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Introduction
Glioblastoma multiforme (GBM) is the most common and 
aggressive primary brain tumor, with an annual incidence rate of 
2 to 3 per 10 000 in the United States and 3.19 per 10 000 
worldwide.1 Glioblastoma multiforme is a World Health 
Organization (WHO) grade IV astrocytoma of poor prognosis 
even with the best available multimodal therapies including sur-
gical resection, chemoradiotherapy, and radiosurgery. For 
patients with GBM, worsening of symptoms is often rapid. 
Glioblastoma multiforme tumors are infiltrative in nature and 
often cannot be detected until complete resection is impossi-
ble.2 Recently, advances have been made in identifying the 
genetic profile of glioblastomas. Many proteins produced by 
genes that are implicated in GBM pathogenesis can now be 

measured in brain tissues or blood serum.2 Although GBM 
biomarker research is still in its early stages, many promising 
biomarkers have been identified in recent years. In conjunction 
with other clinical data (eg, clinical risk factors and neuroimag-
ing modalities such as magnetic resonance imaging), these bio-
markers could contribute to the clinical management of GBM 
by helping classify tumors, assess treatment responses, and make 
better prognoses. The US National Institutes of Health (NIH)-
sponsored The Cancer Genome Atlas (TCGA) project has cre-
ated a comprehensive genetic profile for a variety of cancer 
types, including brain, lung, and colon. Glioblastoma multi-
forme was the first cancer to be systematically studied by 
TCGA. TCGA data set includes not only a vast amount of 
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gene-related biomarkers measurements but also patients’ clini-
cal risk factors and survival status. This data set provides us with 
opportunities not only to detect new prognostic biomarkers but 
also to assess prognostic performance of the biomarkers.

To evaluate the prognostic performance of new biomarkers, 
investigators often apply regression models (eg, Poisson regression, 
logistic regression, and Cox regression) to relate a biomarker with 
disease or survival events based on parameters such as relative risk, 
odds ratio, and hazard ratio. These statistical models can test the 
association between a biomarker and the risk of a disease or sur-
vival event. Most previous studies on GBM biomarkers investi-
gated the biomarker effect on patients’ overall survival (OS). A few 
of them were trying to establish prediction models for OS using 
biomarkers as the predictor variables. Although studies of associa-
tions are usually adequate in etiologic research, they do not exam-
ine the prognostic ability of biomarkers to correctly predict OS in 
the future. To assess biomarkers for their classification accuracies, 
a receiver operating characteristic (ROC) curve is commonly used 
by plotting pairs of sensitivity and specificity across all possible 
classification thresholds. Traditional ROC curves evaluate bio-
markers with a continuous distribution for classifying dichoto-
mous status, such as diseased versus nondiseased or alive versus 
dead. The Supplemental Method section within the Supplemental 
Material provides the definition of sensitivity and specificity, as 
well as a detailed description on how a traditional ROC curve can 
be generated based on the biomarker distributions among dis-
eased and nondiseased subjects. Because an ROC curve is a plot 
across all possible decision thresholds within the range of the bio-
marker values, it does not require specification of threshold val-
ues.3 Area under the ROC curve (AUC) is often used to assess the 
overall diagnostic performance of biomarkers.4

For prognosis of future disease or survival events, however, 
we often need to consider timing of the disease development. A 
patient with cancer who is currently alive may die in either the 
near future or the far future. Therefore, prognosis of a disease or 
disease-related outcomes, such as OS, progression-free survival, 
and treatment responses, often needs to deal with a time-vary-
ing process. Statistical methods for survival (or time-to-event) 
analysis can evaluate the prognostic importance of a biomarker 
through its effect on the disease or survival event. For example, 
Cox proportional hazards models can estimate the hazard ratio 
associated with one unit increase in the biomarker value if the 
biomarker value has a continuous distribution or the hazard 
ratio comparing the positive and the negative test results when 
marker values are dichotomized. For prognosis of OS, the mor-
tality status for a given patient will vary across the whole follow-
up period. For this reason, the prognostic accuracies (sensitivity, 
specificity, and AUC) of a biomarker will be time dependent. 
The traditional ROC analysis will no longer be appropriate 
under this situation. In addition, the OS time is often subject to 
censoring, and removing censored subjects from the study can 
often lead to biased estimates of sensitivity and specificity. To 
accommodate the problem, the time-dependent ROC method 
was developed to assess the accuracies of a baseline biomarker 

for prognosing of a future event, such as OS. For instance, to 
assess the performance of a biomarker for prognosing OS by 
24 months after GBM diagnosis, we can plot the time- 
dependent ROC curves and obtain the AUC as well as the sen-
sitivity and specificity at a given threshold. Hu and Zhou5,6 
summarized recent statistical methods in time-dependent ROC 
analysis, including works by Etzioni et al,7 Heagerty et al,8 
Heagerty and Zheng,9 Cai et al,10 and Song and Zhou.11

