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Simple Summary: The 20–30% of locally advanced rectal cancer patients undergoing preoperative
concurrent chemoradiotherapy had no expected efficacy, and ERCC1 overexpression was found in
these tumor tissue patients. In the interest of confirming and adding details to our understanding
of that correlation, The Tet-on gene expression system was used to examine ERCC1 functionality
and stability. Our data from regulatable HCT116-Tet-on and COLO205-Tet-on cell lines verified the
increased radioresistance in colorectal cancer cells that are associated with ERCC1 overexpression, and
they confirmed a high correlation between ERCC1 levels and radiotherapeutic efficiency. Furthermore,
overexpression of ERCC1 also increases cell migration under radiation exposure. Additional data
from ERCC1 expression regulation in vivo confirmed that the overexpression of increased cancer
radiation resistance suggests that ERCC1 expression plays a key role.

Abstract: Preoperative concurrent chemoradiotherapy (CCRT) is a standard treatment for locally
advanced rectal cancer patients, but 20–30% do not benefit from the desired therapeutic effects.
Previous reports indicate that high levels of ERCC1 reduce the effectiveness of cisplatin-based CCRT;
however, it remains unclear as to whether ERCC1 overexpression increases radiation resistance.
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To clarify the correlation between ERCC1 levels and radiation (RT) resistance, we established two
cell lines (HCT116-Tet-on and COLO205-Tet-on), induced them to overexpress ERCC1, detected
cell survival following exposure to radiation, established HCT116-Tet-on and COLO205-Tet-on
heterotopic cancer animal models, and detected tumor volume following exposure to radiation. We
found that ERCC1 overexpression increased radiation resistance. After regulating ERCC1 levels
and radiation exposure to verify the correlation, we noted that increased radiation resistance was
dependent on ERCC1 upregulation in both cell lines. For further verification, we exposed HCT116-
Tet-on and COLO205-Tet-on heterotopic cancer animal models to radiation and observed that ERCC1
overexpression increased colorectal cancer tumor radioresistance in both. Combined, our results
suggest that ERCC1 overexpression may serve as a suitable CCRT prognostic marker for colorectal
cancer patients.

Keywords: preoperative concurrent chemoradiotherapy; ERCC1; radiation resistance; HCT116-Tet-
on; COLO205-Tet-on

1. Introduction

A total of 104,270 new colon cancer cases, 45,230 new rectal cancer cases, and
52,980 associated deaths were reported in 2021 alone in the United States [1]. Colorec-
tal cancer was identified as the third most prevalent cancer type in the US for that year [2],
with local recurrence rates of resected patients with stage II-III rectal cancer ranging from
15% to 65%. Local recurrence rates for stage III patients following total mesorectal ex-
cision (TME) surgery have been reported as ranging from 20% to 30% [3–5]. Limiting
postoperative recurrence is a major treatment priority for colorectal cancer patients.

To improve cure rates and reduce local recurrence, the National Comprehensive
Cancer Network recommends preoperative concurrent chemoradiotherapy (CCRT) as a
priority treatment for locally advanced rectal cancers [6,7]. Among patients receiving
preoperative radiotherapy, one research team has reported a 61% reduction in relative local
recurrence risk (95% CI: 0.27–0.58, p < 0.0001), with a 6.2% absolute difference at three
years (95% CI: 5.3–7.1) and a 24% relative improvement in disease-free survival (HR = 0.76,
95% CI: 0.62–0.94, p = 0.013) [8]. According to this study, among others, CCRT treatment
of colorectal cancer is now considered indispensable; however, some patients exhibit a
poor response to CCRT, thus increasing the potential for tumor progression and additional
resection surgery. Three specific issues that must be addressed are (i) patients who do
not respond well to CCRT often cannot obtain accurate preoperative pathologic staging
for early rectal cancer (T1T2N0), thus increasing the potential for staging overestimates
during preoperative clinical imaging, which makes treatment modelling decisions more
difficult [9,10]; (ii) additional surgery entails increased difficulties, especially for short-
term hypofractionated radiotherapy—more specifically, surgeons must deal with inflamed
tumors and the surrounding tissue being represented as congestion or edema, both of which
suggest intraoperative bleeding [11]; and (iii) after long-term preoperative radiotherapy,
tissue becomes fibrotic, and tumors adhere to surrounding structures, thus making surgical
separation more difficult and triggering postoperative complications such as anastomotic
leakage (LAR surgery) and perineal wound dehiscence (APR surgery) [3].

