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Abstract
This retrospective study has been conducted to validate the performance of deep 
learning-based survival models in glioblastoma (GBM) patients alongside the 
Cox proportional hazards model (CoxPH) and the random survival forest (RSF). 
Furthermore, the effect of hyperparameters optimization methods on improving 
the prediction accuracy of deep learning-based survival models was investigated. 
Of the 305 cases, 260 GBM patients were included in our analysis based on the 
following criteria: demographic information (i.e., age, Karnofsky performance 
score, gender, and race), tumor characteristic (i.e., laterality and location), details 
of post-surgical treatment (i.e., time to initiate concurrent chemoradiation ther-
apy, standard treatment, and radiotherapy techniques), and last follow-up time 
as well as the molecular markers (i.e., O-6-methylguanine methyltransferase and 
isocitrate dehydrogenase 1 status). Experimental results have demonstrated that 
age (Elderly > 65: hazard ratio [HR] = 1.63; 95% confidence interval [CI]: 1.213–
2.18; p value = 0.001) and tumors located at multiple lobes ([HR] = 1.75; 95% 
[CI]: 1.177–2.61; p value = 0.006) were associated with poorer prognosis. In con-
trast, age (young < 40: [HR] = 0.57; 95% [CI]: 0.343–0.96; p value = 0.034) and 
type of radiotherapy (others include stereotactic and brachytherapy: [HR] = 0.5; 
95%[CI]: 0.266–0.95; p value = 0.035) were significantly related to better progno-
sis. Furthermore, the proposed deep learning-based survival model (concordance 
index [c-index] = 0.823 configured by Bayesian hyperparameter optimization), 
outperformed the RSF (c-index = 0.728), and the CoxPH model (c-index = 0.713) 
in the training dataset. Our results show the ability of deep learning in learning 
a complex association of risk factors. Moreover, the remarkable performance of 
the deep-learning-based survival model could be promising to support decision-
making systems in personalized medicine for patients with GBM.
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1   |   INTRODUCTION

Glioblastoma (GBM) is the most common fatal malignant 
brain tumor in adults, with an incidence rate of 3.2 per 
100,000 populations.1 The current approved treatment of 
GBM is the maximum safe resection surgery of the tumor 
with a minimum side effect, followed by the combination 
of radiotherapy and chemotherapy generally with temo-
zolomide.2 The prognosis of GBM patients (median over-
all survival of 14 months) has remained poor in the past 
three decades, even with severe multi-pronged therapies. 
In some cases (≤10%), a 5-year survival rate has been re-
ported with the same routine treatment procedure.

Accurate prediction of individual patients’ prognosis is 
a crucially important task not only for patients and their 
families but also for physicians to support personalized 
treatment and to identify who benefits from aggressive or 
moderate treatment and avoid ineffective treatment.

Conventionally, the Cox proportional hazard (CoxPH) 
model3, as represented in Equation (1), evaluates the hazard 
function of the event occurring at time t, hi(t,zi), for a patient 
i based on the linear combination of the covariates (Z), in 
which β is a regression coefficient, p is a vector of unknown 
variables, and h0(t) is an indefinite baseline hazard function. 

whereas the CoxPH model assumes that each covariate 
influences patient’s risk factor independent of another co-
variate, in other words, it presumes a linear combination of 
covariates, it may be too naive to model the effect of nonlin-
ear risk factors on patient’s survival.

To address these drawbacks, tremendous effort and 
methods have been employed in survival analysis.

Hitherto, machine learning algorithms such as random 
forest, artificial neural networks (ANNs), and support 
vector machines have shown striking results in many ap-
plications. Machine learning algorithms also have been ef-
fectively adopted, either as competition (e.g., the random 
survival forest [RSF]4) or as a complement (e.g., Cox-net), 
with the standard survival analysis model such as CoxPH.5

The concept of using an ANN in survival analysis, for 
learning nonlinear risk functions, was first proposed by 
the Faraggi-Simon network.6 In this approach, the amount 
of βZi in Equation (1), was replaced with the output of a 
single-layer feed-forward neural network to determine the 
vector of the unknown parameters θ. Though the Faraggi-
Simon model did not significantly outperform the stan-
dard CoxPH model, it suggested that a similar extension 
can be constructed. Since then, many attempts have been 
performed to acquisition and handle the superb capacity 
of the neural network in the survival analysis.