In prognosis studies, patients are monitored until (a) they 
reach the event of interest (such as disease diagnosis or death), 
(b) they drop off the study, or (c) the end of the study. The time 
interval from baseline to event occurrence is called an event 
time, whereas the time interval from baseline to loss of follow-
up or to the end of the study is called a censoring time. For a 
baseline biomarker Y, Heagerty et al8 proposed 2 types of time-
dependent sensitivity or true-positive rate (TPR), the cumula-
tive TPR and the incident TPR, as well as the dynamic 
specificity, or true-negative rate. Based on the 2 kinds of time-
dependent TPR, 2 types of time-dependent ROC curves are 
defined as follows: (a) ROC curve of a biomarker Y at time t 
based on the cumulative TPR and the dynamic specificity, 
denoted by ROCC/D(Y; t) and (b) ROC curve of the biomarker 
Y at time t based on the incident TPR and dynamic specificity, 
denoted by ROCI/D(Y; t). The definitions of time-dependent 
TPRs, specificity, and ROC curves (Figure S1 in the 
Supplemental Methods) as well as interpretation of the time- 
dependent ROC curves can be found from the Supplemental 
Method section within the Supplementary Material.

Evaluating prognostic accuracies is an important aspect of 
studying GBM biomarkers that has not been discussed in the 
literature. In this study, we use both ROCC/D(Y; t) and  
ROCI/D(Y; t) to evaluate biomarkers for prognosis of cumula-
tive and incident OS events by or at a series of time points (15, 
24, 33, and 42 months since GBM diagnosis). The biomarkers 
that we evaluated in this study were identified by the previous 
literature, and the values of these biomarkers for patients with 
GBM can be obtained directly from TCGA data set.

Materials and Methods
Data collection

The Cancer Genome Atlas Project provides data from more 
than 500 GBM cases as of 2015. TCGA data set can be easily 
accessed from its Web page: https://gdc.cancer.gov. In this 
study, we assessed the prognostic performance of the several 
promising candidate biomarkers and gene signatures reported 
in the literature.12–17 Some previous research using TCGA data 
set reported the results of genomic and transcriptomic analysis 
of 206 GBM cases with about 600 genes.18 The SAMSAN1 
gene was identified as an important factor for OS among 
patients with GBM from another study using TCGA data.12 In 
addition, by running a Cox regression model using TCGA data, 
Bao et al13 found that 4 gene signatures (“5-gene,” “8-gene,” 
“17-gene,” and “61-gene” signatures) were associated with OS. 

http://journals.sagepub.com/doi/suppl/10.1177/1176935117734844
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Mir21 and Mir222 were reported to be significantly associated 
with OS by Rao et al.14 In addition, MGMT methylation has 
also been intensively studied in the recent neuro-oncology lit-
erature. Thus, we chose to evaluate 2 microRNAs (miRNAs) 
(Mir21 and Mir222), 1 gene expression (SAMSN1), 4 gene sig-
natures (gene signature based on 5, 8, 17, and 61 genes identi-
fied by Bao et al),13 as well as the MGMT methylation.

We downloaded the miRNA expression microarray data 
and the messenger RNA (mRNA) expressions (level 3) of 
GBM samples without specifying any other conditions. The 
gene expressions of SAMSN1 (level 3) were based on 
Affymetrix microarrays (Human gene U133A). Our analytical 
data set was obtained by merging TCGA survival and clinical 
data with the patient-level biomarker data.

Statistical analysis

Patients’ characteristics were summarized as mean ± standard 
deviation for nonskewed continuous variables and as frequency 
(N) and percentage (%) for categorical variables. The Kaplan-
Meier survival function and smoothed hazard rate were plot-
ted. The OS event time is defined as the time interval between 
GBM diagnosis and mortality and is calculated in terms of 
months. Overall survival times are censored at either the loss to 
follow-up or the end of the study (the end of 2015).

