (Kartenbeck
et al., 1996). Transporter genotype also influences endogenous
sulfate conjugates, as healthy volunteers with OATP1B1 *15/*15
haplotype (c.388A>G, rs2306283; and c.521T>C, rs4149056) had
>1.7-fold higher AUCs of GCDCA-S, lithocholate-S,
glycolithocholate-S and taurolithocholate-S compared to
OATP1B1 *1b/*1b (c.388A>G) (Mori et al., 2019).
Furthermore, in a recent genome-wide association study on
metabolomic data, genetic variants of an orphan transporter,
SLC22A24, were found to be associated with androsterone-G and
etiocholanolone-G levels (Yee et al., 2019). In addition to
affecting endogenous compounds, there is increasing evidence
showing that transporter pharmacogenetics contribute to
interindividual variability in drug pharmacokinetics
(Giacomini et al., 2013). Although less is known about the
effect of genetic variation on the disposition of phase II
conjugates than on parent drugs, several cases where
transporter variants cause altered drug glucuronide or sulfate
disposition have been found.

8.1 Ezetimibe-G
Ezetimibe, a cholesterol-lowering drug acting primarily in the
intestine, is extensively glucuronidated in enterocytes to form
ezetimibe-G. Ezetimibe-G is a substrate of several transporters
including OATP1B1, OATP2B1, and MRP2 (Zamek-Gliszczynski
et al., 2014) (Table 1). Since ezetimibe-G is formed in the intestine,
hepatic uptake could be a rate-limiting step for enterohepatic
recycling as only the glucuronide is a substrate of OATP1B1
(Oswald et al., 2008). The cellular uptake of ezetimibe-G was
reduced in cells expressing the OATP1B1 *1b and *5
(c.521T>C, rs4149056) haplotypes compared to OATP1B1 *1a
(reference genotype). Healthy volunteers carrying OATP1B1 *1b/
*1b had a 50% lowerAUC of ezetimibe compared to carriers of *1a/
*1a, and a trend for a higher ezetimibe-G AUC as well as increased
amount of ezetimibe-G excreted in urine. In addition, *5 and *15
carriers had decreased excretion of ezetimibe into feces. These
results suggest that decreased OATP1B1 function shifts ezetimibe
excretion from biliary to renal and reduces enterohepatic recycling.
However, these changes did not significantly affect the
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pharmacodynamic effect of ezetimibe in a study with healthy
volunteers (Oswald et al., 2008).

8.2 Morphine-Gs
The opioid analgesic morphine is primarily eliminated by
glucuronidation in the liver and the subsequent glucuronides,
morphine-3-G and morphine-6-G, are substrates of MRP2 and
MRP3, which transport the glucuronides to the bile and the
systemic circulation, respectively (Zelcer et al., 2005). The
disposition of morphine-6-G is of particular interest since it is
an active metabolite. The appearance of morphine glucuronides
in the systemic circulation appears to be associated with a
promoter region variant of ABCC3 (c.-211C>T, rs4793665) in
pediatric patients, with the CC genotypes having a higher
glucuronide level than the CT and TT genotypes
(Venkatasubramanian et al., 2014; Chidambaran et al., 2017).
Even though morphine is not known to be a substrate of MRP3, a
link between apparent decreased morphine clearance and the c.-
211C>T variant has been found in pediatric patients (Hahn et al.,
2020). This is suggested to be due to a shift from the urinary
excretion pathway to biliary excretion: Patients with the CT or TT
genotypes had lower MRP3 activity than those with the CC
genotype, leading to increased excretion of the glucuronides to
the bile by MRP2, and a subsequent increase in enterohepatic
recycling and morphine exposure. Furthermore, some ABCC3
intronic variants were found to be associated with a longer
postoperative unit care stay, due to respiratory depression as a
side effect of morphine treatment (Chidambaran et al., 2017).