Recently, deep learning has attracted remarkable atten-
tion for modeling the complex interactions between the 
covariates in the survival analysis,7,8 among them the deep 
learning-based survival model (DeepSurv)9  has provided 
striking results. Hitherto, some studies suggested that the 
DeepSurv models have learned efficiently the complex pa-
tient’s risk factor obtained from multiple parameters and out-
performed in estimating the failure of treatment for different 
cancer types such as cervical, oral, and lung cancers.10,11 
However, to our knowledge, no study has been performed 
on patients with GBM. Furthermore, the performance of the 
deep learning-based survival model is intimately affected by 
the appropriate configuration of the model hyperparameters. 
Albeit, it has remained a challenging and time-consuming 
task due to computational and process limitations.

On the other hand, given that GBM is a highly hetero-
geneous tumor at both molecular and histological levels, 
the combination of both clinical manifestations of the 
patients and the molecular marker of GBM may give a 
better survival prediction.12 However, rare studies have in-
vestigated the combined influence of characteristics such 
as clinical data, tumor characteristics, treatment options, 
and molecular markers of GBM in the survival model’s 
predictive accuracy.13 Accurate patients’ survival predic-
tion remains a challenging work.

Therefore, this study was designed to investigate three 
issues: (i) To evaluate the effect of concurrent multivariate 
risk factors including patient characteristics, tumor site, 
post-surgery treatment specification, and molecular marker 
on patient’s survival; (ii) To validate the deep learning-based 
survival model performance in comparison with two other 
survival reference models (i.e., CoxPH and RSF); and (iii) To 
assess the impact of hyperparameter optimization methods 
(random search and Bayesian optimization) on the perfor-
mance of deep learning-based survival model. The work-
flow of our work is summarized in Figure 1A.

The rest of the paper is as follows. In the next section, 
our dataset, the survival models, particularly the deep 
learning-based survival model, are clarified. Furthermore, 
hyperparameter optimization techniques and statistic 
metrics used for our assessment are explained in detail. 
Experimental results are illustrated in Section 3. Finally, 
a comparison analysis with the results of previous studies 
and the conclusion of our work is described in Section 4.

2   |   MATERIALS AND METHODS

2.1  |  Data collection

Of the 305 histopathological confirmed GBM patients, 260 
cases (163 males and 97 females with a mean age of 59 years) 
were selected. Patients were eligible who meet our inclusion 
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criteria as follows: (i) demographic characteristics encom-
pass the gender, age at surgery, Karnofsky performance 
score (KPS), and race; (ii) tumor laterality and location, (iii) 
detailed of post-surgical treatment, that is, time to start con-
current chemoradiotherapy (CCRT) after surgery, receiving 
standard treatment (yes or no); (iv) radiotherapy techniques 

including three-dimensional conformal radiotherapy (3D-
CRT), intensity-modulated radiotherapy (IMRT), other (ste-
reotactic or brachytherapy); and (v) access to last follow-up 
time and death status of survival (dead or alive). The flow 
diagram of patients’ recruitment, with the inclusion criteria 
in the study, is depicted in Figure 1B.

F I G U R E  1   Study workflow and patients flow diagram. Panel (A) workflow of this study. Panel (B) study flow diagram of patients’ 
recruitment, with the exclusion criteria. CCRT, concurrent chemoradiotherapy
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These data are available from the The Cancer Genome 
Atlas Glioblastoma Multiforme (TCGA-GBM) series14 and 
IVY Glioblastoma Atlas Project (Ivy GAP) database15 and 
provides the pathological, genetic, clinical data, and radio-
logical data of patients. Both datasets are without a patient 
identifier, so the approval of the institutional review board 
is not required.

