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Abstract: There are many reports on g-C3N4 nanosheet and BiOCl nanosheet, but few studies on
other morphologies of g-C3N4 and BiOCl. Herein, a g-C3N4 nanoball/BiOCl nanotube heterojunction
prepared by a simple one-step acetonitrile solvothermal method is reported. The XRD results prove
that the g-C3N4/BiOCl composites can be prepared in one step. SEM results revealed that the g-C3N4

was spherical and the BiOCl was tubular. The HRTEM results indicate that g-C3N4 has an amorphous
structure and that the (100) crystal plane of BiOCl borders the g-C3N4. Spherical g-C3N4 has a narrow
band gap (approximately 1.94 eV), and the band gap of g-C3N4/BiOCl after modification was also
narrow. When the BiOCl accounted for 30% of the g-C3N4/BiOCl by mass, the quasi-primary reaction
rate constant of RhB degradation was 45 times that of g-C3N4. This successful preparation method
for optimizing g-C3N4 involving simple one-step template-free synthesis may be adopted for the
preparation of diverse-shapes and high-performance nanomaterials in the future.

Keywords: template-free synthesis; one-step method; g-C3N4 nanoball; BiOCl nanotube; heterojunc-
tion; photocatalytic; solvothermal method

1. Introduction

Owing to sustained global population growth, industrialization is accelerating, re-
sulting in ongoing damage to natural and built environments. Environmental pollution,
the energy crisis, global warming, and other issues are seriously affecting the quality of
human life. An inexhaustible, clean, and pollution-free energy source, solar energy has
become a topic of significant interest in recent years. Photocatalysis is a low-cost technology
that converts solar energy into chemical energy and can be applied for the mitigation of
environmental pollution and the production of green energy [1–5].

Graphite phase C3N4 (g-C3N4) is an excellent photocatalytic material with a large
specific surface area and stable chemical properties. Its discovery has stimulated a wave
of research involving modification, doping, and compounding [6–12]. To date, the most
popular preparation method for g-C3N4 is high-temperature calcination. Most prepared
g-C3N4 exhibits a two-dimensional (2D) flaky morphology, and reported band gaps are
approximately 2.7 eV [13–15]. Preparation by low-temperature thermal polymerization is
less often reported. Three-dimensional (3D) spherical g-C3N4 can be prepared by a low-
temperature acetonitrile solvothermal method. It has a narrower band gap (approximately
2.0 eV) than the 2D flaky g-C3N4, which theoretically results in a wider range of visible light
response [16]. Furthermore, the low temperature solvothermal method affords a higher
yield. As a result, preparation by low-temperature thermal polymerization with spherical
structures endow g-C3N4 with great potential in environmental engineering applications
because of its easy recycling ability, optimized stability, and light utilization [17]. In view of
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the advantage that solvothermal method can prepare materials with diverse morphologies,
we want to prepare g-C3N4 composites with new and special morphologies and explore
their properties because the controlling morphology is considered as one of the preferred
strategies to further improve the photocatalytic activity of the catalyst [18–21]. For ex-
ample, the three-dimensional flower-like ZnO displayed four times higher activity than
the one-dimensional scale-like ZnO for the degradation of methylene orange [22]. More-
over, by tuning the crystalline phase and morphologies of BiVO4 crystal, Zhao et al. [23]
found that the photocatalytic water oxidation activity for the well-defined BiVO4 crystal
with monoclinic scheelite type can be 50 times of their regular tetragonal BiVO4 particles.
Therefore, it is our desire to choose a suitable method to regulate the morphology of the
catalyst to improve its photocatalytic activity. The one-pot method has a special reaction
system and a complicated reaction process, which makes it possible to prepare materials
with different morphologies compared with the traditional multistep method. Therefore,
in this study, we used a simple one-pot method to prepare a g-C3N4/BiOCl composites
heterojunction using Bi2O3 as the Bi source, cyanuric chloride and dicyandiamide as the
raw materials for g-C3N4 synthesis, and acetonitrile as the solvent to improve the visible
light response of globular g-C3N4 and its photocatalytic performance. The as-prepared g-
C3N4/BiOCl composites not only exhibit a new morphology (the BiOCl is tubular) but also
significantly enhanced photocatalytic activities for RhB degradation. Compared with the
g-C3N4/BiOCl that has already been reported [24], we found that g-C3N4/BiOCl with spe-
cial morphologies prepared by the one-pot method have a faster rate of degradation of RhB
and great convenience, which indicates that our method may have broader environmental
engineering application prospects.