Finally, and most importantly, patients who are insensitive to radiotherapy, chemother-
apy, and neoadjuvant chemoradiotherapy may experience delayed opportunities for re-
section surgery, thus allowing for greater tumor development [12]. In short, the tumor
edge blur ring in CCRT-insensitive patients stands as a major challenge against successful
resection surgery due to inaccuracies in measuring CCRT efficacy potential [11].

We previously reported finding a high correlation between ERCC1 gene overexpres-
sion and radiation response in colorectal cancer patients [13]. In the interest of confirming
and adding details to our understanding of that correlation, we used controlled gene ex-
pression tetracycline technology (Tet-on system) to establish stable ERCC1 expression in
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two colorectal cell lines to verify the effects of different ERCC1 concentrations on radiation
resistance. We then used an ectopic colorectal cancer animal model to investigate the effects,
if any, of ERCC1 overexpression on colorectal cancer radiation sensitivity.

2. Materials and Methods
2.1. Plasmid Construction

The Tet-on ERCC1 system was generated by using a Pas4.1w. Ppuro-aOn cassette
(RNAi coil, Academia Sinica, Taipei, Taiwan) and inserting the nucleotide sequence of
the ERCC1 isoform1 (also known as: 202, NCBI identifier: P07992-1) which was con-
structed by PCR amplification using the following primers: CTAGCTAGCAAGCTTGC-
CACCATGGACCCTGGGAAGGAC, which has a NheI site, and CCGGCGCGCCGTT-
TAAACATCGATTCACAGATCCTCTTCTGAGATGAGTTTTTGTTCGGG, which has myc
Tag and PmeI site.

2.2. Cell Lines and Generation of Tet-on Ercc1 Stable Cell Lines

HCT116 and COLO 205 colon cancer cell lines (American Type Culture Collection)
were cultured in DMEM (Sigma-Aldrich, St. Louis, MI, USA), supplemented with 10%
bovine calf serum, 100 units/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C in an
atmosphere of 5% CO2. Tet-on ERCC1 stable cell lines were established via the transfection
of a recombinant lentivirus that consisted of a package plasmid, pCMV∆R8.91 (RNAi coil,
Academia Sinica, Taipei, Taiwan), pMD.G (RNAi coil, Academia Sinica, Taiwan), and a
target plasmid, the Tet-On ERCC1 system, respectively. After selection by 1, 3, and 5 µg/mL
Puromycin dihydrochloride (P8833, Sigma-Aldrich), the selection medium was replaced
every 2 days for one week.

2.3. qPCR and Western Blotting

mRNA extracts were converted to cDNA using a High-Capacity cDNA Reverse
Transcription Kit (Biosystems™, Not. 4368814, Thermo Fisher, Waltham, MA, USA). qPCR
was followed separately by using a ERCC1 primer protocol (ERCC1 Human qPCR Primer
Pair, NM_202001), OriGene Technologies, Inc., Rockville, MD, USA) and a beta Actin
(beta Actin Human qPCR Primer Pair, NM_001101, OriGene Technologies, Inc.) primer
protocol. Protein extracts, separated by SDS-PAGE and transferred onto NC membranes
(Schleicher & Schuell, Keene, NH, USA), were probed with antibodies against ERCC1
(ab 129267, 1:1000, Abcam, Cambridge, UK), an anti-beta-actin antibody (mAbcam 8226,
1:1000, Abcam), or an anti-myc tag antibody [9E10] (ab32, 1:1000, Abcam). Proteins of
interest were detected using peroxidase-conjugated AffiniPure Goat anti-Mouse IgG, Fc
Fragment Specific (115-035008, 1:1000, Jackson ImmunoResearch, West Grove, PA, USA)
or goat anti-rabbit IgG, F(ab’) 2-HRP (sc-3837, Santa Cruz Biotechnology, Dallas, TX,
USA) antibodies, and visualized with the Immobilon Western Chemiluminescent HRP
Substrate (WBKLS0500, Merck, Kenilworth, NJ, USA), according to the protocol provided.
Quantitation of bands was conducted using Image J.