The per-operatives magnetic resonance volumes were em-
ployed to determine tumor laterality and tumor location of 

the selected TCGA-GBM patients by a specialist. In Table 1, 
the clinical and tumor information of the eligible cases for 
each series (TCGA-GBM and IVY GAP) is summarized.

Moreover, isocitrate dehydrogenase 1 (IDH1) and O-
6-methylguanine-methyltransferase (MGMT) were inte-
grated into our survival analysis as molecular markers. 
These markers have frequently been reported as favor-
able prognostic factors of GBM patients. The molecular 
characterization of the TCGA-GBM dataset is available 

T A B L E  1   Demographic information and tumor characteristics of eligible patients (from the TCGA-GBM and IVY Gap datasets) with 
glioblastoma

Collection 
(n) Gender (n, %) Age (n, %) KPS (n, %) Race (n, %)

Tumor 
laterality (n, %)

Tumor location 
(n, %)

TCGA-GBM 
(221)

Female (80, 36%) Age < 40 (25, 11%) KPS ≤ 70 (53, 24%) White (204, 93%) Right (103, 47%) Frontal (64, 29%)

Male (141, 64%) 40 ≤ Age ˂ 65 (125, 57%) 70 < KPS ≤ 90 (130, 58%) Black (12, 5%) Left (118, 53%) Temporal (63, 28%)

Age ≥ 65 (71, 32%) KPS > 90 (38, 18%) Asian (5, 2%) Parietal (37, 17%)

Occipital (19, 9%)

Othera  (38, 17%)

IVY-GAP 
(39)

Female (17, 44%) Age < 40 (3, 7%) KPS ≤ 70 (7, 18%) NA Right (27, 69%) Frontal (12, 31%)

Male (22, 54%) 40 ≤ Age < 65 (28,72%) 70 < KPS ≤ 90 (21, 53%) Left (12, 31%) Temporal (10, 26%)

Age ≥ 65 (8, 21%) KPS > 90 (11, 29%) Parietal (13, 33%)

Occipital (3, 8%)

Other (1, 2%)

Abbreviations: GAP, Glioblastoma Atlas Project; KPS, Karnofsky performance score; NA, not available; TCGA, The Cancer Genome Atlas Glioblastoma 
Multiforme.
aOther is related to tumors located at other lobes or more than one lobe.

F I G U R E  2   Kaplan–Meier curves on the overall dataset (260 patients) are represented for clinical factors, with pairwise comparisons 
using the log-rank test and risk table. Panels (A–C), respectively, confirm that the KPS, age, and race are statistically significant prognoses. 
While panel (D) shows, gender is not a statistically significant prognostic factor. KPS, Karnofsky performance score
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through the Genomic Data Commons Data Portal and was 
extracted by the Bioconductor (open development and 
free, open-source software) packages in R (version 3.6.2) 
languages. The clinical and genomic data of IVY GAP 
are accessible via https://gliob​lasto​ma.allen​insti​tute.org. 
The distribution of molecular markers, that is, IDH1 and 
MGMT, for all eligible patients is represented in Table S1.

2.2  |  Survival models

Survival analysis (or time-to-event analysis) is an actuarial 
method that has tremendous applications in clinical on-
cology. One of the main objectives in survival analysis is to 
designate the probability of occurrence of the event of in-
terest (e.g., death time) beyond any specified time (t), that 
is, survival function S(t)  =  Pr(T  >  t). Alternatively, the 
survival function can be accessed by S(t)  =  exp(−H(t)), 
where H(t) is the cumulative hazard function (CHF) and 
is defined as H (t) = ∫ t0 h(x)dx. Heretofore, a wide range 
of statistical methods has been presented in three main 
categories (i.e., parametric, non-parametric, and semi-
parametric) to estimate the survival function and hazard 
ratio. In this study, the performance of the state-of-the-
art survival model, that is, deep learning-based survival 
models, is compared alongside the two reference survival 
models, that is, CoxPH and RSF.

