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Crossbreeding is a process in which animals from different breeds are mated

together. The animals produced will exhibit a combination of both additive and

non-additive genetic improvement from parental breeds that increase

heterozygosity and negate inbreeding depression. However, crossbreeding

may also break up the unique and often beneficial gene combinations in

parental breeds, possibly reducing performance potential as the benefits of

heterosis depends on the type of crossbreeding systems used and heritability of

the traits. This effect of crossbreeding, especially on the genome architecture, is

still poorly understood with respect to 3-breed crossbreeding systems. Thus,

this study examined variation in genomic ancestry estimations relative to

pedigree-based estimations and correlated breed composition to key

production and health traits. Two rotational crossbred populations,

referenced as ProCROSS and Grazecross were assessed and totaled

607 crossbred cattle. ProCROSS is a product of rotational crossbreeding of

Viking Red (VKR), Holstein (HOL), and Montbeliarde (MON). In contrast,

Grazecross consists of Viking Red (VKR), Normande (NOR), and Jersey (JER).

Both breeding programs were aimed at capitalizing on the positive effect of

heterosis. The VKR is amarketing term for Swedish Red, Danish Red, and Finnish

Ayrshire breed which complicated breed determination. Therefore, genomic

breed composition estimates were compared using two different

representations of VKR, one of which was based on parents used in the

crossing system and a second based on genotypes from the ancestral

breeds that comprise VKR. Variation of breed composition estimates were

assessed between pedigree and genome-based predictions. Lastly, Genomic

estimations were correlated with production and health traits by comparing

extreme performance groups to identify the relationship between breed

ancestry and performance. With the exception of the JER breed

composition in Grazecross, all other estimates of the purebred contribution

to the ProCROSS and Grazecross showed a significant difference in their

genomic breed estimation when using the VKR ancestral versus the VKR

parental reference populations for admixture analysis. These observations
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were expected given the different relationship of each VKR representation to

the crossbred cattle. Further analysis showed that regardless of which VKR

reference population was used, the degree of MON and HOL breed

composition plays a significant role in milk and fat production in ProCROSS,

while the degree of VKR and NOR ancestry were related to improved health

performance in Grazecross. In all, identifying the most appropriate and

informative animals to use as reference animals in admixture analysis is an

important factor when interpreting results of relationship and population

structure, but some degree of uncertainty exists when assessing the

relationship of breed composition to phenotypic performance.
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1 Introduction

Within domesticated animals, “pure” breeds have been

developed and are a recognized population of individuals

displaying specific attributes. A purebred animal is bred from

parents of the same breed and is expected to inherit

characteristics attributed to the breed that are likely under

extreme selective pressure or possibly fixed within the breed,

ensuring the propagation of these breed-specific traits in future

generations. In contrast, crossbred animals, or animals bred from

parents of differing breeds, will exhibit a combination of

characteristics from both parental breeds. Intentional breeding

of purebred or crossbred animals has inherent challenges and

advantages with respect to offspring expressing the desired traits

of mated individuals and managing inbreeding depression. To

this end, much research has been invested in studying the

development of pure breeds and crossbreds.

Globally, dairy cattle have undergone natural and artificial

selection with varying degrees of selective pressure resulting in

many well recognized pure breeds of cattle and less characterized,

but often environmentally adapted, indigenous or admixed cattle

populations (Vanraden and Sanders, 2003; Stella et al., 2010;

Zhao et al., 2015; Gautason et al., 2021). While the intense

selection of purebred cattle has created breeds exceptionally

known for milk production like the Holstein breed, milk

solids in the Jersey, or superior health traits in the Norwegian

Red breed, it has also led to inbreeding depression (Pryce et al.,

2014; Gurgul et al., 2016; Dechow and Hansen, 2017: Gautason

et al., 2021). Crossbreeding is commonly seen as a method of

producing high production animals well-adapted to local

environments and a tool to mitigate inbreeding depression

(Mbole-Kariuki et al., 2014; Leroy et al., 2016).