Statistical methods have been developed to perform time-
dependent ROC analysis. Hu and Zhou5 reviewed the recent 
statistical development in this area. The time-dependent ROC 

approach developed by Song and Zhou11 was selected (see the 
“Discussion” section for the reason for this choice). The AUC 
was used to evaluate the overall prognostic performance of the 
biomarkers. For Mir21, Mir222, SAMSN1, and MGMT 
methylation, we evaluated the prognostic accuracy for these 
biomarkers and the predicted scores that combine each of these 
biomarkers with either age or Karnofsky Performance Score 
(KPS), the 2 important clinical risk factors reported in litera-
ture. To obtain the predicted risk scores, multivariable Cox 
regression models were generated, and the predicted scores 
were calculated using the weighted combination of the bio-
marker value and one of the clinical risk factors (age or KPS). 
To evaluate the prognostic accuracy of 4 gene signatures, the 
risk scores of gene signatures for each patient based on 5, 8, 17, 
and 61 genes were calculated using the linear combination of 
the gene expression level weighted by the regression coeffi-
cients reported in Table 1 (log of hazards ratios) of Bao et al.13

The Harrell C statistic19 was used to estimate overall con-
cordance between the OS time and each of the biomarkers 
described above. All statistical analyses were performed using 
statistical package R (www.r-project.org) versions 3.1 to 3.3 
(for time-dependent ROC analyses, with code written by 
N.H.) and Stata (Stata Corp., College Station, TX, USA) ver-
sion 14 (for all other analyses).

Results
Table 1 reports the demographic features of our study cohort. 
Our raw data set includes 584 patients with GBM, of which 3 

Table 1.  Demographic and clinical characteristics of all patients in the analytical data set and by survival status.

Variable Total (n = 584) Alive (n = 138) Dead (n = 443) P value

Sex Female 225 (38.6) 56 (40.6) 169 (38.1) .556a

Male 358 (61.4) 82 (59.4) 274 (61.9)  

Race Missing 25 (4.3) 5 (3.6) 20 (4.5) .115a

Asian 13 (2.2) 7 (5.1) 6 (1.4)  

Ethnicity Black or African American 40 (6.9) 13 (9.4) 27 (6.1)  

White 505 (86.6) 113 (81.9) 390 (88)  

Hispanic or Latino 13 (2.2) 4 (2.9) 9 (2)  

Not Hispanic or Latino 477 (81.8) 109 (79) 368 (83.1)  

Not available 93 (16.0) 25 (18.1) 66 (14.9) .052a

Histologic type GBM 18 (3.1) 1 (0.7) 17 (3.8) .159a

Treated primary GBM 20 (3.4) 2 (1.4) 18 (4.1)  

Untreated primary (de novo) GBM 545 (93.5) 135 (97.8) 408 (92.1)  

Age (mean ± SD) 57.9 ± 14.4 56.5 ± 14.7 58.3 ± 14.3 .203b

Karnofsky Scores (mean ± SD) 77.4 ± 14.6 78.6 ± 15.1 77 ± 14.4 .338b

Data are reported as count (%) unless otherwise indicated.
aUsing Fisher’s exact test.
bUsing two-sample Student’s t test.

www.r-project.org
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subjects were missing information on OS status and were 
excluded from all analyses related to survival. The mean age of 
the 584 patients was 57.9 ± 14.4 years, and their mean KPS was 
77.4 ± 14.6. Our analytical cohort includes 581 patients with 
observed OS status, of which 138 subjects were alive and 443 
patients were dead at the end of the follow-up period. Most of 
the patients (359 patients, 61.4%) were men. About 87% 
(N = 505) of the patients in our analytical cohort were white, 
7% (N = 40) were black, and 2% (N = 13) were Asian. About 
94% (N = 545) of these patients had untreated primary (de 
novo) GBM and 3% (N = 20) had treated primary disease. The 
median OS time was 14 months (Figure 1). The hazard rate 
function has 2 local peaks at around 20 and 90 months before it 
eventually rises toward the end of the study follow-up time 
(Figure S2 in the Supplemental Results).

MicroRNAs

A total of 565 patients within our analytical cohort had measure-
ments of Mir21 and Mir222. The Harrell C statistic for Mir21 
and Mir222 was 54% and 56%, respectively. For both Mir21 and 
Mir222, when a clinical risk factor (either age or KPS) was 
included in the predicted risk score (as the classifier), the overall 
concordance (the Harrell C) rose. The Harrell C statistic of 
Mir21 increased to 66% and 62% when age and KPS, respectively, 
were involved. For Mir222, the Harrell C value increased to 66% 
and 64% when age and KPS were involved, respectively.