2.2.1  |  Cox proportional hazard

There is no doubt, that the CoxPH models are the most 
pervasive survival models in medical analysis, because 
of their simple execution and informative explanation. 
As described earlier (Equation 1), the CoxPH model is a 
linear combination of the covariate (β1Z1+ … +βpZp). If 
denote ck(c1, … ck) the possibly censored event time for 
individual k, the corresponding partial likelihood16 is de-
fined by Equation (2).

where Rk refers to the set of individuals at risk at event time, 
and if individual k is an observed event time, Dk = 1 other-
wise Dk = 0.

2.2.2  |  Random survival forest

Random survival forest, an extension of Bierman’s ran-
dom forest method in survival analysis, is a non-linear and 
non-parametric model.4 RSF is determined based on an en-
semble tree, where a tree is grown by applying B bootstrap 
samples randomly of each data. Almost 37% of the data are 

(2)LCox =

n�

k = 1

�
e�kZk(ck)

∑
j∈Rk

e�kZk(ck)

�Dk

F I G U R E  3   Kaplan–Meier curves on the 260 patients are represented for tumor factors, with pairwise comparisons using the log-rank 
test and risk table. (A) Present a statistically significant differences in the log-rank test for tumor location, but the (B) shows no statistically 
significant difference in the tumor laterality

https://glioblastoma.alleninstitute.org
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excluded in each bootstrap (in-bag) sample, which implies 
out-of-bagdata. Subsequently, variables with suitable crite-
ria with maximum log-rank risk tests are nominated and 
randomly selected to dichotomize each node of a tree.

This process iteratively is continued until it met the stop-
ping criteria. The ensemble CHF is determined by averaging 
over the CHF of each tree from nodes with no further split 
(terminal nodes). Eventually, the prediction error of ensem-
ble CHF is estimated by the concordance index (c-index).

2.2.3  |  DeepSurv

DeepSurv, a deep feed-forward neural network, is a non-
linear extension of the CoxPH model.9 The risk function 
(hθ(z)) of DeepSurv is estimated by the network output 
and is parameterized using the weight of the network (�). 
The loss function of the network (Equation 3) is computed 
by taking a negative log over the partial likelihood of Lcox 
from Equation (2), with extra modification.

where Rk refers to the set of individuals at risk at event time, 
and Dk = 1 if individual k is an observed event time, other-
wise Dk = 0.

DeepSurv has employed more advanced training meth-
ods such as rectified linear unit (ReLU) function, dropout, 
batch normalization, etc., using TensorFlow (an open-
source Python library) to improve efficiency.

Deep neural networks have demonstrated remark-
able performance on many machine learning applica-
tions.17 However, their performance is highly affected 
by the appropriate configuration of the model hyper-
parameters to yield the minimum value of the loss 
function and the best value for the model parameters. 
Lately, Bayesian optimization has demonstrated prom-
ising results by providing more powerful and intelligent 
tools for assessing search spaces.18 In contrast to ran-
dom search or grid search, Bayesian optimization is se-
quential model-based optimization, in which the mean 
and variance of the model are sequentially updated to 
the last observation.19

(3)loss (�) : = −
1

n (D = 1)

∑

k:Dk =1

log

(
∑

j∈Rk

exp
(
�kZk

(
ck
))

− �kZk
(
ck
)
)

+ � ∗
‖‖‖
�22
‖‖‖

F I G U R E  4   Kaplan–Meier curves on the 260 GBM patients are represented for treatment factors, with pairwise comparisons using 
the log-rank test and risk table. (A) Shows a statistically significant difference in the survival of patients who did not start any standard 
treatment and patients who initiated standard treatment at regular time with a p value < 0.0001. (B) Indicate a statistically significant 
difference in the survival of patients who did not receive any radiotherapy and patients who received radiotherapy with a p value < 0.0001. 
(C) Present a statistically significant difference in the survival of patients receiving standard radiotherapy with concomitant chemotherapy 
(Commonly temozolomide) compared with those who did not receive such treatment with a p value < 0.0001. 3D-CRT, three-dimensional 
conformal radiotherapy; GBM, glioblastoma; I_CCRT, initiate concurrent chemoradiation therapy; IMRT, intensity-modulated radiation 
therapy; ST, standard treatment
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In this work, the CoxPH and the RSF were per-
formed using the R packages, survival, and ran-
domForestSRC, respectively, while DeepSurv by an 
open-source Python package. Hyperopt, a TensorFlow 
Python package,20 was employed for Bayesian hyper-
parameter optimization.