8.3 Raloxifene-Gs
As described in Section 4.2, raloxifene undergoes high intestinal
and hepatic metabolism to several glucuronide conjugates.
Although direct in vitro evidence is still missing, it is expected
that OATP1B1 and OATP1B3 are required for the uptake of
raloxifene-Gs into hepatocytes and subsequent biliary excretion
by apical efflux transporters (Trdan Lušin et al., 2012a, 2012b;
Kosaka et al., 2015). The role of OATP1B1 is supported by the
association of OATP1B1 *1b haplotype with higher serum
concentrations of raloxifene species (raloxifene, raloxifene-6,4′-
di-G and total raloxifene) compared with OATP1B1 *1a in a
study with 57 postmenopausal women treated with raloxifene for
12 months (Trdan Lušin et al., 2012b). Decreased hepatic uptake
of raloxifene-Gs by the low-function *1b haplotype would explain
the observed increase in the systemic concentrations of the
raloxifene species. This haplotype was also linked to a higher
decrease in serum C-terminal telopeptide fragments of type I
collagen, a bone resorption marker, indicating a better
therapeutic effect, probably due to the increased total systemic
raloxifene exposure (Trdan Lušin et al., 2012b). The SLCO1B1
c.521T>C polymorphism, which is included in the *5 and *15
haplotypes, did not significantly influence the pharmacokinetics
or pharmacodynamics of raloxifene species in this study. No
significant association was found either for SLCO1B3 int7C>G
(rs17680137) or for efflux transporter polymorphisms ABCB1
c.3435C>T (rs1045642) or ABCC2 c.3972C>T (rs3740066)
(Trdan Lušin et al., 2012a; 2012b).

8.4 MPA-G
Mycophenolate mofetil is an immunosuppressive pro-drug that
is commonly used in solid organ transplantations. The active
form, mycophenolic acid, undergoes extensive glucuronidation
in the liver, and the main metabolite, MPA-G, is
pharmacologically inactive (Lamba et al., 2014). Additionally,
a pharmacologically active acyl glucuronide is formed as a
minor metabolite. Active secretion in the kidney is the main
elimination pathway of MPA-G, but a significant portion of
MPA-G is excreted to the bile and undergoes enterohepatic
recycling, so that only a small portion of MPA-G is found in
feces (Bullingham et al., 1998). Systemic MPA-G is taken up by
OATP1B1 and OATP1B3 in hepatocytes, while MRP2 mediates
MPA-G excretion into bile and is involved in secreting MPA-G
into urine (Naesens et al., 2006; Picard et al., 2010; Matsunaga
et al., 2014). OATP1B1 and OATP1B3 genotypes were
predictive for MPA-G exposure in a study with 80 Japanese
renal transplant patients (Miura et al., 2008). Furthermore, the
decreased function ABCG2 polymorphism c.421C>A
(rs2231142) caused ≈30% increase in median MPA-G AUC,
but MPA-G transport by BCRP remains to be verified in vitro.
The OATP1B3 haplotype c.334T>G–c.699G>A (rs4149117 and
rs7311358, respectively) resulted in decreased MPA AUC and
increased MPA-G/MPA AUC ratio in renal transplant patients,
while studied OATP1B1 polymorphisms had no effect on MPA
or MPA-G (Picard et al., 2010). The decrease in MPA AUC is
suggested to result from reduced hepatic uptake of MPA-G and
subsequent enterohepatic recycling, leading to lower AUC and
less frequent adverse reactions. In vitro and in vivo studies
support this hypothesis, as uptake of MPA-G was reduced in
OATP1B3 c.334T>G–c.699G>A expressing cells (Picard et al.,
2010) and this haplotype was associated with lower survival and
increased risk for non-minimal acute rejection (Tague et al.,
2020). Although in vivo pharmacokinetic evidence is missing,
MPA-G uptake is also reduced in OATP1B1 *5 expressing
cells in vitro and the OATP1B1 *5 haplotype protected
patients from MPA-related adverse reactions after renal
transplantation (Michelon et al., 2010). The effect of MRP2
polymorphisms on MPA-G exposure is more contradictory
(Lamba et al., 2014).