2. Materials and Methods
2.1. Synthesis of Materials
2.1.1. Raw Materials

Cyanuric chloride, dicyandiamide, bismuth oxide (Bi2O3), acetonitrile, absolute ethanol,
deionized water, bismuth pentahydrate (Bi(NO3)3·5H2O), sodium chloride, rhodamine B
(RhB), and sodium hydroxide (NaOH) were used.

2.1.2. Synthesize of CB

g-C3N4/BiClO composites (denoted as CB) were prepared by a simple one-pot method
(Figure 1). In a typical synthesis, 1.38 g cyanuric chloride and 0.42 g dicyandiamide were
resolved in 30 mL of acetonitrile, and then added to a certain mass of bismuth oxide
(Bi2O3), making the mass of BiClO account for 0%, 10%, 20%, 30%, and 40% of the mass
of the composites. Then, the beaker was covered with plastic wrap and stirred at room
temperature for 6 h. Finally, the mixture was transferred to a 50 mL high-pressure reactor,
sealed in a stainless-steel hydrothermal reaction shell, and reacted at 180 ◦C for 24 h. The
resulting precipitate was washed several times with acetonitrile and ethanol, and then
dissolved in deionized water and adjusted to pH = 7 with sodium hydroxide. Then, the
sample was placed in an oven at 80 ◦C to dry for 12 h and were abbreviated as CB-X (X = 0,
1, 2, 3, and 4). The CB-0 is pure g-C3N4.

2.1.3. Synthesize of BiOCl

The BiOCl were synthesized by a simple solvothermal method. In a typical synthesis,
Bi(NO3)3·5H2O (4 mmol), NaCl (4 mmol), and deionized water (35 mL) were mixed by
vigorous stirring at ambient temperature for 6 h. Then, the above mixed solution was
transferred into a 50 mL Teflon-lined stainless-steel autoclave and heated at 180 ◦C for 24 h.
The samples were harvested by centrifugation, thoroughly washed with deionized water
and ethanol several times, and finally dried at 80 ◦C for 12 h.
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2.2. Characterization

The phase structure of the sample was characterized by XRD (D8ADVANCE-A25,
Bruker, Billerica, MA, USA), and the morphology of the sample was characterized by
field emission scanning electron microscopy (FEI Company, Hillsboro, OR, USA). The
crystal plane spacing and elemental distribution of crystals were analyzed by Talos F200X
FEI field emission transmission electron microscopy (ThermoFisher Scientific, Waltham,
MA, USA). The XPS (Axis Ultra DLD KRATOS, Manchester, England, UK) was used to
analyze the elemental composition and surface properties of materials. The UV-vis spectra
(UV-2600, Shimadzu, Kyoto, Japan) was used to calculate the band gap of materials. Time-
resolved fluorescence decay spectroscopy was measured using FLS1000 time correlated
single-photon counting system (Edinburg Instruments, Edinburgh, Scotland, UK). The
photoelectric properties of the samples were recorded in a standard three-electrode system
on a CHI 660E electro-chemical workstation (Shanghai, China). A 300 W Xe arc lamp
equipped with a 400 nm cut-off filter was used as the light source. Pt wire and Ag/AgCl
electrode were employed as the counter electrode and reference electrode, respectively. The
working electrode was obtained by deposition of as-prepared sample on 1 cm × 1 cm FTO
glass. All measurement was performed in 0.5 mol/L Na2SO4 aqueous electrolyte.