2.4. Irradiation Exposes, CELL viability Assay, and Colony Formation Assay

Cells were plated in a 96-well plate (2000/well) and irradiated overnight with 2 Gy per
time linear accelerator (Varian Clinac iX, Department of Radiation Oncology, Kaohsiung
Medical University Hospital), before a bolus (1.5-cm-thick) was placed on the top and
bottom of cell culture plates. Cell viability was measured using an ATPlite kit (510-17281,
Blossom Biotechnologies, Taipei, Taiwan), and the luminesce value was measured using a
multimode plate reader (VICTORTM X2, PerkinElmer, Waltham, MA, USA). In the colony
formation assay, 2000 cells per well were seeded on a 6-well plate (2000/well) and incubated
in an incubator for 14 days after irradiation, using the radiation protocol described above.
Using a 1% crystal violet (C0775-25G, MERCK)/methanol (67-56-1, MERCK) buffer, the
cells were stained for 10 min, washed with ddH2O, dried, and the colonies were counted.
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2.5. Wound Healing Assay

Cells were seeded in 6-well plates at 80% of confluence in a growth medium. A 0.4-mm
wide wound was performed after cells were attached to the plate using a 10 µL tip. Wound
images were taken during 48 h using Olympus microscope (Olympus Microsystems).
Images were quantified with ImageJ software (image J (ImageJ bundled with 64-bit Java
1.8.0_172, Wayne Rasband, Bethesda, Rockville, MD, USA, https://imagej.net/imagej-
wiki-static/Downloads (accessed on 28 June 2022)). The cell-free area was normalized on
day 0. The quantification of the cell-free area (%) is as follows: cell-free area (%) = (cell-free
area of Day 0, Day 1, or Day 2, mm3)/(the cell-free area of Day 0, mm3) × 100%.

2.6. Xenograft Animal Model and Radiation Exposure Schedule

Specific pathogen-free male BALB/c nude mice were obtained from the National
Laboratory Animal Center, Taipei, Taiwan. All animal experiments were conducted in
accordance with institutional guidelines and approved by the Animal Care and Use Com-
mittee of the Kaohsiung Medical University. Tet-on ERCC1, HCT116, and Tet-on ERCC1
COLO 205 cells were subcutaneously injected into 2 × 106 cells in nude mice, respectively.
When tumors reached a size of approximately 50 mm2, mice were divided into three groups:
buffer alone (control), and doxycycline at 10 or 50 mg/kg/mouse by intraperitoneal in-
jection. Radiation was performed with multiple doses of 2 Gy per fraction (cumulative
radiation dose was 6 Gy). There were four mice in each group. After sacrificing the
mice, the tumor mass was removed and analyzed for ERCC1 expression. In the in vivo
experiment, HCT116 and COLO 205 tumor-bearing mice underwent irradiation. Mice
were divided into four groups: Group 1 (-ERCC1-RT), in which mice were not treated
with either a doxycycline injection or radiation therapy; Group 2 (+ERCC1-RT), in which
mice were injected with doxycycline, but received no radiation; Group 3 (-ERCC1+RT),
in which mice were not injected with doxycycline, but were treated with radiation; and
Group 4 (+ERCC1+RT), in which mice were injected with doxycycline and received radia-
tion. The tumor size was measured by using digital calipers (VWR International, Radnor,
PA, USA), and the tumor volume was determined using the following formula: tumor
volume [mm3] = (length [mm]) × (width [mm])2 × 0.52. Tumor weight was measured us-
ing an electronic scale.

2.7. Statistical Analysis

Statistical significance was calculated using GraphPad Prism 6.0 with Student’s t-test
and multiple t-tests. Data were considered statistically different at p < 0.05.

3. Results
3.1. Establishing a Doxycycline-Inducible Gene Expression System to Regulate ERCC1 and in
HCT116 and COLO205

To select colorectal cancer cells with low ERCC1 expression, we analyzed the expres-
sion of ERCC1 mRNA and the protein in HEK293, HCT116, SW620, COLO205, and SW480
cell lines (Supplementary Figure S1). The results showed the expression of ERCC1 in
HCT116 and COLO205 to be lower than other colorectal cancer cell lines; therefore, we
used HCT116 and COLO205 for the establishment of Tet on ERCC1 stable cell lines. A
Tet-on ercc1-myc Tag system (Figure 1A) was used to construct HCT116 and COLO205
colorectal cell lines to examine ERCC1 expression. We compared untreated cells with cells
treated with doxycycline for 24 h to determine the successful establishment of HCT116-
Tet-on-ERCC1 and COLO205-Tet-on-ERCC1 cell lines. Both anti-MYC and antiERCC1
antibody detection data indicate that compared with a mock wild-type cell line and the non-
doxycycline (−) group, the doxycycline group (+) expressed high levels of ERCC1 in both
cell lines (Figure 1B,C)—thus, it is evident that HCT116 and COLO 205 were successfully
established.