9 EFFECTS OF DISEASE ON CONJUGATE
DISPOSITION

Diseases affecting the intestine, liver or kidney can alter the
absorption and excretion of drugs and their metabolites,
either through physiological changes (e.g. in blood flow,
protein binding), or through altered function of metabolic
enzymes and transporters. The pharmacokinetic impact of
disease-mediated changes in drug transporters has recently
been reviewed by Evers et al. (2018). However, clinical
evidence for transporter-mediated alterations in drug
conjugate exposure in disease is still scarce even though
conjugates may be sensitive to changes in transport due to
their low passive permeability.
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9.1 Liver Disease
Liver disease is known to alter the metabolic capacity of
hepatocytes and hepatic clearance may be impacted by
changes in liver blood flow rates or even intra-hepatic
shunting of blood in severe cases of liver impairment
(Drozdzik et al., 2021). In addition, there is increasing
evidence for changes in transporter protein levels in different
types of liver disease (Drozdzik et al., 2020). For example, levels of
several hepatic uptake transporters, as well as MRP2, tend to
decrease with increasing liver disease severity, whereas OCT1,
MRP3, MRP4 and P-gp levels tend to increase. Some changes,
however, appear to be disease specific. The clinical significance of
these changes in transporter levels is poorly characterized and
many studies have relied on data from animal models of liver
disease (Thakkar et al., 2017). Animal models have been useful,
for example, to elucidate the role of MRP2 in estradiol-17-G
induced cholestasis (Huang et al., 2000).

Two examples of altered conjugate disposition in hepatic
disease come from studies of nononalcoholic steatohepatitis
(NASH), the advanced stage of nonalcoholic liver disease. In
patients with NASH, systemic exposure to morphine-3-G,
morphine-6-G and acetaminophen-G is increased (Canet
et al., 2015; Ferslew et al., 2015). This is likely due to the
increased abundance of hepatic MRP3 and mislocalization of
MRP2 in NASH, which results in increased efflux into the
blood circulation and reduced biliary excretion (Hardwick
et al., 2011; Vildhede et al., 2020; Sjöstedt et al., 2021). On the
other hand, an observed trend for decreasing acetaminophen
sulfate levels could be due to altered sulfonation activity
caused by impaired sulfur activation in NASH (Canet et al.,
2015), which highlights the importance (and challenge) of
distinguishing changes in metabolite formation from
transporter-mediated alterations. More studies are needed
to provide further evidence on how conjugate disposition is
impacted by liver disease and to elucidate, for example,
whether the observed shift from biliary to sinusoidal
clearance in NASH and other diseases has a significant
effect on enterohepatic recycling and drug exposure.

9.2 Renal Disease
There is little information on transporter levels in renal
disease in humans, although a decrease in OAT1
expression at the mRNA level has been reported (Sakurai
et al., 2004). Renal disease and decreased kidney function are
known to increase the exposure to several drug glucuronides
(Verbeeck, 1982). For example, oxazepam and oxazepam-G
are typically found at comparable levels in healthy subjects,
but the oxazepam-G to oxazepam ratio was shown to increase
to up to 50 due to an increase in oxazepam-G in patients with
renal insufficiency (Odar-Cederlöf et al., 1977). Further, in a
study with renal failure patients, the concentrations of
propranolol-Gs were up to 18-fold higher compared with
patients with normal renal function (Stone and Walle,
1980). These two examples clearly highlight the possibility
of high accumulation of drug conjugates in renal diseases.
Moreover, fecal excretion and enterohepatic recycling may
become more pronounced for conjugates primarily eliminated

via the kidney in healthy individuals if excretion is shifted to the
biliary route, as shown for example for oxazepam (Odar-
Cederlöf et al., 1977).

An age-related decrease in active renal secretion was suggested
to result in a 1.9- to 2.5-fold reduction in the renal clearance of
propafenone-Gs in older compared to younger subjects with
normal renal function (Fromm et al., 1995), but the
transporters involved in secretion have not been identified.
Zhong et al. (2014) showed that severe renal impairment
increased exposure to sulfate and glucuronide conjugates of
morinidazole ≥15-fold and identified them as OAT1 and
OAT3 substrates. Therefore, decreased transporter function
could explain the reduction of their renal clearance. The
challenge in renal disease is to distinguish whether
pharmacokinetic changes are caused solely by changes in
glomerular filtration rate or by alterations in transporter-
mediated renal excretion. The distinction is further
complicated by the use of serum creatinine to estimate
glomerular filtration rate. Transporters are involved in
creatinine clearance and changes in serum creatinine may in
some cases be attributed to altered transport activity (Chu et al.,
2016). Furthermore, transporter function may be altered in
kidney disease both due to altered expression as well as
inhibition by the uremic toxins that accumulate with declined
kidney function (Table 3).