In particular, the Holstein breed plays an important role in

the dairy industry as a pure breed, noted for its exceptional

production and its contribution to many crossbreeding programs

similarly aiming to increase production (Vanraden and Sanders,

2003). Despite the breed’s notoriety for superior production, it

was also noted for its declining reproductive performance up

until approximately 2010 (VanRaden, 2017; Berry, 2018). Prior

to 2010, fertility was inadvertently selected against due to its

negative correlation to production traits under extreme selection,

with poor fertility likely exacerbated by inbreeding depression

(Berry et al., 2014). Inbreeding depression is the consequence of

accumulating deleterious mutations inherited from common

ancestors in the lineage and is often expressed when in a

homozygous state. As intensive selection propagates

homozygosity across the genome to stabilize trait selection

within the breed, crossbreeding increases genomic diversity

with resulting heterosis or hybrid vigor in offspring. Extensive

experimentation and research have been and continue to be

conducted in the dairy industry to explore the benefits and

drawbacks of crossbreeding, including optimization of breeds

to cross and the identification of breed influence on performance

(Touchberry, 1992; McAllister et al., 1994; Heins et al., 2006a).

Multiple crossbreeding schemes have been explored with

differing use of breeds as well as the number of breeds used in a

program and how many generations crossbreeding continoues.

Another common consideration is whether to continue breeding

among the crossbred animals generated or to breed future

generations to purebred animals. One such crossbreeding

system found to monopolize on heterosis is a 3-breed

rotational crossbreeding system using complementary breeds

(Dechow and Hansen, 2017). The 3-breed crossbreeding

rotation of complementary breeds was found to maintain the

highest level of heterosis (86%) due to the relationship of bulls

and cows mated being more remote. One such example of a 3-

breed rotational cross known as ProCROSS, was developed and is

marketed by ProCROSS International, owned by parent

companies, VikingGenetics and Coopex Montbeliarde

(Randers, Denmark and Roulans, France). This system starts

by crossbreeding a pure Holstein (HOL) cow to a Viking Red

(VKR) bull. The first generation (F1) progeny heifers are then

mated to pure Montbeliarde (MON) bulls. Each successive

generation of crossbred progeny is subsequently bred to bulls

from HOL, VKR, and MON in a rotational pattern. The HOL,

VKR, and MON were selected due to their historical trait
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improvements, with the HOL breed contributing milk volume

and solid content to the 3-breed rotation and the MON and VKR

breeds contributing strength, health, and fertility performance.

Extensive research investigating the rotation of the 3-breeds and

performance comparison to pure Holstein has been conducted

(Heins et al., 2006a, Heins et al., 2006b, Heins et al., 2008a, Heins

et al., 2008b, Heins et al., 2010, Heins et al., 2011, Heins et al.,

2012, Heins, 2019). In addition, another crossbred population,

known as Grazecross, was designed for low-input grazing

systems. Grazecross consists of a 3-breed rotation of Jersey

(JER), crossed to Normande (NOR), crossed to VKR. The JER

is well known for its milk solid content but more diminutive

stature than HOL, while NOR breeds are reported to produce

highmilk protein content with outstanding grazing ability (Heins

et al., 2012).

Of particular note in the ProCROSS and Grazecross systems

is the use of VKR cattle as developed and marketed by Viking

Genetics (Randers, Denmark). The VKR cattle developed by

Viking Genetics in the 1980s combined the genetic improvement

programs of the previously separate Swedish Red and White,

Finnish Ayrshire, and Danish Red populations. The idea of

including the VKR in the crossbreeding program may increase

the level of heterosis in ProCROSS and Grazecross by

introducing new variant that are not routinely used in the

United States. However, the effect of this mixed breed on

crossbred genome architecture is poorly understood. Often the

unique haplotypes or gene combinations created within a

purebred population are signature to the purebred breed

themselves and give rise to the crossbred performance.

However, crossbreeding may also break up the unique and

often beneficial gene combinations in purebred breeds,

possibly reducing performance potential as the benefits of

heterosis depend on the type of crossbreeding systems used

and traits heritability.