https://imagej.net/imagej-wiki-static/Downloads
https://imagej.net/imagej-wiki-static/Downloads
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Figure 1. Characterization of Tet-on ERCC1 Colorectal cancer cell lines. (A) Schematic diagram of the
Tet-on system for assessing doxycycline-inducible ERCC1 expression. (B) HCT116 and (C) COLO205
cells were categorized as wild type (WT), Tet-on-ERCC1− (no doxycycline treatment) or Tet-on-
ERCC1+ (treated with 2 µg/mL doxycycline). Cytoplasmic extrusion mass was collected 24 h
post-treatment and used for exogenous ERCC1-MYC tag detection with anti-MYC tag or ERCC1
antibodies.

3.2. ERCC1 Overexpression Confers Radiation Resistance in-Tet-on-ERCC1 Cell Lines

Cells were divided into three groups: WT (wild type), a Tet-on group without doxy-
cycline treatment Tet-on-ERCC1 (−), and a Tet-on-ERCC1 (+) group. These groups were
treated with 2 µg/mL doxycycline for 24 h. Cell viability was analyzed using an ATPlite
kit 72 h after radiation exposure at 6–16 Gy. Half-maximal inhibitory concentrations for the
HCT116 cell line were 11.17± 0.13 Gy for mock wt cells, 9.75± 0.06 Gy for Tet-on cells, and
14.12 ± 0.83 Gy for Tet-on + Dox cells (Figure 2A). The respective concentrations for the
COLO 205 cell line were 10.29 ± 0.11 Gy, 10.43 ± 0.25 Gy, and 11.65 ± 0.25 Gy (Figure 2B).
These results confirm radiation resistance in HCT116-Tet-on-ERCC1 and COLO205-Tet-on-
ERCC1 cells conferred by ERCC1 overexpression. To further confirm that the increased
radiation tolerance by overexpression of ERCC1 is due to cell proliferation, we used the
colony formation for analysis, and HCT116-Tet-on-ERCC1 and COLO205-Tet-on-ERCC1
cells were treated. Then, 0, 0.5, 1.0, 2 µg/mL doxycycline was given with 8 Gy of radiation,
and they were left to react for 14 days; the number of colonies formed in each group was
subsequently analyzed (%). The results suggested that the number of cell populations in
the overexpressed ERCC1 group is greater than the different radiation doses in the HCT116-
Tet-on-ERCC1 (Figure 2C,E) and COLO205-Tet-on-ERCC1 cell groups (Figure 2D,F). This
phenomenon indicates that the radioresistance of overexpressed ERCC1 reduces the sever-
ity of restrictions placed on radiation therapy when treating cell proliferation.
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Data are shown for (A) HCT116 and (B) COLO205, including wild type (WT), Tet-onERCC1 cells
treated with 2 µg/mL doxycycline, and untreated cells. All relative luminescence unit (RLU) data
were collected following radiation treatment for 24 h. Cell viability percentages were calculated
as (abssample − absblank)/(abscontrol − absblank) × 100. Colony formation assays of (C) HCT116 and
(D) COLO205, including wild type (WT) and Tet-onERCC1 cells (E,F) were statistically significant
(p < 0.05 *).