2.3  |  Statistical analysis

Typical metrics such as the root mean squared error are 
inappropriate for survival model analysis since survival 
data usually incorporate censoring data. In general, cen-
soring occurs in survival data due to missing patients’ 
follow-up or patients alive more than the study time. In 
this work, variables prognosis was assessed by the uni-
variate and multivariate CoxPH regression model, the 
log-rank test, and the hazard ratio. The performance 
of the survival models was evaluated by the c-index.21 
Extra information about these metrics is available in 
Data S1. Survival curves were plotted using the Kaplan–
Meier methods. All statistical analysis were performed 
by the R language (https://www.r-proje​ct.org/, version 
3.6.2), using the survival, survminer, and survivalROC 
packages.

3   |   RESULTS

The Kaplan–Meier curves of the demographic informa-
tion of patients, tumor variables, and post-surgical treat-
ment characteristics, as well as molecular markers (e.g., 
IDH1 and MGMT), are presented in Figures 2–5, respec-
tively, to assess the concurrent prognostic effect of inclu-
sion criteria in this study.

The relevant variables to the prognosis of the GBM pa-
tients were rated by univariate CoxPH analysis for both 
clinical and molecular variables, as are represented in 
Tables S2 and S3, respectively.

The multivariate analysis was performed using statisti-
cally significant variables in univariable analysis (Table 2).

Henceforth, the entire eligible dataset was randomly 
divided into the training set (70%) and into the testing set 
(30%), which was repeated 10 times to ensure all data were 
examined.

The survival outcome of the training set (to building 
the predictive model) and testing set (to assess the pre-
diction model accuracy) was not significantly different. 
The c-index was computed in each iteration on the train 
and test datasets. The ultimate c-index for three predictive 
survival models, that is, CoxPH, RSF, and DeepSurv, was 
obtained by averaging across indicators.

F I G U R E  5   Kaplan–Meier curves on 260 patients are represented for molecular markers (IDH1 and MGMT), using the log-rank test 
pairwise comparisons. (A) Indicates that IDH1 (wild-type) is statistically significantly related to poor prognosis with a p value < 0.02. 
(B) Shows methylated MGMT is related to a better prognosis with a p value < 0.00058. IDH1, isocitrate dehydrogenase 1; MGMT, O-6-
methylguanine methyltransferase

https://www.r-project.org/
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The optimum value of the hyperparameters was selected 
using two main strategies which include: (i) random search 
and (ii) Bayesian optimization. The performance of the 
hyperparameter tuning was evaluated by k-means cross-
validation (k = 5). A configuration with the largest validation 
c-index was determined to avoid the models’ overfitting. For 
searching hyperparameters, 100 iterations were performed. 
The selected hyperparameters used in the configuration of 
the DeepSurv models are represented in Table S4.

The DeepSurv model was developed with a three-layer 
neural network.

Our analysis was started with three multivari-
ate statistically significant factors (i.e., age, tumor 

location, and radiotherapy methods). Thereupon, sta-
tistically significant variables in univariate analysis, 
insignificant factors, and molecular markers were 
integrated into our survival analysis. Kaplan–Meier 
survival curves of these combinations of risk factors 
on both training and testing datasets were plotted for 
the deep learning-based survival model (DeepSurv) in 
Figure 6.

A comparison of  the performance of  survival 
models, that is, CoxPH, RSF, and DeepSurv, tuning 
with random search and Bayesian hyperparameter, 
at each level of  increasing the variables is presented 
in Table 3.