This study focused on understanding the impact of using

different reference populations in determining ancestry in

admixed populations and how this influences global genome

ancestry estimates. ProCROSS and Grazecross cattle and

respective ancestral reference populations were the focus of

our study and provided a unique opportunity to explore the

impact of reference populations by assessing two different

datasets to represent VKR ancestry, one being a combination

of Swedish Red (SWD), Danish Red (DNR), and Finnish

Ayrshire (FAY), and the other being commercially marketed

VKR bulls used as sires in the breeding program. The first

objective of this study was to characterize the genomic

ancestry and assess variation in results dependent upon the

reference population used. We expected the commercial VKR

population to give a more exact representation of breed

composition for the ProCROSS and Grazecross than the VKR

ancestral reference panel due to the close relationship between

commercial VKR parental animals and the crossbred

populations. This study’s second aim was to compare breed

estimation variation between pedigree records and genomic

breed estimations using the two different VKR reference

populations. Lastly, we explored the effect of global breed

estimation and the influence of ancestry on production traits

of milk volume, protein, fat, and the health trait of somatic cell

score in the ProCROSS and Grazecross. The effect of reference

population on the correlation between breed composition and

performance was similarly assessed. Our results demonstrate

how the use of specific animals representing the reference

populations in an admixture study can alter results of breed

composition in admixed animals. Therefore methology,

including reference populations used and how this may affect

interpretation, should be reviewed in research publications

before considering applications to crossbreeding programs.

2 Materials and methods

2.1 Datasets

The ProCROSS and Grazecross data were from the

University of Minnesota West Central Research and Outreach

Center (UMN) dairy herd in Morris, Minnesota, United States.

Data included 378 ProCROSS and 229 Grazecross cattle

genotypes, three major production traits (Milk, Fat, and

Protein Yield), and one health trait (Somatic Cell Score).

Other relevant information such as sire and dam information,

birth date, and recent sire breed were also included in these

datasets. Both groups of admixed cattle have birthdates spanning

from 2003 to 2018.

As described in the introduction, both cattle herds are

produced through rotational crossbreeding, where ProCROSS

cattle are generated through the rotational mating of cattle

representing VKR, HOL, and MON breeds to hybrid cows. In

contrast, Grazecross cattle utilize VKR, NOR, and JER. A more

detailed description of the crossbreeding rotations are in Pereira

and Heins (2019). To investigate the admixture of ProCROSS

and Grazecross, cattle representing the purebred and admixed

breeds used in the two rotational systems were needed for

comparison. Table 1 summarizes the datasets used in this

study with their respective numbers and source. The SNP data

of all animals studied were obtained through bovine genotyping

array kits, BovineHD DNA Analysis Kit (HD150K),

BovineSNP50 DNA Analysis BeadChip (50K) and

CLARIFIDE® 50k (ZL5) (Illumina- Neogen, Lansing, MI,

United States Clarifide–Zoetis, San Diego, CA, United States).

In this study, two different datasets were used to represent the

VKR population which has its own admixed origin as well. The

first VKR representation included the 13 bulls marketed as VKR

which were directly used in the breeding program for the

ProCROSS and Grazecross in the study. These bulls were

predominantly SWD and DNR crosses. The genotypes of the

13 bulls were provided by Viking Genetics (Randers, Denmark).
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The second VKR representation was the VKR’s ancestral breeds

consisting of four DNR, 23 SWD and 27 FAY cattle, totaling

54 animals. While the DNR was from parental individuals, the

SWD and FAY genotypes were purebred populations from

Sweden and Finland, respectively (Iso-Touru et al., 2016;

Upadhyay et al., 2019). The HOL genotypes were similarly

directly related to the two admixed populations and

represented animals used for breeding in the admixed

populations or purebred counterparts within the same herds.

The JER, MON, and NOR genotypes were obtained from Gautier

et al. (2010) and represented purebred animals from the

United States (JER) and Europe (MON and NOR), respectively.

2.2 Filtering and quality control of
genomic data

The total number of SNP markers available in the merged

datasets for ProCROSS and Grazecross admixed populations with

their ancestral populations were 156,731 and 149,030, respectively.