3.3. Enhanced Radiation Resistance Depends on HCT116-Tet-on-ERCC1 and
COLO205-Tet-on-ERCC1 Upregulation

To verify the correlation between radiation resistance and changes in ERCC1 lev-
els, HCT116-Tet-on-ERCC1 cells or COLO205-Tet-on-ERCC1 cell lines were treated with
0, 0.5, 1, or 2 µg/mL doxycycline to induce a range of ERCC1 expression levels. Cell
lysates were collected after 24 h and examined by Western blotting to detect ERCC1
expression. ERCC1/β-actin ratios were measured as 0, 0.20, 0.25, and 0.40 in HCT116-Tet-
on-ERCC1, and the cells were treated with 0, 0.5, 1, and 2 µg/mL doxycycline, respectively.
In COLO205-Tet-to-ERCC1 cells, the ratios were also 0.03, 0.2, 0.44, and 1, respectively.
Combined, these results indicate that the ERCC1 levels in HCT116-Tet-on-ERCC1 and
COLO205-Teton-ERCC1 can be regulated via the precise control of doxycycline concen-
trations (Figure 3A,B). For further verification, the viability of HCT116-Tet-on-ERCC1
and COLO205-Tet-onERCC1 cells exposed to 8 Gy of radiation were analyzed. Results
indicate that there was a 100 ± 5.4%, 45.01 ± 1.59%, 54.58 ± 1.53%, 71.25 ± 0.78%, and
78.30 ± 2.47 cell viability for the HCT116-Tet on-ERCC1 cells treated with 0, 0.5, 1, and
2 µg/mL doxycycline, respectively. For the COLO205-Tet onERCC1 cells, the percentages
were 100 ± 2.25%, 48.03 ± 3.88%, 70.57 ± 4.94%, 80.74 ± 1.41%, and 92.07 ± 1.98%, respec-
tively (Figure 3C,D). These observations confirmed that radioresistance was dependent on
ERCC1 upregulation levels in both cell lines.
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Figure 3. The correlation between the changes in ERCC1 expression level and radiation resistance.
The cell extracts were collected from (A) HCT116-Tet-on-ERCC1 or (B) COLO205-Teton-ERCC1 cells
treated with 0, 0.5, 1, or 2 µg/mL doxycycline for 24 h. Anti-ERCC1 or anti-β-actin mAbs were
used to detect ERCC1 or β-actin. (C) COLO205-Tet-on and (D) HCT116-Tet-on cells were treated
with 0, 0.5, 1, or 2 µg/mL doxycycline for 24 h following exposure to 8 Gy radiation for 48 h. Cell
viability (%) = the luminescence units of the sample groups/the luminescence units of the control
group mean ×100%. * indicates a significant difference, p < 0.05. The luminescence units were
measured by multimode plate reader (VICTORTM X2, PerkinElmer).

3.4. Overexpression of ERCC1 Enhances the HCT116-Tet-on-ERCC1 and
COLO205-Tet-on-ERCC1 Migration after Radiation Exposure

To clarify whether the overexpression of ERCC1 and radiation exposure following
ERCC1 overexpression could affect the proliferation and migration ability of colorectal
cancer cells, HCT116-Tet-on-ERCC1 and COLO205-Tet-on-ERCC1 were divided into no
expression ERCC1-, overexpression ERCC1 (treated with 2 µg/mL), no expression ERCC1
combined with radiation exposure, and overexpression ERCC1 combined with radiation
exposure; ATP Lite analysis was performed at 24 h and 48 h. The results suggest that
compared with the non-ERCC1 expression group, the luminescence intensity of overex-
pressed ERCC1 is not higher than that of the non-ERCC1 expression group, indicating that
the presence or absence of overexpressed ERCC1 has no correlation with colorectal cancer
cells. Furthermore, to analyze whether the overexpression of ERCC1 has an effect on cell
proliferation under radiation irradiation, the results show that under radiation irradiation,
the overexpression of ERCC1 can increase cell proliferation in HCT116 Tet on (Figure 4A)
and COLO205 Tet on (Figure 4B). Furthermore, we analyzed whether the overexpression
of ERCC1 in this environment could increase the migration ability of HCT116 Tet on and
COLO205 Tet on. The results showed that the overexpression of ERCC1 in both HCT116
Tet on (Figure 4C) and COLO205 Tet on (Figure 4D) increased their migration ability when
exposed to radiation (Figure 4E,F). This phenomenon indicates that the overexpression
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of ERCC1 could increase the proliferation and migration ability of colorectal cancer cells
in a radiation-irradiated environment. We evaluated the association of the ERCC1 level
with/without radiation exposure between the markers of MET and EMT in rectal cancer
cells. HCT116-Tet-on-ERCC1 and COLO205-Tet-on-ERCC1 were treated with 0 µg/mL or
2 µg/mL Dox to induce the overexpression of ERCC1. After 24 h, the cells were exposed
with/without the 8 Gy radiation. The results suggested that the ERCC1 level, and the
level of radiation that the cells were exposed to, were not key in terms of affecting tumor
generation (Supplementary Figure S2). This is because the overexpression of ERCC1, and
the exposure to radiation, did not alter the levels of MET and EMT markers in CRC cell
lines compared with controls; this is perhaps due to the fact that ERCC1 is a downstream
factor of DNA repair and does not affect tumorigenesis. Based on the above data and the
aforementioned arguments of this study, the overexpression of ERCC1 may only regulate
resistance to chemotherapy or radiotherapy without affecting tumorigenesis.
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Figure 4. The effect of ERCC1 overexpression on cell proliferation and migration. HCT116-Tet-on-
ERCC1 (A) and COLO 205-Tet-on-ERCC1 (B) were divided into a non-overexpression ERCC1 group,
a Tet-on-ERCC1 (−) overexpression ERCC1 group, a Tet-on-ERCC1 (+) combined Tet-on-ERCC1 (−)
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with radiation exposure group (Tet-on-ERCC1 (−)/8 Gy), and a combined Tet-on-ERCC1 (+) with
radiation exposure group (Tet-on-ERCC1 (+)/8 Gy). The luminescence intensity was analyzed at
0 h, 24 h, 36 h, and 48 h. The abovementioned groups were seeded with 2 × 105 into 6 well dishes,
and wounds were created at 0 h and photographed at 0 h, 24 h, and 48 h. The percentage of wound
healing in HCT116-Tet-on-ERCC1 (C,D) and COLO205-Tet-on (E,F). Cell-free area (%) = (cell-free area
of Day 0, Day 1, or Day 2, mm3)/(the cell-free area of Day 0, mm3) × 100%. * indicates a significant
difference, p < 0.05. n.s. indicates no significant difference.