2.3. Photocatalytic Activity Experiment

The photocatalytic degradation experiment used a 300 W xenon lamp with a 420 nm
cut-off filter (260 mW cm−1). Condensed water was passed through the outer layer of the
beaker to ensure a constant temperature for the catalytic reaction. A certain weight of the
catalyst (23 mg) was added to the beaker with 50 mL of organic pollutant solution (10 mg/L).
Prior to illumination, the solution was magnetically stirred for 40 min in the dark to reach
the adsorption equilibrium between the catalyst and organic pollutants. A 3 mL sample of
the suspension was taken and centrifuged at given time intervals to measure the changes
in the pollutant concentration during light irradiation. The concentration of the RhB and
MO was measured with a UV-vis spectrophotometer at maximum absorption wavelength
(λ = 550 and 463 nm, respectively). The degradation rate (η) can be expressed as:

η = (C0 − Ct)/C0 × 100% (1)
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where η represents the degradation rate of dye; C0 represents the concentration of dye
solution after dark reaction; and Ct represents the concentration of dye solution at time t.

3. Results
3.1. Structure and Composition

Figure 2 shows the XRD patterns of the g-C3N4, BiOCl, and CB-3 heterojunction
catalysts. BiOCl has characteristic diffraction peaks at 11.98◦, 24.09◦, 25.86◦, 32.49◦, 36.54◦,
40.89◦, 46.63◦, 49.70◦, 54.09◦, 58.60◦, and 68.03◦ which are assigned to the (001), (002),
(101), (110), (003), (112), (200), (113), (211), (212), and (220) crystal planes, respectively. The
results were consistent with the BiOCl standard spectrum (JCPDS06-0249). For g-C3N4,
the strong diffraction peaks at 27.6◦ correspond to the (002) crystal planes of g-C3N4. For
CB-3, the (001), (101), (110), (112), (200), (211), (212), and (220) crystal planes belonging
to BiOCl can be observed, and the diffraction peak of the (110) plane is the strongest,
which is consistent with the TEM results (BiOCl grows on carbon nitride along the (110)
crystal plane). In contrast with those of the g-C3N4, the diffraction peak of the (002) crystal
plane for CB-3 shifted slightly from 27.6◦ to 27.3◦. The crystal plane spacing of the g-C3N4
increased according to the Bragg formula, owing to the BiOCl doped into the crystal planes
of the g-C3N4.
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Figure 2. XRD patterns of g-C3N4, CB-3 and BiOCl.

The chemical states of the g-C3N4 and CB-3 compositions were examined by XPS
analysis (Figure 3). C, N, O, and Cl were found on the surface of the g-C3N4 (Figure 3a).
The O was derived from the water adsorbed on the surface, and the Cl was derived from
the cyanuric chloride doped into the g-C3N4. Furthermore, C, N, Cl, O, and Bi appear in the
full spectrum of CB-3 (Figure 3a), and the peaks of N1s and C1s shifted to higher binding
energies than those of the g-C3N4. The increase in binding energy reflects a decrease in
electron cloud density, indicating that the C and N of the g-C3N4 interact with Cl and O,
which are more electronegative, and that g-C3N4 and BiOCl recombined successfully. For
g-C3N4, the high-resolution C1s spectrum can be fitted to three peaks (Figure 3e), which are
related to the extraneous carbon (284.80 eV), C–N bonds (286.34 eV), and sp2 C–C bonds in
the graphitic structure (288.28 eV). The N1s orbital can be fitted to two peaks with binding
energies of 398.74 and 400.23 eV (Figure 3f), which are ascribed to sp2 hybridized N atoms
in the triazine units (C=N–C) and tertiary nitrogen (N–(C)3), respectively [25–28]. For the
C1s and N1s of the CB-3, the peaks obtained from the fitting are consistent with those of
g-C3N4, and an increase in the binding energy can be observed (Figure 3e,f). Two different
peaks can be observed in the high-resolution Bi4f spectra (Figure 3b). The two intense peaks
at 159.0 and 164.3 eV are assigned to Bi 4f7/2 and Bi 4f5/2 [29], respectively. In Figure 3c,
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the two individual O1s peaks at 529.8 and 531.58 eV are ascribed to the lattice Bi-O and
the H2O adsorbed on the surface, respectively. In Figure 3d, the two peaks at 197.71 and
199.34 eV are ascribed to Cl 2p3/2 and Cl 2p1/2, respectively.
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3.2. Morphology