However, the number of SNPs genotyped per animal varied

considerably due to the differing densities of the genotyping

platforms and potential laboratory batch effects in genotyping.

In the ProCROSS dataset, 36% (n = 137) were genotyped with

Bovine150K, while the rest (n = 241) were genotyped with

BovineSNP50 platform. Grazecross animals were genotyped

using the BovineSNP50 DNA Analysis BeadChip (50K) (n =

59) or BovineHD DNA Analysis Kit (HD150K) (n = 170). The

SNP used for analysis were identified based on those common

across genotyping platforms and passing quality control

thresholds. Given the crossbred nature of much of the

population and limited genotypes available for many of the

purebred samples, imputation was not pursued. Quality control

(QC) analyses for both sets of autosomal SNPs were calculated

using SNP and Variation Suite (SVS) v8.x (Golden Helix, Inc.,

Bozeman, MT). Various thresholds for quality control measures

were examined in an effort to maximize the number of SNP

available for analysis while narrowing the SNPs used to ones

informative for differentiating admixed and ancestry populations.

This involved the evaluation of Minor Allele Frequencies (MAF)

between 0.05 and 0.10 and SNP call rate between 0.6 and 0.95. The

effects of each different threshold combination were assessed

through Principal Component Analysis (PCA) diagrams. The

selected thresholds (MAF: >0.05, SNPs call rate: >95%) resulted

in tighter clustering of individuals within a population and

relatively clear separation between ancestral and admixed

populations (Supplementary Figure S1). In addition, the SNPs

left were further pruned for linkage disequilibrium (LD) using a

threshold of r2 > 0.75. The SNPs were also excluded if they were

unmapped to the UMD 3.1 bovine genome assembly (Zimin et al.,

2009) or mapped to sex chromosomes.

2.3 Principal component analysis and
estimation of fixation index

Genomic data were analyzed through PCA in SVS (Golden

Helix, Inc., Bozeman, MT) with an additive model identifying the

first 10 principal components. Besides identifying the SNP quality

thresholds to maximize the number of SNPs used in the analysis,

PCA was also used to assess population structure within admixed

populations and compare to ancestral breeds. Analyses were

conducted to confirm the relationship of the ancestral

populations to the admixed population and identify if any

substructure existed within the crossbred population. In total, six

different datasets were analyzed by PCA, including two PCA for

ProCROSS, two PCA for Grazecross, one PCA comparing VKR to

their ancestral breeds, and one using all individuals representing

TABLE 1 Summary of cattle samples by population, respective breeds, number of animals and genotype source.

Population Breed Sample (n)a SNPb chip Origin of the data

Admixed ProCROSS 378 HD150K/50K UMNc

Grazecross 229 HD150K/50K UMNc

Ancestral Holstein 92 HD150K/50K/ZL5d UMNc

Jersey 73 HD150K/50K Gautier et al., 2010, Illumina®

Montbéliarde 34 HD150K/50K Gautier et al., 2010, Illumina®

Normande 35 HD150K/50K Gautier et al., 2010, Illumina®

Swedish red 23 HD150K Upadhyay et al. (2019)

Finnish ayrshire 27 50K Iso-Touru et al. (2016)

Danish red 4 50K Viking genetics

Viking red 13 50K Viking genetics

aSamples call rate >90%.
bSNP, Single Nucleotide Polymorphism.
cUMN, University of Minnesota.
dZoetis low-density chip, version 5.
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VKR (parental and ancestral) with admixed populations and other

purebreds.Within the two PCA each for ProCROSS andGrazecross,

the reference population used to represent VKR cattle was

alternated. One PCA for each admixed population used founding

breeds of Viking Red, including SWD, FAY, and DNR, whereas the

other PCA for each admixed population used cattle marketed as

VKR, which were sires of animals within the admixed populations.