3.5. Establishing an Animal Model for Precise ERCC1 Regulation

HCT116-Tet-on and COLO205-Tet-on heterotopic cancer animal models were estab-
lished to verify the induction of ERCC1 expression in tumors via in vivo injection of
doxycycline. Tumors were subcutaneously injected into mice to generate HCT116-Tet-on
and COLO205-Tet-on tumor-bearing mice. Doxycycline (10 mg/kg or 50 mg/kg) was
IP injected when the tumor volume reached 50 mm3. Tumors were collected 24 h post-
injection and examined using Western blotting to detect ERCC1 expression. Results show
that doxycycline treatment at 50 mg/kg was capable of regulating ERCC1 overexpression
in vivo (Figure 5A,B), thus confirming the successful establishment of an animal model for
precise ectopic cancer ERCC1 regulation.
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Figure 5. Analysis of ERCC1 levels in Tet-on ERCC1 tumors. ERCC1 expression in (A) HCT116-Tet-on
and (B) COLO205-Tet-on tumors were determined following subcutaneous injections in mice and
prior to an IP injection with doxycycline at 10 or 50 mg/kg. Tumors extracts were collected to detect
ERCC1 and β-actin levels.

3.6. ERCC1 Overexpression Induced Radiation Resistance and Reduced Radiationtherapeutic
Efficiency

HCT116-Tet-on or COLO205-Tet-on tumors were subcutaneously injected into nude
mice to generate HCT116-Tet-on-ERCC1 or COLO205-Tet-on-ERCC1 tumor-bearing mice.
Mice were IP-treated with 50 mg/kg doxycycline or PBS and exposed to 6 Gy radiation in
three fractions over 7 days. Tumors were measured every 3 days for 33 days (Figure 6A,B),
characterized (Figure 6C,D), and then weighed (Figure 6E,F) at the end of the experiment.
Our results indicate that there was a larger tumor volume and higher tumor weight in
the +Dox +RT group compared with the +RT group on day 33. These results confirm the
increased tumor resistance to radiation due to ERCC1 overexpression.



Cancers 2022, 14, 4798 10 of 14Cancers 2022, 14, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. ERCC1 overexpression reduced RT-therapeutic efficiency. A xenograft model was divided 
into four groups: control, +Dox (treated with doxycycline), +RT (exposed to radiation), and +Dox 
+RT (treated with doxycycline and exposed to radiation). Tumor volumes were measured between 
days 0 and 33 in (A) HCT116-Tet-on ERCC1 and (B) COLO205-Tet-on-ERCC1 cells. (C) HCT116 (D) 
and COLO 205 tumors were collected and weighed on day 33. Respective weight data are shown as 
subfigures (E,F) (p < 0.05 *). 

4. Discussion 
The Tet-on gene expression system was used to examine ERCC1 functionality and 

stability. Our data from regulatable HCT116-Tet-on and COLO205-Tet-on cell lines veri-
fied the increased radioresistance in colorectal cancer cells that are associated with ERCC1 
overexpression, and they confirmed a high correlation between ERCC1 levels and radio-
therapeutic efficiency. Additional data from ERCC1 expression regulation in vivo con-
firmed that the overexpression of increased cancer radiation resistance suggests that 
ERCC1 expression plays a key role. 