Figure 2 shows the time-dependent ROC curves, ROCC/D(Y; 
t) (panel A) and ROCI/D(Y; t) (panel B), of Mir21 (denoted by Y 
in ROC curve notations) for prognosing OS events by or at 
t = 15, 24, 33, and 42 months. The ROC curves for predicted risk 
scores combining Mir21 with clinical risk factors (age or KPS) 
were also shown in the plot. The overall accuracy of Mir21 for 
prognosing cumulative OS events by 15 months was 0.539 and 
increased gradually to 0.566 by 42 months. When age was 
included in the predicted risk score, AUC for prognosing cumu-
lative OS events increased to 0.688 and 0.756 by 15 and 

42 months, respectively. When KPS was included in the progno-
sis, the overall performance also improved but not as much as the 
predicted risk score that included age as a clinical risk factor. 
When prognosis of incident OS events was considered, AUC for 
Mir21 was around 0.530 at all of the 4 time points. When age 
was included in the predicted score, the AUC increased to 0.629, 
0.611, 0.602, and 0.598 at 15, 24, 33, and 42 months, respectively. 
When KPS was included in the predicted score, there was also 
an increase in AUC, although the improvement was much 
smaller than when age was incorporated. Figure 3 shows the 
time-dependent AUC of Mir21 based on ROCC/D(Y; t). The 
AUCs for Mir21 and the 2 predicted risk scores all increased 
from baseline toward month 60. For example, for AUC of the 
age-involved predicted risk score increased from 0.58 at baseline 
to 0.79 by month 60. The time-dependent AUC curve based on 
ROCI/D(Y; t) can be found from Figure S3  in the Supplemental 
Results. Figure 4 plots the time-dependent ROC curves of 
Mir222. For prognosis of cumulative OS events, the AUC of 
Mir222 was 0.597, 0.625, 0.648, and 0.664 by 15, 24, 33, and 
42 months, respectively. However, the AUC of Mir222 for prog-
nosing incident OS events at these time points was 0.574, 0.574, 
0.575, and 0.575, respectively. When age or KPS was included in 
the classifier, AUC for both ROCC/D(Y; t) (panel A) and ROCI/

D(Y; t) (panel B) went up, whereas the predicted risk score incor-
porating age increased more dramatically. Figure 5 plots the 
AUC of Mir222 based on ROCC/D(Y; t). When using Mir222 
expression as the classifier, AUC for prognosing cumulative OS 
events increased gradually from 0.550 at the beginning to 0.680 
by 60 months. When age was included in the predicted risk 
score, the AUC increased from 0.660 to 0.760 by 60 months. 
When KPS was involved in the predicted risk score, the AUC 
ranged from 0.610 to 0.670. It is interesting to note that, after 
about 30 months, the AUC of Mir222 expressions was greater 
than that of the predicted score combining Mir222 and KPS. 
The time-dependent AUC based on ROCI/D(Y; t) can be found 
from Figure S4 in the Supplemental Results section.

SAMSN1 expression

A total of 524 patients had SAMSN1 gene expressions 
recorded in TCGA. We calculated overall concordance (the 
Harrell C) of OS time with SAMSN1 expression as well as OS 
time with the predicted risk scores involving SAMSN1. Overall 
concordance between OS and SAMSN1 was only 51%. When 
KPS was included in the predicted risk score, the Harrell C 
increased to 61%. When age was involved in the prognosis, the 
C statistic increased to 66%.

Figure 6 plots the time-dependent AUCs of SAMSN1 
based on ROCC/D(Y; t). The ability of SAMSN1 expression to 
predict cumulative OS events was very limited, with AUC 
ranging from 0.54 to 0.60. When age was included in the pre-
dicted risk score, AUC for prognosing cumulative OS events 
increased gradually from 0.66 to 0.80 by month 60. When KPS 
was involved in the prognosis, the AUC was between 0.60 and 

Figure 1.  Kaplan-Meier product-limit survival curve of overall survival 

among all patients with GBM in The Cancer Genome Atlas. The median 

survival time among these patients is about 14 months. GBM indicates 

glioblastoma multiforme.

http://journals.sagepub.com/doi/suppl/10.1177/1176935117734844
http://journals.sagepub.com/doi/suppl/10.1177/1176935117734844
http://journals.sagepub.com/doi/suppl/10.1177/1176935117734844
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0.65. The time-dependent ROC curve of SAMSN1 expres-
sions is presented in Figure S5 in the Supplemental Results. 
For prognosing OS by 24 months, the SAMSN1 expression 

can achieve an AUC of 0.563. When age or KPS was included 
in the predicted risk score, the AUC was 0.716 and 0.615, 
respectively.