The fifth PCA compared the marketed VKR with their ancestral

breeds as noted above, to characterize the sub-structure related to

VKR cattle. The other PCA incorporated all animals representing

VKR, including the parental sires marketed as VKR and the

individuals from the ancestral breeds. This PCA was run to

identify any substructure related to VKR or how VKR clustered

compared to the other purebred breeds or admixed population

when combined. Estimation of fixation index (FST) was based on

Wright’s F statistic using SVS v8.8.5 (Golden Helix, Inc., Bozeman,

MT) to investigate the genetic difference between the populations.

2.4 Genomic breed composition
estimation

The genomic-based breed composition was estimated from

genomic data using a maximum likelihood model implemented

in ADMIXTURE 1.23 software (Alexander et al., 2009). PLINK

software version 1.9 (Chang et al., 2015) was used to generate data

input files for ADMIXTURE. This analysis identified genomic breed

composition in the admixed populations that was used to compare

with pedigree estimations of breed composition. The same datasets

used in PCA analysis were analyzed using unsupervised clustering

analysis with different K values where K represented the expected

number of genetic clusters or ancestral populations. Due to

nontypical breeds being detected in the pedigree information,

such as JER in ProCROSS, an additional admixture analysis was

run with all animals from the PCA datasets, including both

admixture populations and all potential ancestral breed

populations using K = 5 and 7. Different K values were

examined to see the effect of VKR’s ancestral breeds in the

population. In addition, admixture was run using all available

individuals for each ancestral population versus a more balanced

number of individuals to represent each population, thereby

examining the influence of the number of individuals

representing a breed on population structure. Reduced numbers

of HOL and JER cattle were selected based on their breed purity

through analysis against 9 other purebreds: Montbéliarde,

Normande, Norwegian Red, Guernsey, Brown Swiss, Ayrshire,

Braunvieh, Short Horn and Finnish Ayrshire (Upadhyay et al.,

2019; Iso-Touru et al., 2016; Gautier et al., 2010) to provide a more

comparable number of animals representing each ancestral breed.

This analysis yielded 49 HOL and 44 JER animals with minimum

95% breed purity which were then included for admixture analysis

with the admixed populations.

2.5 Comparison of genomic breed
composition to performance traits

Phenotypic records were provided by Dairy Records

Management Systems (Raleigh, NC) that included estimates of

305-days lactation records for Milk Yield (MY), Fat Yield (FY),

Protein Yield (PY), and Somatic Cell Score (SCS). This dataset

included more than 5,000 animals, including both admixed and

parental populations used in the ProCROSS and Grazecross

populations. However, only admixed animals with genotype data

were considered and used for downstream analysis. The mean value

of a trait was used for all animals with multiple recorded

measurements. First, a predictive model was fit based on linear

regression using linear model function in R version 4.1.1 (R Core

Team, 2021). Models for each quantitative trait (Model ProCROSS

and Model Grazecross) were analyzed using a base model, with

covariate of genomic breed composition (GBC), breed generation

(Gen) and sire breed (Sire), where the threshold for significance was

considered at p-value< 0.05. Genomic breed composition (GBC)was

obtained from the breed estimation produced from the Admixture

analysis. Breed generation (Gen) was the generation number of the

produced admix animals due to the rotational crossbreeding systems.

Using this model, the effect of different explanatory variables on

admixed animals’ performance was investigated.

Model ProCROSS � lm (Trait(s) ~ GBC + Gen + Sire )
Model Grazecross � lm (Trait(s) ~ GBC + Gen + Sire )

Next, we evaluated the genomic breed composition of the

animals between the two extreme tails in terms of performance to

determine if there was a significant difference in the breed

composition of animals related to performance. To achieve

this, first the phenotypic data were processed in R version

4.1.1 (R Core Team, 2021) to determine normality and

opposing extreme tails. Extreme tails in this study were

defined by the top 20% as high-performance animals, while

the lowest 20% were low-performance animals. The normality

of each group was then determined using the Shapiro Test. The

association of genomic breed composition from admixture

analysis with extreme performance was conducted using a

Student’s t-test function available in R (Chambers and Hastie,

1992). All associations between variables were assessed through

the p-value produced by each test.