Uremic toxins include several glucuronide and sulfate
conjugates. The most noteworthy of these are indoxyl-S and
p-cresol-S because of their role in the progression of chronic
kidney disease, cardiovascular disease and interactions with
transport proteins (Sirich et al., 2014). Both also exist as
glucuronide conjugates. Indoxyl-S and p-cresol-S are
eliminated via renal excretion and impaired kidney function
can elevate their plasma levels by more than 40- and 10-fold,
respectively (Duranton et al., 2012). Renal excretion of uremic
toxins is facilitated by OAT1, OAT3, OAT4 and BCRP and they
can inhibit multiple transporters in vitro (Table 3). The ratio of
plasma concentrations to IC50 values of indoxyl-S and p-cresyl-S
suggest potential for clinically significant inhibition. For example,
inhibition by uremic toxins was proposed to be the mechanism
for reduced clearance of morinidazole conjugates in a rat model
of chronic renal failure (Kong et al., 2017). Notably, the effects of
uremic toxins are not limited to renal transporters, but may also
alter hepatic clearance by inhibiting OATP-mediated uptake into
the liver (Tan et al., 2018), as indoxyl-S and p-cresyl-S have been
shown in vitro to inhibit OATPs (Table 3). Furthermore, the
accumulation of uremic toxins can possibly lead to displacement
of other drugs from albumin and this combined with
hypoalbuminemia common in chronic kidney disease patients
may increase the unbound fraction of drugs.

9.3 Intestinal Disease
Drug absorption is affected greatly by intestinal physiology,
which can be altered in disease (Stillhart et al., 2020).
Transporters in the intestine may have a smaller role than in
the liver and kidney on conjugate disposition except if the
conjugation occurs in the enterocytes. In this case, disease-
associated changes in transporter levels or function may alter
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the fraction of conjugate reaching the systemic circulation, but
limited information on transporter changes is available. For
example, inflammation in ulcerative colitis has been shown to
decrease mRNA, but not protein, levels of P-gp and BCRP and
increase SLCO2B1 mRNA levels when compared with non-
inflamed tissue (Erdmann et al., 2019). Jahnel et al. (2014)
reported decreased ABCG2 mRNA levels in Crohn’s disease
compared to healthy controls, whereas both ABCC3 and
ABCC4 mRNA was decreased in ulcerative colitis in their
study. However, the in vivo effect of these transporter changes
on conjugate kinetics remains to be elucidated. Besides
transporter changes, any diseases affecting the gut microbiome
and bacterial β-glucuronidase activity could affect conjugate and
parent drug disposition by decreasing intestinal deconjugation
and leading to impaired enterohepatic recycling.

10 CONJUGATE DISPOSITION STUDIES IN
PRECLINICAL ANIMALS

In vivo studies are needed to understand how the complex
interplay of metabolism and transport affects the overall
disposition and elimination patterns of drugs and their
metabolites. However, plasma, urine and fecal samples from
human subjects are often insufficient for resolving detailed
mechanisms in disposition. Studies in preclinical animals allow
more invasive sampling, such as bile collection, that is not
typically feasible in human subjects. Important mechanistic
information can also be obtained when performing studies in
animals where specific transporters have been knocked out or by
using humanized rodent models (Durmus et al., 2016). Examples
of transporter-mediated conjugate disposition studies in efflux

TABLE 3 | Interaction of drug transporters with uremic toxins in transporter overexpression systems.

Uremic toxina Influx transportersb Efflux transportersb Reference

Indoxyl-G Inhibitor Hsueh et al. (2016); Cheung et al. (2017)
OAT1 (32% at 950 µM)
OAT3 (IC50 � 670 µM)
OCT2 (IC50 � 58 µM)

Indoxyl-S Inhibitor Inhibitor Motojima et al. (2002); Enomoto et al. (2003); Deguchi et al. (2004);
Mutsaers et al. (2011); Reyes and Benet (2011); Sato T. et al. (2014);
Hsueh et al. (2016); Katsube et al. (2017); Kong et al. (2017);
Lin et al. (2018); Morimoto et al. (2018); Takada et al. (2018);
Weigand et al. (2019)