Characteristic

Overall survival

Factors (n) Hazard ratio (95% CI) p value

Demographic

Age 40 < Middle ≤ 65 (153) Reference

Elderly > 65 (79) 1.70 (1.229–2.34) 0.018*

Young ≤ 40 (28) 0.58 (0.343–0.99) 0.034*

KPS Bad ≤ 70 (60) Reference

70 < Good ≤ 90 (151) 0.96 (0.660–1.39) 0.827

Well > 90 (49) 0.80 (0.503–1.28) 0.352

Race Asian (5) Reference

Black (12) 2.93 (0.73–11.74) 0.13

White (243) 2.92 (0.888–9.57) 0.078

Tumor

Location Frontal (76) Reference

Occipital (22) 0.79 (0.471–1.33) 0.381

Multiplea  (39) 1.58 (1.16–2.46) 0.012*

Parietal (50) 1.06 (0.705–1.60) 0.771

Temporal (73) 1.25 (0.859–1.81) 0.045

Post-surgery treatment

Initiate CCRT Early (40) Reference

Late (50) 1.03 (0.593–1.60) 0.92

None (17) 8.84 (0.994–78.68) 0.05

Regular (153) 0.88 (0.583–1.34) 0.56

Radiotherapy type 3D-CRT (192) Reference

IMRT (35) 0.68 (0.433–1.035) 0.082

None (17) Reference

Otherb  (16) 0.5 (0.266–0.95) 0.035*

Standard treatment No (19) Reference

Yes (241) 0.35 (0.0469–2.75) 0.32

Abbreviations: 3D-CRT, three-dimensional conformal radiation therapy; CCRT, concurrent 
chemoradiation therapy; CI, confidence interval; IMRT, intensity-modulated radiation therapy; KPS, 
Karnofsky performance score.
aOther relates to tumors located at more than one lobe.
bMultiple is related to remaining radiotherapy methods such as stereotactic or brachytherapy.
*Variable with p value < 0.05 is considered significant.

T A B L E  2   Multivariate analysis 
over statistically significant univariate 
variables for overall survival in 
patients with glioblastoma using Cox 
proportional hazard regression models 
with concordance index = 0.69 and 
log-rank = 9.412e-19
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4   |   DISCUSSION

Though standard treatments of GBM tumors only post-
pone tumors growth for a while, introducing novel and 
personalized treatment methods may engender a new 
door to improve prognosis or even cure this disease. 
Accurate survival predictions are always desirable for 
physicians and patients to individualize treatment plan-
ning and avoid inessential treatments.

This study was designed to examine the influence of 
concurrent variables, that is, clinical, tumor, post-surgery 
treatment, and molecular factors, and mainly to validate 
and optimize the performance of deep learning-based 
survival models in improving the prediction accuracy of 
survival models.

Our results in Table S2 indicate that risk factors in-
cluding race, age, KPS, tumor location, standard treat-
ment, time to initiate CCRT, and type of radiotherapy 
are univariate significant for overall survival prediction 
(p value ≤ 0.05). However, three of them (i.e., age, tumor 
location, and type of radiotherapy) were statistically sig-
nificantly prognosis in multivariate analysis (Table  2). 
In agreement with previous work,22 age and tumor lo-
cation factors were reported as significant multivariate 
covariates. Since, study results have demonstrated that 
univariable relations alone may not be sufficient and in-
formative to determine important significant variables, 
particularly for complex datasets, using significant uni-
variate statistical variables in multivariate analysis is the 

most common approach. Multivariate analysis selects 
the variables that are independently most closely related 
to prognosis23, given that two interrelated variables are 
unlikely to choose both as significant variables by mul-
tivariate analysis.

Our results indicated that younger patients’ survival 
was better than elderly patients. Though there is no con-
sensus in standardized age cutoff,24 we categorized pa-
tients into elderly  ≥  65,25,26 young  <  40,27 and middle 
(40 ≤ age < 65) ages, based on the mentioned references. 
Age consistently is reported in various literature as effica-
cious prognostic survival variable,26,28,32,33,34.