3 Result

3.1 Filtering and quality control of
genomic data

The optimum number of informative SNP was identified

by weighing various QC on the SNP common across

genotyping platforms within the merged datasets. Since
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three different types of commercial bovine SNP chips were

used for genotyping crossbred and reference animals in each

dataset, we expected to see a reduced number of common SNP

shared across platforms and passing QC (Wang et al., 2020).

Indeed, only 15,708 SNP were common across the five

commercial bovine SNP chips. Stringent quality parameters

(MAF: >0.05, SNPs call rate: >95%, r2 > 0.75) were selected to

ensure no biasness in terms of the source of the SNPs;

nevertheless, the number of SNPs should be sufficient to

cover and represent the majority of regions across the

genome and were successful in distinguishing population

structure. Comparing genotyping call rates across all the

SNP in both merged datasets implied that most of the

samples had less than 0.3 call rate, which agreed with the

total number of samples genotyped on 50K SNP (Illumina

and Clarifide©) instead of HD150K (Illumina). Thus, SNPs

with less than 95% call rate were excluded, resulting in the

removal of 146,897 SNP for ProCROSS and 138,183 SNP for

Grazecross. Next, 38 SNPs and 45 SNPs were excluded because

minor alleles were less than 0.05, while 4 SNPs and 7 SNPs were

dropped due to LD more than 0.75 with other SNP for

ProCROSS and Grazecross datasets, respectively. In total,

9,792 SNPs and 10,795 SNPs were retained for ProCROSS

and Grazecross datasets, respectively, for downstream analysis.

3.2 Principal component analysis

3.2.1 Viking red representation
Two VKR representations were assessed to investigate the effect

of differing reference populations on breed composition and ancestry

relationship to performance traits in the admixed populations. The

PCA analysis of the VKR with its ancestral breeds (Supplementary

Figure S2) showed a high level of similarity between populations with

little substructure. In all, the VKR parental animals were spread along

the x-axis, reflecting PC1 (1.94%) and among all of the ancestral

breeds. Principal component 2 (0.97%) differentiated the DNR and

one VKR parental animal from the others. Nonetheless, the different

representations of VKR in the datasets provided different admixture

measures that were used to correlate with the performance traits. The

PCA plots in Figure 1 demonstrated the effect of two different VKR

datasets on ProCROSS and Grazecross. The additional PCA analysis

combining both VKR representations mirrored the same general

clustering of the previous analyses (Supplementary Figure S3). All

FIGURE 1
Principal component analysis comparing admixed populations of ProCROSS andGrazecross with their ancestral breeds. The top diagrams (A,B)
depict ProCROSSwith ancestral populations of HOL, MON, and VKR. The bottomdiagrams (C,D) depict Grazecross with ancestral population of JER,
NOR, and VKR. Left-hand diagrams (A,C) use the ancestral breeds of SWD, FAY and DNR to represent VKR. The right-hand diagrams (B,D) use
commercial VKR sires used in the ProCROSS and Grazecross populations to represent VKR. The right-hand table shows the number of SNPs
used for the PCA with the percentage of variation described by principal components 1 (X-axis) and 2 (Y-Axis) for each diagram.
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PCA were completed using different sets of autosomal SNPs

identified after QC optimization, as listed in Figure 1.

Limited genetic sub-structure was revealed between populations

in both admixed population PCA, further validated by the pairwise

FST value (Table 2). In the ProCROSS population, the lowest genetic

differentiation was observed between the two VKR representations,

which is 0.0216 while the highest genetic differentiation was between

HOL and JER with 0.1630. The same observation with the same

population pair was shown in the Grazecross population with the

lowest of 0.0218 and the highest of 0.1761, respectively. Comparing

both VKR representations showed that parental VKR has a closer

relationship with ProCROSS and Grazecross populations than

ancestral VKR as expected.