Figure 2.  Time-dependent ROC curves of Mir21 based on (A) ROCC/D(Y; t) and (B) ROCI/D(Y; t) by or at 15, 24, 33, and 42 months. AUC indicates area 

under the ROC curve; KPS, Karnofsky Performance Score; ROC, receiver operating characteristic; TPR, true-positive rate.

http://journals.sagepub.com/doi/suppl/10.1177/1176935117734844
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Gene signatures

A total of 540 patients were included in analysis of the 4 gene 
signatures reported by Bao et al.13 All of these 4 gene signa-
tures were statistically significantly associated with OS (log 
rank test P < .05 for all gene signatures). Our analysis showed 
that among the 4 gene signatures, the 8-gene signature had the 
best prognostic performance. For prognosis of cumulative OS 
events by 24 months, the 8-gene signature attained an AUC of 
0.613, whereas the AUCs for the 5-gene, 17-gene, and 61-gene 
signatures were 0.571, 0.594, and 0.594, respectively (Time-
dependent ROC curves are presented in Figure S6 in the 
Supplemental Results). The time-dependent AUC based on 
ROCC/D(Y; t) is shown in Figure 7. For prognosis of cumulative 
OS events by 60 months, the 8-gene signature had the largest 
AUC (0.670) among the 4 gene signatures. In comparison, the 
AUC for both the 17-gene and 61-gene signatures was 0.650. 
The 5-gene signature had an AUC of 0.610.

MGMT methylation

A total of 567 subjects from TCGA were included in analysis of 
MGMT methylation. Figure S7 (in the Supplemental Results) 
plots the time-dependent ROC curves of MGMT methylation 
based on both ROCC/D(Y; t) and ROCI/D(Y; t). Similar to other 
single biomarkers, MGMT methylation had a limited ability to 
predict both cumulative and incident OS events. For short-term 
prognosis of cumulative OS events, the AUC was 0.528 and 
0.551 by 15 and 24 months, respectively. For long-term progno-
sis, the AUC increased to 0.562 and 0.567 by 33 and 42 months, 
respectively. When age was involved in the prognosis, the AUC 

for prognosing cumulative OS events increased dramatically to 
0.704, 0.729, 0.754, and 0.766 by 15, 24, 33, and 42 months, 
respectively. When KPS was involved, the AUC at all of the 
above time points was between AUC of MGMT methylation 
and that of predicted risk score combining MGMT with age. 
As for prognosis of incident OS events, the performance of 
MGMT methylation across the 4 time points varied little. 
However, when age or KPS was incorporated in the prognosis, 
the short-term prognostic performance at 15 and 24 months 
was much better than the long-term performance.

Discussion
Glioblastoma multiforme is the most aggressive and malig-
nant type of glioma. Despite improved medical interventions 
including radiation, chemotherapy, and surgery, the median 
survival time of GBM is very low. In our study cohort, the 
median OS time is only 14 months, which is consistent with 
the 14.6-month median survival reported by Salcman.20 
Detection of new biomarkers or genetic signatures is crucial to 
improve accuracies for GBM prognosis. In this research, we 
evaluated the performance of miRNAs, gene expression, gene 
signatures, and gene methylation for prognosing cumulative 
and incident OS events using time-dependent ROC curves.

Currently, the role of single miRNAs for prognosis among 
patients with GBM is poorly understood. MicroRNAs usually 
function as small noncoding RNAs that potentially increase 
the instability and may limit translation of target mRNAs.21 
They are significant genetic regulators and play a very impor-
tant role in pathogenesis, development, and prognosis of GBM 
as well as of other cancers.22 It has been proven that miRNAs 
are expressed differently among patients with GBM. Previous 
studies have also shown significant prognostic importance of 
mRNAs on OS.12 As a single miRNA, Mir21 has been widely 
involved in the regulation of GBM.23 Studies have shown that 
Mir21 is expressed at higher levels in GBM cell lines as com-
pared with normal cells. A high level of Mir21 was found to be 
significantly associated with shorter survival time.24 The 
miRNA Mir222 is directly associated with the grades of GBM 
and is targeted at the important cell cycle regulator, p27/KIP1. 
By inhibiting Mir222, researchers have shown that p27/KIP1 
expression was upregulated and this resulted in a decline of 
tumor volume.23 Our study on prognostic accuracy, however, 
showed that single miRNAs have a very limited ability for an 
accurate prognosis of cumulative and incident OS events. For 
instance, the time-dependent AUC of Mir21 for prognosing 
cumulative OS was always lower than 0.60 within the first 
60 months of follow-up.