We found that ERCC1 levels affected chemotherapy and radiation therapy efficacy 
via DNA repair. Multiple CCRT-associated resistance factor studies have reported high 
correlations between ERCC1 expression and CCRT clinical efficacy. Xu et al. reported re-
spective CCRT response rates of 76.9% and 56.6% for ERCC1− and ERCC1+ patients with 
regionally moderate advanced nasopharyngeal carcinomas [14,15], and Jun et al. reported 
a significantly higher three-year overall survival rate in patients with low ERCC1 expres-
sion (91.7; 95% CI, 76.0–100.0%) compared with high ERCC1 expression patients (45.5; 
95% CI, 23.9–67.1%; p = 0.013). Combined, these data suggest that ERCC1 overexpression 

Figure 6. ERCC1 overexpression reduced RT-therapeutic efficiency. A xenograft model was divided
into four groups: control, +Dox (treated with doxycycline), +RT (exposed to radiation), and +Dox +RT
(treated with doxycycline and exposed to radiation). Tumor volumes were measured between days
0 and 33 in (A) HCT116-Tet-on ERCC1 and (B) COLO205-Tet-on-ERCC1 cells. (C) HCT116 (D) and
COLO 205 tumors were collected and weighed on day 33. Respective weight data are shown as
subfigures (E,F) (p < 0.05 *).

4. Discussion

The Tet-on gene expression system was used to examine ERCC1 functionality and sta-
bility. Our data from regulatable HCT116-Tet-on and COLO205-Tet-on cell lines verified the
increased radioresistance in colorectal cancer cells that are associated with ERCC1 overex-
pression, and they confirmed a high correlation between ERCC1 levels and radiotherapeutic
efficiency. Additional data from ERCC1 expression regulation in vivo confirmed that the
overexpression of increased cancer radiation resistance suggests that ERCC1 expression
plays a key role.

We found that ERCC1 levels affected chemotherapy and radiation therapy efficacy
via DNA repair. Multiple CCRT-associated resistance factor studies have reported high
correlations between ERCC1 expression and CCRT clinical efficacy. Xu et al. reported
respective CCRT response rates of 76.9% and 56.6% for ERCC1− and ERCC1+ patients with
regionally moderate advanced nasopharyngeal carcinomas [14,15], and Jun et al. reported a
significantly higher three-year overall survival rate in patients with low ERCC1 expression
(91.7; 95% CI, 76.0–100.0%) compared with high ERCC1 expression patients (45.5; 95%
CI, 23.9–67.1%; p = 0.013). Combined, these data suggest that ERCC1 overexpression leads
to CCRT resistance. Other research teams have reported high correlations between low
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ERCC1 expression and in vitro sensitivity to cisplatin in malignant cervical cancer cell
lines [16,17], testicular cancer [18], and malignant effusions collected from non-small cell
lung cancer patients [19,20]. One retrospective analysis showed a relationship between
increased ERCC1 mRNA or protein expression levels and resistance to cisplatin-based
chemotherapy in many types of advanced tumors, including non-small cell lung cancer
(NSCLC) [21,22], esophageal cancer [23], and colon cancer [24–27]. In addition, we ana-
lyzed the effect of ERCC1 on colorectal cancer patients in the GEPIA database. According to
the GEPIA database analysis, colon adenocarcinoma cell lines showed a higher expression
of ercc1 mRNA compared with normal cells. Furthermore, we analyzed the correlation
between the expression of ercc1 mRNA with the overall survival rate and disease-free
survival rate in patients with colon adenocarcinoma. The results showed that the overex-
pression of ERCC1 did not affect the overall survival rate and disease-free survival rate in
patients with rectal cancer; however, our previous study found that the overexpression of
ERCC1 in colorectal cancer patients undergoing concurrent chemoradiotherapy has a poor
prognosis [28]. Initially, we considered that the overexpression of ERCC1 would only affect
staged outcomes of chemotherapy and radiotherapy in patients with rectal cancer, but not
the overall survival rate.

The possible mechanism of the expression of ERCC1 on radiotherapy sensitivity could
be due to the fact that radiation could cause double-strand breaks and single-strand breaks
in cellular DNA through free radicals to limit the progression of cancer [29,30]. Many
studies reported that ERCC1 plays an important role in the repair of DNA double-strand
breaks and DNA single-strand breaks [31,32]. In double-strand breaks, the ERCC1/XPF
complex would recognize and cleave AT-rich DNA sequences to facilitate subsequent DNA
replication or conjugation. Furthermore, ERCC1 would stabilize DNA repair and accelerate
the process of DSB repair [33,34]. In the process of single-stranded DNA repair, ERCC1-XPF
cuts the damaged strand 5′ to remove the damaged base, creating 3′-OH in order to prime
DNA synthesis to complete DNA repair and reduce cancer cell apoptosis [35,36]. Based on
these mechanisms, we hypothesized that the overexpression of ERCC1 would increase the
ability of DNA to repair, and that it would help increase DNA’s tolerance to radiotherapy.