3.2.2 Population structure of ProCROSS and
Grazecross populations

The PCA (Figure 1) for both populations revealed the expected

distribution for each population cluster where the admixed

population was at the center of the PCA while parental sources

surrounded the admixed population in a triangle-like distribution

for a three-crossbreed rotation. In the ProCROSS PCA, the highest

component yielded 14.25% total variation, separating HOL and

MON; the second component segregated the VKR population and

yielded 6.58% total variation when using the ancestral VKR

(Figure 1A) and 5.13% total variation when using the parental

VKR (Figure 1B). Less variation was expected when comparing the

parental VKR given their direct relationship to the ProCROSS. Some

VKR individuals, regardless of which group representation, clustered

with the ProCROSS, contributing to lower variation in the second

component and demonstrating the higher degree of similarity

between the VKR and the ProCROSS in general. In the

Grazecross PCA, the highest component accounted for 12.91% of

the total variation, separating JER and NOR; the second component

accounted for 5.43% variation using the ancestral VKR (Figure 1C)

and 4.62% variation using the parental VKR (Figure 1D), with a

clear separation between VKR and Grazecross. Overall, similar PCA

clustering can be observed in the ProCROSS and Grazecross PCA

with clear sub-clustering of the admixed populations, especially in

Grazecross. Since both admixed populations were developed from

continuous rotational crossbreeding, the admixed individuals sub-

cluster based on themost recent breed of sire (Supplementary Figure

S4). The dominant ancestry or breed is determined by the most

recent purebred sire from the 3 major breeds. This is because,

without considering the generation number to produce the admixed

animals, the most recent purebred sire will contribute at least 50% to

the offspring’s breed composition.

3.3 Breed composition

3.3.1 Pedigree based
In general, both ProCROSS and Grazecross admixed animals

have proportions of ancestral breeds between 23.4% and 34%,

which was expected with the 3 breeds crossbreeding system

TABLE 2 Pairwise genetic differentiation (FST) value for all populations used in the ProCROSS and Grazecross breeding programs.

Population ProCROSS NOR MON JER HOL Ancestral VKR Parental VKR

ProCROSS

NOR 0.0706

MON 0.0442 0.1158

JER 0.0956 0.1350 0.1469

HOL 0.0511 0.1272 0.1467 0.1630a

Ancestral VKR 0.0375 0.0977 0.1143 0.1336 0.1131

Parental VKR 0.0488 0.0938 0.1116 0.1267 0.1124 0.0216b

Population Grazecross NOR MON JER HOL Ancestral VKR Parental VKR

Grazecross

NOR 0.0501

MON 0.0826 0.1163

JER 0.0605 0.1495 0.1617

HOL 0.0881 0.1279 0.1474 0.1761a

Ancestral VKR 0.0378 0.0981 0.1156 0.1510 0.1137

Parental VKR 0.0463 0.0943 0.1123 0.1422 0.1135 0.0218b

aThe highest FST, value within each admixed population.
bThe lowest FST, value within each admixed population.
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(Figures 2, 3). Ideally, three subgroup signatures were considered

to associate with the typical ancestry sources in each admixed

population. However, nontypical breeds were identified in some

of the admixed individuals based on pedigree information. For

example, JER is not a typical breed component in ProCROSS

populations, while HOL and MON are atypical in Grazecross.

Due to that reason, a slightly lower estimation of the major breeds

in the Grazecross population was due to two nontypical breeds

detected at marginally higher levels in the pedigree information.

A higher HOL breed composition of 9.0% was estimated because

the foundation animal of the Grazecross population is purebred

HOL (Pereira and Heins, 2019). Recent sire breed plays a major

role in determining admixed individual’s breed composition.

Due to the same effect of foundation animal, ProCROSS

admixed animals with HOL as the recent sire breed were

estimated to have the HOL breed proportion between 57.8%

and 62.5%, while the other two recent sire sources of MON and

VKR were estimated between 50.0% and 57.0%.

3.3.2 Genomic based breed composition
with admixture

Admixture results were used to estimate genomic breed

composition for ProCROSS and Grazecross individuals.