The neuro-oncology literature reported that the SAMSN1 
gene is overexpressed in glioblastoma tumors when compared 
with normal brain cells. A high expression of SAMSN1 indi-
cates an unfavorable outcome of GBM in OS. Yan et al12 
reported that the median OS time was 11 months among 
patients with GBM with high SAMSN1 expression and about 
15 months among subjects with low SAMSN1 expression. 

Figure 3.  Time-dependent AUC of Mir21 based on ROCC/D(Y; t). AUCs 

were calculated up until 5 years (60 months) after diagnosis. The 

Mir21 + age classifier has the best overall accuracy (largest AUC) to 

prognose cumulative overall survival events over the entire 60-month 

period, followed by the Mir21 + KPS classifier. AUC indicates area under 

the ROC curve; GBM, glioblastoma multiforme; KPS, Karnofsky 

Performance Score; ROC, receiver operating characteristic.

http://journals.sagepub.com/doi/suppl/10.1177/1176935117734844
http://journals.sagepub.com/doi/suppl/10.1177/1176935117734844


Hu et al.	 7

However, our study showed that when SAMSN1 expression 
was used on its own as a biomarker for prognosis, its ability is 

also limited. For prognosing cumulative OS events by 
15 months, the AUC for SAMSN1 was only 0.549.

Figure 4.  Time-dependent ROC curves of Mir222 based on (A) ROCC/D(Y; t) and (B) ROCI/D(Y; t) by or at 15, 24, 33, and 42 months. AUC indicates area 

under the ROC curve; KPS, Karnofsky Performance Score; ROC, receiver operating characteristic; TPR, true-positive rate.
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Previous studies reported that certain gene signatures were 
significantly associated with OS among patients with GBM. Bao 
et al13 identified 4 gene signatures using a risk prediction model. 
Then, a cutoff value (median risk score for each signature) was 

used to divide patients into high-risk and low-risk groups. The 
authors showed that the median OS among the high-risk group 
was significantly shorter than that among the low-risk group.13 In 
our study, among the 4 gene signatures, the 8-gene signature per-
formed the best when prognosing both cumulative and incident 
OS events.

Our study showed that clinical risk factors (such as age and 
KPS) could play an important role in prognosing OS events 
among patients with GBM. Age and KPS are 2 strong known 
clinical risk factors that can influence OS among patients with 
GBM and are reported in TCGA data. Previous studies showed 
statistically significant negative relationships between age and 
the OS of GBM.25,26 That is, older ages are associated with a 
higher risk of mortality among patients with GBM. Using 
40 years as the age cutoff, Walid26 showed that the 5-year sur-
vival rate among patients with GBM younger than 40 years of 
age was 5.67 times the rate for patients at 40 years of age and 
older. Previous literature also revealed that patients with GBM 
with KPS less than 80 and more than 40 years of age had the 
worst survival rate.27 This implies that age and KPS may pre-
dict OS of patients with GBM. Our study showed that involv-
ing age or KPS as a clinical risk factor can improve the 
prognostic accuracy of biomarkers and gene signatures. When 
age was combined with Mir21, Mir222, or SAMSN1, the 
prognostic performance usually improved dramatically. For 
example, when prognosing cumulative OS events by 24 months, 
the AUC for SAMSN1 expression was only 0.563, but when 
age was involved, the AUC increased to 0.716. Our time-
dependent ROC results for each biomarker, each biomarker in 
combination with age, and each biomarker in combination 

Figure 5.  Time-dependent AUC of Mir222 based on ROCC/D(Y; t). AUCs 

were calculated up until 5 years (60 months) after diagnosis. The 

Mir222 + age classifier has the best overall accuracy (largest AUC) to 

prognose cumulative overall survival events over the entire 60-month 

period. There is a crossover between the time-dependent AUC curve for 

Mir222 and Mir222 + KPS. This indicates that during the earlier follow-up 

period (~<30 months), incorporating KPS in the prognosis will result in 

better prognostic accuracies than only using the Mir222 expression; 

however, for prognosis after 30 months, including KPS will not improve 

the overall prognostic performance. AUC indicates area under the ROC 

curve; GBM, glioblastoma multiforme; KPS, Karnofsky Performance 

Score; ROC, receiver operating characteristic.