The morphology of g-C3N4 and CB-3 was investigated by SEM and TEM. The g-C3N4
prepared by the acetonitrile solvothermal method is mostly spherical (Figure 4a,b). The
reasons for the formation of spherical g-C3N4 may be that cyanuric chloride is insoluble in
acetonitrile, and the boiling point of acetonitrile is very low. In this homogeneous system,
flaky g-C3N4 can self-assemble into spherical g-C3N4 [30]. The morphology of CB-3 is
shown in Figure 4c,d and Figure 5d,e. The tubular BiOCl adheres densely to the spher-
ical g-C3N4, demonstrating that g-C3N4/BiOCl composites were prepared successfully
in one step, which is consistent with our interpretation of the XRD results. The TEM
images of pure g-C3N4 (Figure 5a,b) show that the g-C3N4 remained spherical and has a
diameter of 616 nm. However, flaky g-C3N4 was also observed, further demonstrating
that the spheres are self-assembled from flaky g-C3N4. In contrast, the HRTEM results
reveal an amorphous morphology [31] (Figure 5c). In addition, the HRTEM image of
CB-3 shows that the (110) crystal planes of BiOCl appeared to border the amorphous
g-C3N4 (Figure 5f), indicating that (110) crystal plane is the dominant exposed plane under
acetonitrile solvothermal conditions.
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EDS and elemental mapping best demonstrate the successful recombination of g-
C3N4 with BiOCl. Figure 6a shows that the material is composed of C, N, O, Bi, and
Cl, and the average atomic fraction of C/N/O/Bi/Cl is 44.64/39.20/7.13/5.65/3.38. The
elemental mapping (Figure 6b–g) of CB-3 reveals that Bi, O, and Cl are well dispersed
on the surface of g-C3N4, and Bi and O are somewhat clustered. These results prove that
the heterojunction was successfully formed [32]. Otherwise, by comparing the atomic
concentration determined by XPS with those obtained by EDS (Table 1), we think that
the organic matter and oxygen supported on the surface of the catalyst cause the atomic
fraction of the C and O to be slightly larger, respectively. The reason for the large atomic
fraction of Cl is that the Cl of the raw material (cyanuric chloride) is doped into the catalyst.
In addition, the weaker interaction of Bi and Cl may also lead to more point defects in
BiOCl [33], thus leading to an error in atomic fractions. Furthermore, it is worth mentioning
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that the presence of point defects can be used as the active site of the reaction, which may
be an important reason for enhancing photocatalytic activity.
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Table 1. Atomic concentration determined by XPS and EDS.

C (%) N (%) O (%) Cl (%) Bi (%)

EDS1 51.99 31.57 6.64 5.94 3.86
EDS2 39.48 41.77 8.21 5.62 4.92
EDS3 42.44 44.27 6.55 5.38 1.36

AVERAGE 44.64 39.20 7.13 5.65 3.38
XPS 39.83 36.88 10.76 7.73 4.80

3.3. Optical Properties

The optical properties of the samples were characterized by UV-vis spectra (Figure 7a).
The band gaps of the CB-X composites and BiOCl were estimated using the Tauc formula:

αhν = A
(
hν − Eg

)n/2 (2)

where α is the absorption coefficient, h is Planck’s constant, ν is the frequency of light,
and A is the proportionality constant. For indirect semiconductors, such as g-C3N4 and
BiOCl, n = 4 [34], and Eg is the sample band gap. BiOCl has a band gap of approximately
3.26 eV in Figure 7b. The absorption edge is approximately 380 nm, and it absorbs in the
ultraviolet range. The band gap of g-C3N4 prepared by calcination is approximately 2.7 eV
(the absorbing edge is approximately 460 nm) [35]. As shown in Figure 7c, the bandgap
energy of the g-C3N4 prepared by the solvothermal method is approximately 1.94 eV, and
the absorbing edge is expanded to 640 nm. Meanwhile, the band gaps of CB-X (X = 1, 2,
3, and 4) are 1.87, 1.83, 1.81, and 1.90 eV, respectively, and their absorption in the visible
light region is better than that of g-C3N4 and BiOCl. The time-resolved fluorescence spectra
of semiconductors can be used to study the lifetime, separation, and recombination of
photogenerated electron-hole pairs [36]. The fluorescence lifetime of the material can be
measured by the transient fluorescence spectra, and the average fluorescence lifetime of the
material was calculated using the following formula:

τ =
(

β1τ2
1 + β2τ2

2

)
/(β1τ1 + β1τ1) (3)
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Long average fluorescence lifetimes equate to long electron-hole lifetimes, and the elec-
trons and holes are well separated. Figure 7d shows the time-resolved fluorescence spectra
of CB-X (X = 0, 1, 2, 3, and 4) and BiOCl at an excitation wavelength of 486 nm. The average
fluorescence lifetimes of pure BiOCl and CB-0 are 2.48 and 6.04 ns, respectively. However,
the average fluorescence lifetime of the composite material CB-3 is as high as 8.52 ns, which
indicates that the electrons and holes in CB-3 are better separated. These results indicate
that heterojunctions suppress photogenerated electron-hole recombination successfully.

3.4. Photocatalytic Activity

The photocatalytic activity was measured by determining the efficiency of degrading
RhB and MO (Figure 8a–d). After irradiation with visible light for 60 min, the degradation
rate of RhB by CB-3 reached 93% and the degradation rates of RhB by CB-0 (g-C3N4) and
BiOCl under the same conditions were 10% and 38%, respectively. The photocatalytic
activity of the material significantly improved after the g-C3N4 was doped with BiOCl. To
compare the photocatalytic performance of these catalysts, the kinetics of photodegradation
were evaluated by applying the pseudo-first-order model:

− ln(Ct/C0) = kt (4)

where the k is the pseudo first-order rate constant, which represents the level of photocat-
alytic activity of the catalyst. The calculated rate constant of CB-3 is 0.045 min−1 (Figure 8b),
and the rate constants of CB-0 and BiOCl are 0.001 min−1 and 0.009 min−1, respectively.
The photodegradation rate of CB-3 is approximately 45 times higher than that of g-C3N4,
indicating that the photocatalytic performance of the composite is very good, which means
that the modification of one-step prepared g-C3N4 was very successful. In order to prove
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that the catalyst has a wide range of applicability, we additionally selected MO for degra-
dation, and the method of processing the data is the same as that described above. After
irradiation with visible light for 60 min, the degradation rate of MO by CB-3 reached 75%
and the degradation rates of MO by CB-0 and BiOCl under the same conditions were
only 20% and 30%, respectively. Otherwise, the apparent degradation rate constant at-
tains a maximum value of 0.01 min−1, which is 12 times higher than that of g-C3N4 (less
than 0.0008 min−1). The good stability and recyclability of the catalyst are necessary for
photocatalytic reactions. As shown in Figure 8c, after three cycles of photodegradation
of RhB and MO, the catalyst did not exhibit significant loss in activity. When the cycle
of photodegradation reaches 5 times, the photocatalytic effect of the catalyst is reduced,
but we believe that these losses are acceptable considering the loss in the catalyst and the
adsorption of contaminants. Suitable control experiments without the addition of photo-
catalysts was conducted to determine the adsorption equilibrium of the photocatalysts
and the effect of photolysis. The control experiments confirmed that the photocatalyst has
physical adsorption on organic dyes in the dark reaction stage, and also the irradiation
itself has no photolysis effect on the dyes.
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To show the advantage of g-C3N4 nanoball/BiOCl nanotube heterojunction, the ob-
tained results in this study have been compared with some reported catalysts in the liter-
ature [9,24,37–40], as summarized in Table 2. The most reported methods clearly require
long reaction time or high concentration of catalyst. The nanocomposites synthesized in
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this study can achieve high removal ratio at short reaction time, so the present method is
more suitable and superior.

Table 2. Comparison of catalytic activity of g-C3N4 nanoball/BiOCl nanotube heterojunction with
some reported catalysts in the degradation of organic dyes.