NTCP (26% at 500 µM) BCRP (Ki � 500 µM)
OAT1 (Ki � 13–23 µM) MRP2 (40% at 3 mM)
OAT2 (20% at 1000 µM) MRP4 (Ki � 1000 µM)
OAT3 (Ki � 169–183 µM) BSEP (-)
OAT4 (Ki � 181 µM) MRP3 (-)
OATP1B1 (IC50 � 1061–2700 µM) P-gp (-)
OATP1B3 (IC50 � 1300 µM)
OATP2B1 (30% at 400 µM)
OCT1 (-)
OCT2 (-)

Substrate Substrate
OAT1 BCRP
OAT3 MRP2 (-)
OAT4 P-gp (-)
OATP1B1 (-)
OATP1B3 (-)

p-Cresyl-G Inhibitor Inhibitor Mutsaers et al. (2015); Weigand et al. (2019)
OATP1B1 (24% at 500 µM) MRP4 (73% at 1 mM)
OATP1B3 (18% at 500 µM) BCRP (-)
NTCP (-) BSEP (-)

Substrate
BCRP
MRP4 (-)

p-Cresyl-S Inhibitor Inhibitor Watanabe et al. (2014); Mutsaers et al. (2015); Hsueh et al. (2016);
Weigand et al. (2019)NTCP (54% at 500 µM) BCRP (24% at 1 mM)

OAT1 (IC50 � 210–690 µM) MRP4 (40% at 1 mM)
OAT3 (IC50 � 200–485 µM) BSEP (-)
OATP1B3 (16% at 500 µM)
OATP1B1 (-)

MRP3 (-)

Substrate Substrate
OAT1 BCRP
OAT3 MRP4 (-)

aReported total mean plasma levels of indoxyl-G, indoxyl-S, p-cresyl-G, and p-cresyl-S in end stage renal disease patients are 9, 110, 44, and 675 µM, respectively Duranton et al. (2012).
bInhibition reported as inhibitory constant (Ki), half-maximal inhibitory concentration (IC50) or inhibition percentage at a defined concentration of the inhibitor. (-) denotes results showing no interaction.
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knockout rodents have been discussed previously by (Zamek-
Gliszczynski et al., 2006) and examples for uptake transporters
are summarized in Table 4.

Knockout animal studies have been instrumental in clarifying
the roles and interplay of uptake and efflux transporters in the
liver. Studies in Oatp1a/b knockout mice revealed that the
glucuronides of bilirubin undergo Oatp1a/b-mediated shuttling
between hepatocytes, which was termed hepatocyte hopping (van
de Steeg et al., 2010). Later, sorafenib-G was also found to exhibit
similar behavior (Vasilyeva et al., 2015). In mice, Mrp2, Oatp,
Oatp;Mrp2 and Oatp;Mrp2;Mrp3 knockouts all led to a
substantial (38–906-fold) increase in sorafenib-G plasma
concentrations, while the increase in liver concentrations was
more modest (1.5 – 3-fold). Furthermore, knockout mice were
used to resolve the roles of sinusoidal and canalicular transporters
in diclofenac-AG disposition (Lagas et al., 2010).

The above examples highlight the utility of preclinical in vivo
studies, especially in knockout animals. However, compensatory

changes in knockout animal models should be considered as it is
well known, for example, that decreased MRP2/Mrp2 function in
humans and rodents leads to an increase in hepatic MRP3/Mrp3
protein levels (König et al., 1999; Kuroda et al., 2004). Inherent
interspecies differences may also complicate the interpretation
and extrapolation of preclinical data on drug conjugates to
humans (Zamek-Gliszczynski et al., 2006). For example, rats
do not have a gall bladder and human OATP isoforms do not
have direct orthologs in the rat. Based on its specific expression in
the liver, rat Oatp1b2 is considered to correspond to OATP1B1
and OATP1B3, even though there are differences in their
substrate specificity (Cattori et al., 2001). Differences also exist
in transporter abundance. According to a proteomics study
across liver samples from human, monkey, dog and rat,
OATPs/Oatps were the most abundant transporters, but their
contribution to the total abundance varied from 29% in humans
to 69% in dogs, with the total Oatp expression being
approximately 4-fold higher in rat than in human (Wang L.