Figure 6.  Time-dependent AUC of SAMSN1 based on ROCC/D(Y; t). 

AUCs were calculated up until 5 years (60 months) after diagnosis. The 

SAMSN1 + age classifier has the best overall accuracy (largest AUC) to 

prognose cumulative overall survival events over the entire 60-month 

period, followed by the SAMSN1 + KPS classifier. AUC indicates area 

under the ROC curve; GBM, glioblastoma multiforme; KPS, Karnofsky 

Performance Score; ROC, receiver operating characteristic.

Figure 7.  Time-dependent AUC of 4 gene signatures reported by Bao  

et al13 based on ROCC/D(Y; t). The 8-gene signature has the best overall 

accuracy (largest AUC) to prognose cumulative overall survival events 

over the entire 60-month period. The performance of the 17-gene and 

61-gene signatures is similar as the time-dependent ROC curves for 

them are close to each other over the 60-month period. AUC indicates 

area under the ROC curve; GBM, glioblastoma multiforme; KPS, 

Karnofsky Performance Score; ROC, receiver operating characteristic.
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with KPS provide researchers with an easy way to assess how 
much increment in AUC the clinical risk factors can cause. We 
also performed time-dependent ROC analysis on biomarkers 
in combination with both KPS and age. For all of the biomark-
ers and gene signatures being considered in this study, the 
prognostic performance is very close to the predicted score 
with only age included as the risk factor. This indicated that 
incorporating KPS in the predicted risk score based on age and 
the biomarker (or gene signature) does not further improve the 
overall prognostic accuracy. Sex and race are other demographic 
features recorded in TCGA data. We also investigated the 
impact of these 2 variables on prognostic accuracies, but none 
of them further improved the prognostic accuracies for all bio-
markers and gene signatures being considered in this study.

Our analytical results showed that time-dependent AUCs 
based on ROCC/D(t) increased over the follow-up period (Figures 
3, 5 to 7), so these AUCs were often greater at later time points 
than at earlier time points. Theoretically, the number of events is 
monotone nondecreasing under the cumulative events setting. 
Hence, there will always be more OS events at the later follow-up 
stage. When a biomarker is associated with the OS events, there 
will be a growth in both cumulative event rate conditional on 
positive test results and the survival rate conditional on negative 
test results. This, in turn, will elevate both sensitivity and specific-
ity at the same positivity threshold. However, under the setting of 
incident events, the local estimate of the hazard rate has a large 
impact on the prognostic accuracies. Hence, even when a bio-
marker is associated with the OS events, the time-dependent 
AUC curve will not have a monotone trend over time. Moreover, 
it may have a drastic local fluctuation (Figures S3 and S4).

Time-dependent ROC analysis provides investigators with 
a way for prognosing both short-term and long-term survivor-
ship. For prognosis of high-grade brain tumors, such as GBM, 
24 months is often used as a threshold to classify the survivor-
ship into short term and long term. The short-term 
(≤24 months) prognostic performance of biomarkers could be 
quite different from their long-term (>24 months) prognostic 
performance. Understanding long-term survivorship in GBM 
is a critical unmet need in neuro-oncology. Examining the 
prognostic performance by 33 or 42 months is a way to evaluate 
potential biomarkers and gene signatures that would predict 
long-term survivorship.

Time-dependent AUC is a good summary measure to com-
pare the time-dependent prognostic performance among differ-
ent biomarkers or predicted risk scores. For example, Figure 5 
shows an obvious crossover between the time-dependent AUC 
curve for Mir222 expression and for Mir222 together with 
KPS. This indicates that at the earlier follow-up period (up 
until about 30 months), incorporating KPS in the prognosis will 
result in better prognostic accuracies than using only the Mir222 
expression. However, involving KPS cannot improve the overall 
prognostic performance after 30 months. In addition, the AUC 
for Mir222 expression increased more dramatically than that 
for Mir222 expression over the entire 60-month period.

