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Insulin resistance in rodents and humans is highly correlated
with inflammation of white adipose tissue (WAT) and the
presence of proinflammatory immune cells. Such chronic
immune challenge leads to a variety of metabolic effects
in the adipocyte, including endoplasmic reticulum stress,
mitochondrial dysfunction, oxidative stress, and altered
adipokine and cytokine secretion, which in sum play a major
role in affecting whole-body insulin sensitivity (1–3). Of the
factors regulating mitochondrial biogenesis, the regulation
of the endothelial nitric oxide synthase (eNOS) has garnered
considerable attention as a major metabolic control point.

eNOS is a constitutively expressed nitric oxide (NO)–
producing enzyme classically linked to smooth muscle
contraction and platelet aggregation (4). However, eNOS
and downstreamNO signaling are now appreciated as a ma-
jor metabolic determinant of the peroxisome proliferator–
activated receptor g coactivator 1a (PGC1a) (5). Although
the molecular mechanism(s) is still not completely under-
stood, NO signaling and activation of the soluble guanylyl
cyclase–protein kinase G (PKG) system upregulate PGC1a
expression and, moreover, are required for increased ex-
pression of SirT1, the major NAD+-dependent deacetylase
controlling PGC1a activity (6–8). NO signaling via PKG
stimulates the expression of the entire mitochondrial bio-
genesis program, including the activation of Nrf1 and
Tfam, two major transcription factors regulating expres-
sion of mitochondrial enzymes.

A second major theme controlling mitochondrial bio-
genesis linked to sympathetic drive and eNOS is G-protein–
coupled receptor–dependent activation of CREBP. Studies
by a number of laboratories have shown that CREBP is
a major control point in skeletal and aortic muscle affecting
development of insulin resistance and that CREBP is a crit-
ical regulator of mitochondrial biogenesis and dynamics
(9,10). Adrenergic stimulation and cAMP production acti-
vate not only CREBP but also protein kinase A, which in

turn phosphorylates and potentiates PGC1a (9), thereby
providing an additional mechanism by which catechol-
amines can upregulate mitochondrial biogenesis.

In 2009, Sutherland et al. (11) published that exercise
and adrenergic stimulation upregulated the expression of
PGC1a in rat WAT. In their report, exercise training in-
creased PGC1a expression in both epididymal and retro-
peritoneal fat depots while epinephrine treatment alone
increased PGC1a mRNA levels selectively in epididymal
WAT, suggesting that catecholaminergic stimulation may
be a potential mechanism by which exercise induces
mitochondrial biogenesis in fat. Consistent with this,
b-blockade attenuated, but did not eliminate, the effects
of exercise on PGC1a upregulation. Previous studies by
the groups of Nisoli and Vettor (6,12,13) have clearly
demonstrated that eNOS mRNA and activity is highly
regulated in muscle and WAT and that eNOS is required
for the upregulation of SirT1 in response to caloric re-
striction. Extending these studies, Koh and colleagues
(14,15) have shown when using eNOS2/2 mice and 3T3-
L1 adipocytes that NO signaling plays a major role in con-
trolling adiponectin synthesis. The observation that mito-
chondrial function and integrity in WAT are linked to
adiponectin secretion provides a potential mechanism by
which insulin resistance may be regulated in eNOS2/2mice.

In this issue, Trevellin et al. (16) used exercise training
of wild-type and whole-body eNOS2/2 mice to test the
hypothesis that chronic exercise would increase mito-
chondrial biogenesis in WAT in an eNOS-dependent man-
ner. Using a swim-training model in C57BL/6J mice, the
studies confirmed the original observation that chronic
exercise increased mitochondrial DNA, mitochondrial
enzymes, and expression of mitochondrial biogenesis
transcription factors (Nrf1 and Tfam) and coactivators
(PGC1a) in subcutaneous adipose tissue (SAT) compared
with sedentary controls. In contrast, the beneficial effects
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of exercise were not evidenced in eNOS-null animals. The
effects of exercise on the upregulation of UCP1 as a bio-
marker for “browning” of SAT were also confirmed in
wild-type mice but markedly reduced in eNOS2/2 animals
(17,18). To test the hypothesis that adrenergic stimula-
tion may be playing a role in the exercise-induced mito-
chondrial biogenesis program, the authors challenged
wild-type and eNOS-null mice with norepinephrine and
demonstrated that the increase in PGC1a and cytochrome c
oxidase expression was markedly attenuated despite the
presence of a functional PKA-extracellular signal–related
kinase 1 and 2 signaling system. Exercise also increased
the insulin-stimulated component of glucose transport in
isolated subcutaneous adipocytes, and this effect was totally
lost in SAT from eNOS-null mice. These results may
suggest that some of the effects of exercise on adipocyte
mitochondrial biogenesis may be mediated by catechol-
aminergic signaling, while a second pathway independent
of sympathetic drive linked to eNOS in the adipocyte may
play a crucial role in affecting mitochondrial number and
activity (Fig. 1).

The finding that exercise upregulates PGC1a expression
in adipose tissue in an eNOS-dependent manner is consis-
tent with other findings reporting that exercise training
upregulates PGC1a in nonmuscle cells (19). Despite these
advances, there are still major themes left unresolved.
First, as muscle is the major glucose-utilizing tissue, it is
not clear how eNOS-dependent upregulation of mitochon-
drial biogenesis in adipose tissue per se affects whole-body
energy metabolism. With the suggestion of an endocrine

loop system that connects muscle to fat and back to muscle
via the myokine-adipokine axis (17), the whole-body utili-
zation of glucose is likely intimately connected by multiple
factors. Second, as exercise training reduces inflammation
in adipose tissue (20) and inflammatory cytokines down-
regulate the mitochondrial biogenesis program in fat cells
(3), it is not clear whether the effects are directly mediated
on the biology of adipocytes or via attenuation of inflam-
matory macrophages. Indeed, downregulation of GSTA4 in
adipocytes leads to downregulation of eNOS and the entire
mitochondrial biogenesis program (3). Lastly, the eNOS-
null mouse used in the study by Trevellin et al. (16) was
a whole-body knockout and the specific role of adipocyte
eNOS has not been established. Clearly, NO donors in iso-
lated adipocytes have the capacity to improve glucose me-
tabolism (16), but the work to date does not demonstrate
that exercise training does not affect metabolic processes
in nonadipocytes that in turn indirectly influence the ex-
pression of eNOS. As such, while the study by Trevellin
et al. (16) advances our understanding of the complex
regulatory circuits that control mitochondrial biogenesis,
more questions are revealed. What is clear is that muscle–
fat balance controlling energy metabolism is likely to be
mediated by control of eNOS.
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