In consensus with previous works,29,30 our findings 
also showed that tumors located at the temporal lobes 
or multiple lobes were associated with unfavorable 
prognostic factors compared with tumors located at 
frontal lobes. The poor prognosis of tumors located at 
the temporal lobes can be interpreted by the results of 
Kocher et al.,31 in which tumors located at the temporal 
lobe and the parietal lobe were determined as the most 
vulnerable lobes for cognitive function in patients with 
GBM. Furthermore, patients who received non-standard 
treatment of GBM showed the worst prognosis, which 
is compatible with the benefit of current standard care 
of GBM patients (i.e., radiotherapy concurrent with che-
motherapy, e.g., Temozolomide).

Besides, patients who underwent radiotherapy with 
stereotactic therapy or brachytherapy were statistically 
associated with a favorable prognosis. However, only 7% 

F I G U R E  6   Kaplan–Meier survival curves of the deep learning-based survival model (DeepSurv, optimized with Bayesian 
hyperparameter) on the training and testing datasets. Panel (A) shows the survival curve for three statistically significant multivariate factors 
(age, tumor location, and radiotherapy types), panel (B) shows the survival of seven statistically significant univariate factors (age, tumor 
location, and radiotherapy types, KPS, race, initiate CCRT, and standard treatment), panel (C) shows the survival curve of all factors (age, 
tumor location, and radiotherapy types, KPS, race, initiate CCRT, standard treatment, gender, and laterality), panel (D) shows the survival 
curve of a molecular marker (IDH1) combined with nine factors, and panel (E) shows the survival curve of molecular markers (IDH1 
and MGMT) combined with nine factors. CCRT, concurrent chemoradiation therapy; IDH1, isocitrate dehydrogenase 1; KPS, Karnofsky 
performance score; MGMT
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of cases were treated using these methods, and further 
studies are required to accept this factor as a biomarker. 
These findings are supported by the fact that ongoing im-
provements in rmedical imaging and radiation therapy 
techniques that have facilitated treatment volume delin-
eation and treatment conformality.32,33 For example, in 
contrast to the 3D-CRT, IMRT feasible further treatment 
conformality using several modulated beams with various 
intensities at different angles. Stereotactic radiotherapy 
allows for an even more accurate representation of treat-
ment volumes while saving surrounding vital structures, 
using many beam sources

To build survival models, we started with three signifi-
cant variables in our multivariate analysis. At this step, the 
DeepSurv (optimized with random search), CoxPH, and 
RSF models achieved a C-index of 0.67, 0.629, and 0.631, re-
spectively. Subsequently, all variables were added in five lev-
els to evaluate the effect of different variables combinations 
on survival model accuracy. After involving all variables in 
the analysis (fifth level), the DeepSurv models configured 
with random search (c-index  =  0.808) outperformed the 
CoxPH (c-index = 0.713) and RSF (c-index = 0.728) survival 
models. Furthermore, at this level, the DeepSurv model, 
configured with Bayesian hyperparameter optimization, 
strikingly performed best among the three survival models 
and achieved the highest c-index = 0.823.

In conclusion, from our promising findings, four ana-
lytical issues were deduced. First, age, tumor location, and 
methods of radiotherapy were independently significant 
prognosis variables. Second, even insignificant prognosis 
variables played roles in improving the predictive accu-
racy of survival models.

Third, the deep learning-based survival model outper-
formed the Cox proportional hazard regression and random 
survival forest models’ ability for accurate GBM survival 
prediction. Furthermore, the optimum hyperparameter 
tuning may remarkably improve the deep learning-based 
survival models performance. As a result, the remarkable 
performance of DeepSurv indicates the ability of the deep 
learning model in learning complex association of risk fac-
tors. The deep learning-based survival model may have a 
great potential to be incorporated into the treatment plan-
ning of patients with GBM in a routine oncology workflow 
by improving the prediction of mortality risk of GBM pa-
tients. In the future, this work will be extended to investi-
gate the adding value of the reproducible radiomics features 
to the deep learning-based survival model.34
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