TABLE 4 | Studies in knockout (KO) mice supporting the significance of uptake transporters in the disposition of glucuronide and sulfate metabolites of drugs and other
compounds.

Compound KO model Summary Reference

Bilirubin-Gs (endogenous) Oatp1a/b High plasma concentration of bilirubin-Gs in KO mice, while they were
absent in wild type (WT) mice. Biliary output of the glucuronides was
reduced 2-fold in KO mice. No excretion of glucuronides in urine in the WT
mice, while high excretion in the KO mice.

van de Steeg et al.
(2010)

Bilirubin-Gs (endogenous) Oatp1a/b with and without Mrp2,
Mrp3 and Mrp2/Mrp3

Oatp1a/b KO increased the plasma level of bilirubin-mono-G ∼50-fold. Of
the other double KOs, only Oatp/Mrp2 KO further increased the plasma
concentration (up to 150-fold) in comparison toWTmice. Mrp2 KO by itself
resulted only in a 4-fold increase in comparison to WT mice. Similarly,
urinary excretion increased for the glucuronides in all KO mice strains, but
the difference between Mrp2 and Oatp/Mrp2 KO strains was almost 100-
fold. Oatp1a/b KO reduced the biliary excretion of the glucuronides only 2-
fold.

van de Steeg et al.
(2012)

Estradiol-17-G (intravenous) Oatp1a1 Oatp1a1 KO resulted in 1.5-fold increase in the initial AUC of estradiol-17-G
between 1 and 2 min. Oatp1a4 KO did not have an effect.

Gong et al. (2011)
Oatp1a4

Metabolomics (endogenous) Oat1 9-fold and 3-fold higher plasma concentrations of indoxyl-S and phenyl-S
in the KO mice in comparison to WT mice. 10-fold lower amino-cresol-S in
KO mouse urine.

Wikoff et al. (2011)

Regorafenib-G (oral regorafenib) Oatp1b2 6-fold higher regorafenib-G AUC in the KO mice. No change in the
exposure of regorafenib, regorafenib-N-oxide nor N-desmethyl-
regorafenib-N-oxide.

Fu et al. (2018)

Sorafenib-G (oral sorafenib Oatp1b2 7–23-fold higher AUC of sorafenib-G in KO mice compared to WT mice.
AUC of sorafenib or sorafenib-N-oxide was unchanged.

Fu et al. (2019)

Regorafenib-G (oral regorafenib) 4–9-fold higher AUC of regorafenib-G in the KO mice compared to WT
mice. Regorafenib and regorafenib-N-oxide levels were unchanged.

Sorafenib-G (oral sorafenib) Oat1b2 and Oatp1a/1b 5-fold higher AUC of sorafenib-G in Oat1b2 KO mice, while no change in
the AUC of sorafenib-N-oxide and only slight change in the AUC of
sorafenib. Liver/plasma ratio of sorafenib-G was reduced 6-fold in Oatp1b2
KOmice. 29-fold higher AUC in Oatp1a/1b KOmice, while no change in the
AUC of sorafenib-N-oxide and only slight change in the AUC of sorafenib.

Zimmerman et al.
(2013)

Sorafenib-G (oral sorafenib) Oatp1a/b with and without Mrp2,
Mrp3 and Mrp2/Mrp3

KO of Oatp1a/b, Oatp1a/b with Mrp2, Oatp1a/b with Mrp3, and Oatp1a/b
with Mrp2 and Mrp3 resulted in 72-, 906-, 38- and 644-fold increase in the
AUC of sorafenib-G in comparison toWTmice. Oatp1a/b KO increased the
liver concentration of sorafenib-G only 1.5-fold.

Vasilyeva et al.
(2015)

Sorafenib-G (oral sorafenib) Oat1b2 8-fold higher AUC of sorafenib-G in the KO mice. The plasma AUC of
sorafenib and sorafenib-N-oxide were unchanged. 10-fold lower liver/
plasma ratio of sorafenib-G in the KO mice.