Methodologically, the goal of our study is to demonstrate how 
to apply the time-dependent ROC analysis to evaluate perfor-
mance of biomarkers for prognosing cumulative or incident OS 
events at different time points. Pepe et al28 suggested that 2 basic 
statistical approaches can be used to evaluate biomarkers. The 
first method is to model the risk of disease (or disease outcome 
such as survival) as a function of biomarkers with other predictors 
using logistic or Cox regression. Using this approach, the value of 
a biomarker is measured by its effect on OS conditional on other 
predictors. Pepe et al28 pointed out that this method is adequate 
in etiologic research but does not address the ability of biomark-
ers to correctly classify or predict risk for the study population. 
The second method evaluates biomarkers with measures such as 
sensitivity, specificity, predictive values, and ROC curves. There is 
controversy about which approach is more appropriate. Moons 
and Harrell29 claimed that risk models are much better because 
ultimately the patients want to know the risk of a disease given 
their biomarker measurement. Pepe et al30 argued, however, that 
the public health value of a biomarker lies in the fraction of dis-
eased subjects being detected (ie, sensitivity) and the fraction of 
nondiseased subjects falsely identified as diseased (ie, 1—specific-
ity). The difficulty lies in the fact that these 2 approaches fre-
quently yield apparently contradictory results. A biomarker that is 
strongly related to risk may be a poorly performing classifier.30 A 
biomarker that is a strong risk predictor after controlling for other 
factors may add little to classification performance. Our study 
showed that both SAMSN1 and MGMT methylation have very 
limited ability for prognosing OS events, although the literature 
shows both are highly associated with OS of patients with GBM. 
For this reason, we believe that it is necessary to investigate the 
prognostic accuracy for biomarkers in addition to the prognostic 
importance based on regression coefficients from risk models. 
This warrants consideration for future studies on prognostic 
accuracies of GBM biomarkers. In this work, we used the analyti-
cal method proposed by Song and Zhou11 because this approach 
was shown to be the most efficient among several influential 
time-dependent ROC methods evaluated by Pepe et al.31

For assessing concordance of a biomarker with an event 
time outcome, the Harrell C statistic is often adopted. The 
Harrell C statistic for right censored time-to-event data is the 
conditional probability of concordance plus half the condi-
tional proportion of data pairs that are neither concordant nor 
discordant. The benefit of the time-dependent ROC method 
over the Harrell C statistic lies in the way the time-dependent 
ROC method handles censoring. Time-dependent ROC 
curve methods often use time-to-event models for estimating 
conditional survival functions, and time-to-event models were 
developed specifically for dealing with censored time-to-event 
data. For this reason, time-dependent ROC curves should be 
more reliable and accurate when evaluating prognostic abili-
ties of biomarkers. In addition, time-dependent ROC curves 
can estimate sensitivity and specificity at each time point of 
interest within the study period, whereas the Harrell C can 
only provide an overall concordance across the entire period.
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A couple of alternatives to ROC curves and AUCs have 
been proposed to evaluate diagnostic tests in a more clinically 
meaningful way. For example, Halligan et al32 proposed the 
net benefit as a measure to evaluate radiologic tests. The pri-
mary goal of our study is to introduce the time-dependent 
ROC analysis in neuro-oncology and apply it to prognostic 
studies of GBM biomarkers. Our analysis focused on the 
early stage of biomarker studies (ie, biomarker discovery and 
validation). At the stage of biomarker discovery and valida-
tion, ROC analyses are intensively used to evaluate the per-
formance of the biomarkers; hence, the prognostic accuracy 
should be established before clinical meaningful measures 
(such as cost) can be considered. Although Halligan et al32 
claimed that the “net benefit” is more meaningful in evaluat-
ing the diagnostic performance of radiological tests, they 
agreed that ROC and AUC are most useful in the early stages 
of diagnostic test assessment, especially for tests not requiring 
subjective interpretation.

Study limitations

One limitation of this study is that our study data set from TCGA 
lacks treatment information for the patients with GBM. This 
limits the extrapolation of our findings to all patients, especially 
those that do not undergo standard-of-care therapy. In addition, 
this prevented us from performing a subanalysis by treatment to 
evaluate whether biomarkers perform differently across different 
treatments. In addition, some known important glioblastoma 
predictive factors such as extent of resection and postsurgical 
complications are not included in TCGA data set. Lack of infor-
mation on these risk factors could limit our findings in the prog-
nostic ability of the biomarkers and gene signatures.

Conclusions
Although some biomarkers and gene signatures are statistically 
significantly associated with OS of patients with GBM, their 
ability to accurately prognose cumulative or incident OS events 
is very limited. Predicted risk scores that combine biomarkers 
with clinical risk factors, such as age, can greatly improve the 
prognostic performance of these biomarkers.
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