Catalyst Dyes Removal Ratio (%) Time (min) Dye (mg/L) Catalyst (g/L) Refs

g-C3N4/CdS/BiOCl RhB ~90 30 20 1 [9]
g-C3N4/BiOCl RhB ~90 150 20 1 [24]
g-C3N4/Bi2O3 RhB ~90 210 10 0.25 [37]
g-C3N4/BiOCl RhB ~90 50 10 0.46 In this study

Ag/g-C3N4 MO ~95 300 20 2 [38]
BiOCl/Bi12O17Cl2 MO ~70 300 10 0.6 [39]

Cu/g-C3N4 MO ~90 70 10 0.5 [40]
g-C3N4/BiOCl MO ~75 60 10 0.46 In this study

3.5. Photoelectric Properties

The interfacial charge transport process directly reflects the carrier transport capability
of photocatalytic materials to active sites [41]. The electrochemical properties of g-C3N4,
BiOCl and CB-3 were investigated by electrochemical impedance spectroscopy and tran-
sient photocurrent. As shown in Figure 9a, the impedance of CB-3 is significantly lower
than that of BiOCl and g-C3N4, indicating that the charge transfer resistance is low, which
is beneficial to the improvement of photocatalytic performance. The transient photocurrent
of CB-3 is larger (Figure 9b), which indicates that there are more surface electrons and
holes, and that it exhibits the best photoelectric performance, which is consistent with the
photocatalytic degradation results.
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3.6. Photocatalytic Mechanism

The energy band position of the semiconductors is an important thermodynamic
consideration for the photocatalytic activity. The VB-XPS in Figure 10a reveals the energy
difference between the maximum VB and EF [42]. The values for CB-3 and g-C3N4 are
1.82 and 1.95 eV, respectively. In Figure 10b, the Mott–Schottky plots reveal that the EF
values [43] for CB-3 and g-C3N4 are −0.84 and −1.17 eV (vs. Ag/AgCl), which are equal
to −0.64 and −0.97 eV (vs. NHE), respectively. Thus, the VB values for CB-3 and g-C3N4
are 1.18 and 0.98 eV, respectively, and the corresponding CB values can be calculated by
the formula:

ECB = EVB − Eg (5)
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Figure 10. (a) VB-XPS, (b) Mott-Schottky plots.

The Eg values for CB-3 and g-C3N4 are 1.81 and 1.94 eV, respectively, according to the
UV-Vis spectrum. As a result, the CB values for CB-3 and g-C3N4 are −0.63 and −0.96 eV,
respectively. The results indicate that the valence band of the CB-3 increased, and the higher
the VB top, the stronger the oxidation ability [44–47], which means that CB-3 exhibits better
degradation activity.

The plausible charge carrier transfer mechanism of the step scheme heterojunction is
depicted in Figure 11. The ECB and EVB of the BiOCl are 0.22 and 3.48 eV, respectively [48].
The BiOCl EVB potential (3.48 eV) is likely to be more positive than g-C3N4 (0.98 eV),
whereas the ECB of g-C3N4 (−0.96 eV) is likely to be more negative than BiOCl (0.22 eV). As
a result, the electrons and holes are successfully separated [49–51]. The former is transferred
to the CB of BiOCl, and the latter are transferred to the VB of the g-C3N4, which improves
the photocatalytic performance.
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4. Conclusions

A g-C3N4/BiOCl composite material comprising a mixture of spheres and tubes was
prepared by a one-step solvothermal method for the first time. The spherical g-C3N4
post BiOCl compounding demonstrated better photocatalytic activity than pure g-C3N4,
and the quasi-primary reaction rate constant of RhB degradation was 45 times that of
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g-C3N4. Moreover, it demonstrated reasonable stability after five cycles, which proves that
our low-temperature solvothermal method can successfully modify and optimize g-C3N4.
Meanwhile, the new and special morphologies, using the low-temperature solvothermal
method and the narrower band gap of catalysts, are desirable features that are likely
to inspire further development. In summary, this research offers a feasible strategy to
prepare diverse-shapes and high-performance catalysts for environmental protection and
energy production.
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