Bins et al. (2017)
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et al., 2015). In rat livers, Mrp2 protein levels were over 5-fold
compared to human livers, whereas Bcrp and Mrp3 abundances
were below the detection limit in rat livers, unlike in humans.
High expression of Oatps and Mrp2 in rats may contribute to the
pronounced biliary excretion observed in rats compared with
humans (Grime and Paine, 2013). For the kidney, transporters
tended to have higher abundance in kidney cortices in monkey,
dog, rat andmice than in humans (Basit et al., 2019). Importantly,
regarding localization differences, Oat2 is found only on the
apical membrane of renal proximal tubule cells in rats, while
human OAT2 is found primarily on the basolateral membrane
(Shen et al., 2015).

In addition to differences in transporter levels, substrate
specificity can vary between species. Data for species
differences in transport of sulfate and glucuronide conjugates
is sparse. In our literature search, only a handful of drug
conjugates had data available for humans and preclinical
species, but the data suggests that drug conjugates that are
substrates of human transporters are generally also substrates
of the ortholog proteins (Supplementary Table S1). An
exception to this is, for example, raloxifene-6-G, which is a
substrate of rat Mrp2 and its disposition is altered in Mrp2-
deficient EHBR rats (Kosaka et al., 2015). However, it does not
appear to be a substrate of human MRP2, as determined by an
indirect in vitro assay measuring ATP hydrolysis in the presence
of raloxifene-6-G (Trdan Lušin et al., 2012a). Similarly,
paroxetine M1-G is a substrate of rat MRP2, but not human
MRP2 (Matsunaga et al., 2013). Species differences in transporter
affinity and inhibition potency may be significant when
evaluating drug safety. For example, the lower inhibition
potency of fasiglifam-AG towards transporters in rats than in
humans may have contributed to the late identification of
fasiglifam DILI risk (Otieno et al., 2018).

Differences in UGTs and SULTs also need to be considered
when studying drugs that undergo conjugation, since alterations
in both transport and metabolism can affect the observed
exposure of conjugated metabolites. In the case of fasiglifam,
lower formation of fasiglifam-AG in rats may have further
contributed to differences in observed DILI risk (Otieno et al.,
2018). Species differences in metabolism can also change the
overall disposition patterns. Maribavir, a novel agent for the
management of human cytomegalovirus infection, is primarily
metabolized via glucuronidation in non-human primates and
undergoes biliary excretion and enterohepatic recycling, whereas
only 20% of the dose is glucuronidated in human hepatocytes and
no direct glucuronides were found in human feces (Sun and
Welty, 2021).

Species differences in UGTs have been characterized (Oda
et al., 2015; Fujiwara et al., 2018). The UGT1A gene family is
mostly conserved among species and the isoforms are generally
expressed in the same tissues in humans and rodents, whereas
assigning orthologs of human UGT2 genes in other species is
more difficult. Even for UGT1As, it should be noted that Ugt1a8
and Ugt1a10 are not intestine-specific isoforms in mice as they
are in humans (Fujiwara et al., 2018). More importantly,
N-glucuronidation of tertiary amines is very low in mice and
rats (Kaivosaari et al., 2011). Most substrates that are metabolized

by human UGT1 isoforms in humans are also glucuronidated in
rodents, but the clearance may vary several fold. For instance, the
intrinsic formation clearance of furosemide-AG and naproxen-
AG are approximately 5-fold and 3-fold, respectively, in mice
compared to humans (Kutsuno et al., 2013). Conversely, MPA
glucuronidation occurs at a 5-fold rate in humans compared to
rat (Shiratani et al., 2008). Differences also exist for UGT2B7,
which catalyzes morphine glucuronidation in humans. In rats
and mice, morphine-3-G is formed at approximately 17- and 29-
fold higher rates, respectively, than in humans, whereas
morphine-6-G, which is formed in humans, could not be
detected in rats and mice (Soars et al., 2001; Shiratani et al.,
2008). Less data is available comparing SULT expression and
activity in preclinical species, but some evidence of differences
exists. For example, the O-demethyl phase I metabolite of
apixaban is sulfated in human S9 liver fractions with over 50-
fold higher rate than in rat and over 600-fold higher than in
mouse S9 fractions, whereas the sulfate formation rate was more
similar to humans in dogs and monkeys (Wang et al., 2009).