The Tet-on gene expression system offers real-time and precise regulation of cell cycle,
inflammatory, DNA repair, and other factors requiring short-term regulation. To study
cell cycle factors, Kok et al. regulated Tet-on Cyclin E1 and Tet-a on Cdc25A expression
in RPE1 cells [37]. When addressing DNA repair, Mladenov et al. used the Tet-on system
to determine the role of the ATR promoter in the repair process [38]. Note that ERCC1 is
a DNA damage-induced protein involved in nucleotide excision repair, DNA interstrand
crosslink repair [39], and DNA double-strand break repair [40,41]. Certain homologous
recombination repair and non-homologous end-joining pathways depend on the ERCC1-
XPF function [42–44]. Tet-on is being increasingly used to study DNA repairrelated genes
such as ERCC1 due to its precision when regulating expression. Since DNA repair-related
proteins are only induced by DNA damage, rather than continuously expressed in cells,
Tet-on is believed to provide accurate simulations of natural processes in vivo. According
to our results, the precise control of ERCC1 expression was doxycycline concentration-
dependent both in vitro (Figure 3A,B) and in vivo (Figure 5A,B), thus confirming the
appropriateness of using Tet-on to analyze the ERCC1 system. To clarify whether the
overexpression of ERCC1 affects other DNA repair pathways, we analyzed the expression
of XPF, ATM, and ATR in ERCC1-overexpressing CRC cells. The results indicate that the
overexpression of ERCC1 would only have increased the level of XPF. In this isoform, XPF
is a DNA endonuclease, and ERCC1 is an auxiliary protein that maintains the function of
XPF (Supplementary Figure S3); therefore, we may speculate that the overexpression of
ERCC1 could increase the stability of XPF and reduce the degradation of XPF.

Biomarkers are commonly used for colorectal cancer diagnosis, prognosis, and treat-
ment purposes. Kirsten rat sarcoma virus (KRAS) and N-BRAF mutations help physicians
determine the potential for anti-EGFR therapy in terms of increasing EGFR antibody ther-
apy efficacy [45]. CA 19-9 and carcinoembryonic antigens are known to improve early
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colorectal cancer detection and recurrence following colorectal cancer surgery [46,47]. Mi-
crosatellite instability testing is also widely used for chemotherapy prognostic assessment
purposes [48]; however, there are no biomarkers that can be used as CCRT prognostic
predictors, even though it is considered an important therapeutic regimen.

Data from clinical staining studies have shown that colorectal cancer patients with a
poor prognosis following the combination of FOLFOX and radiation exposure often exhibit
high levels of ERCC1 overexpression [49]. To confirm the effects of ERCC1 expression on
CCRT efficacy, we induced ERCC1 overexpression in colorectal cancer cells and in an ectopic
carcinoma animal model prior to radiation exposure, and we found evidence that ERCC1
overexpression triggered resistance to radiotherapy (Figures 2–5). According to recent
reports, microsatellite instability can be used as an indicator of FOLFOX clinical efficacy,
thus suggesting that DNA repair robustness can affect colorectal cancer responsiveness to
chemotherapy and radiotherapy. There is currently interest in testing an ERCC1 inhibitor
as a CCRT sensitizer.

5. Conclusions

Our in vitro and in vivo results indicate that ERCC1 overexpression triggered colorec-
tal cancer radioresistance; therefore, we believe that ERCC1 levels may affect chemotherapy
and radiation therapy efficacy via DNA repair. Further research is required to confirm
ERCC1 expression detection as an appropriate predictor of CCRT treatment efficacy, and to
test the possibility of combining ERCC1 inhibitors to improve CCRT efficacy for colorectal
cancer patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14194798/s1, Figure S1: Characterization of endogenous
ERCC1 level in various cell lines; Figure S2: Overexpress ERCC1 affects level of EMT markers
in colorectal cancer cells; Figure S3: Overexpress ERCC1 affects DNA repair factors in colorectal
cancer cells.
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