11 DISCUSSION

Phase II glucuronide and sulfate metabolites are typically less
active than their parent drugs, but these metabolites can still
contribute significantly to drug exposure, for instance through
enterohepatic recycling or DDIs, and may even cause toxicity.
Since transporters are vital determinants of the disposition of
poorly permeable phase II conjugates, it is important to
understand the interactions between transporters and these
conjugates. By characterizing the role of different transporters
and the sum of uptake and efflux transport across membranes,
the fate of a compound in the body can be explained (see Section
4). Despite increased study within the last decade, there are still
many unanswered questions regarding transport of sulfate and
glucuronide conjugates. Interactions with efflux transporters have
been better characterized than with uptake transporters, but there
are still many conjugates with a paucity of information regarding
both uptake and efflux. The large number of endogenous and
natural compound conjugates also identified in our literature
search further highlight the prevalence of interactions between
phase II conjugates and drug transporters (Supplementary
Table S1).

Among efflux transporters, BCRP, MRP2 andMRP3 appear to
have the most conjugate substrates, while P-gp, which transports
many parent drugs, does not seem to influence the disposition of
conjugates (Table 1). The relative transport activity of MRP2 on
the apical and MRP3 and OATP1Bs on the basolateral
membranes of hepatocytes appears particularly important for
determining the excretion routes for conjugated drugs. Even for
glucuronide conjugates undergoing biliary excretion, hepatic
uptake may be the rate-limiting factor, especially for
glucuronides formed in the intestine, such as ezetimibe and
raloxifene glucuronides (Oswald et al., 2008; Trdan Lušin
et al., 2012b). Due to the complex interplay between
metabolism and transport, alterations in transporter activity
can shift the excretion pathway and exposure of the parent
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drug and the metabolite, thereby affecting the safety and efficacy
of the drug.

The role of phase II metabolites in DDIs is poorly
characterized, partly since it can be difficult to distinguish the
role of inhibition by the conjugate versus the parent drug in the
clinical setting. Evaluating the likelihood of inhibition is
especially challenging for efflux transporters as inhibition is
likely related to intracellular concentrations, whereas uptake
transporter inhibition is typically driven by extracellular
(systemic) concentrations. Furthermore, both uptake and
efflux transporters may play a role in determining intracellular
concentrations of conjugates and may thus affect not only
transporter inhibition, but also the likelihood of inhibition of
metabolism. Conjugated drug metabolites may have been
overlooked as possible perpetrators for DDIs (Table 2),
particularly for renal uptake transporters, as a recent study
identified several drug conjugate inhibitors of OAT1 and
OAT3 (Zou et al., 2021). The clinical significance of this
in vitro OAT inhibition by conjugates remains to be
determined, but some conjugates have already been implicated
in clinical DDIs (Zamek-Gliszczynski et al., 2014; Patel et al.,
2016). Furthermore, endogenous glucuronide and sulfate bile
acid conjugates have in recent years received interest as
endogenous biomarkers for transporter inhibition in clinical
studies for identifying DDI risk (Section 6.3).

Overall, there are still many challenges to solve when
determining the mechanisms behind the disposition and effects
of phase II conjugates in the body. As the potential impact of
transporter interactions is recognized, the interactions of new drugs
and their conjugates with transporters are extensively studied.
However, the interactions and impact of conjugates of older
drugs, natural products and many other compounds with
transporters are unknown. In vitro studies can be used to
identify transporter substrates and inhibitors, but other methods
are needed in order to evaluate the in vivo impact. Due to the large
substrate overlap between transporters andmetabolic enzymes there
is a lack of specific inhibitors, biomarkers and probe substrates to use
for mechanistic in vivo studies. Although knockout animal models
are useful to elucidate transporter impact, they have significant

limitations due to species differences and compensatory changes in
transporter levels. Pharmacogenetic studies can also help to gain
mechanistic information on conjugate disposition, but should
ideally include genotyping of all relevant transporters instead of
focusing on a single pathway. Finally, physiologically-based
pharmacokinetic modeling has the potential to integrate
metabolism and transport data to elucidate their roles in
different tissues and predict conjugate disposition and tissue
concentrations even in complex cases, including e.g. those
involving enterohepatic recycling.

In conclusion, the number of identified interactions between
uptake and efflux transporters and phase II conjugates continues
to increase. This increased understanding of transporter
involvement will further improve our ability of predict drug
disposition and possible interindividual variability due to
intrinsic (e.g. genotype, disease) and extrinsic factors (e.g.
concomitant medication).
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