Admixture analysis was run with K = 5 and K = 7 in an

unsupervised clustering to assess overall population structure,

comparing ProCROSS or Grazecross and their ancestral

populations, again, interchanging representation of the VKR

group as shown in Figure 2 (Top) was the result from

admixture analysis K = 5 where VKR were the commercial

parental source animals, while Figure 2 (Bottom) used VKR’s

ancestral breeds. A clear distinction could be seen for most

purebred populations, which shows greater homogeneity and

less admixture within the HOL, JER, MON, and NOR. In

contrast, the SWD and FAY shared the same genetic

signature, excluding the DNR breed signature representation.

In slight contrast, in the admixture analysis (Supplementary

Figure S3) combining both VKR and its ancestral populations

along with all other breeds and both admixed populations, a

higher degree of admixture was observed within individuals of

the commercial VKR, SWD, and FAY, whereas DNR still

produced its own unique genetic signature. Using this same

combined dataset of all individuals, admixture results were

used to generate average genomic-based breed composition

(Figure 3). All nontypical breeds in both admixed populations

were detected at low levels within the admixed individuals.

Depending on which VKR datasets were used, JER

composition was estimated between 3.5 and 4.0% in

ProCROSS, while MON ranged from 2.0% to 3.0% in

Grazecross. However, a slightly higher nontypical HOL

composition was detected in Grazecross, ranging between

FIGURE 2
Admixture analysis reflecting genetic clustering of breeds for both ProCROSS andGrazecross admixed and all parental populations for K= 5 and
K = 7. Individual vertical bars along the X-axis represent individual cattle grouped by breed; Y-axis provides a measure of the composition of each
genetic population found within individuals.
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FIGURE 3
Average breed composition using pedigree or genomic data; parental or ancestral VKR representation. (A) Pedigree based breed composition
(B) Genomic based breed composition with commercial VKR as reference panel (C) Genomic based breed composition with ancestral VKR as
reference panel.

FIGURE 4
Admixture analysis for ProCROSS and Grazecross individuals using all major parental populations at K = 3. The top row used ancestral VKR (FAY,
DNR, and SWR) as the reference populationwhereas the bottom rowused parental VKR as the reference population. Columns (A,C) ordered admixed
individuals across the X-axis based on their recent sire while columns (B,D) ordered animals based on the generation of birth to better view the
impact of these variables on the admixed populations. Tables within each column describe the distribution of admixed individuals based on
assigned variables.
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4.8 and 7.0%. These results coincide with expectations of all the

admixed individuals used in both programs originating from

HOL (Pereira and Heins, 2019) and pedigree breed composition

estimates. Figure 3 also suggests that the usage of ancestral VKR

as the parental panel may overestimate the VKR composition in

the admixed population. Collectively, ancestral VKR

representation is estimated to contribute 35.5 and 36% in

ProCROSS and Grazecross, respectively. This estimation is

significantly different (p-value < 0.05) from the estimation

produced from using the commercial VKR as the parental

panel, which is 21.8 and 23.3% for ProCROSS and Grazecross

populations. This difference in VKR composition influenced the

estimation of other breed compositions. Except for Jersey

composition in Grazecross, the t-test analysis revealed

significant differences (p-value < 0.05) in all breed

composition estimates between the two VKR representation

datasets (Figure 3).

The same observation could also be seen in genomic breed

composition, in which the recent sire breed has the most

extensive composition in the admixed population. The

magnitude of the effect of the sire breed was analyzed in

ADMIXTURE software. Figure 4 was the admixture plot

produced based on K = 3, representing the three main breeds

in each admixed population ordered based on recent sire breeds

(Figures 4A,C) and breed generation information (Figures 4B,D).

The admixture plots arranged based on sire breeds showed three

genetic patterns across both the admixed populations as followed

in Supplementary Figure S4. Factoring in the VKR representation

showed a significant difference in the major breed composition

estimation except for JER. The rotational systems used for these

research herds produced a mixed individual developed from

multiple generations of crossbreeding. The ProCROSS

population consisted of offspring from the F3 generation up

to the F7 generation while the Grazecross population consisted of

offspring from the F3 generation up to the F8 generation. Despite

this, very little sub-clustering was observed based on order by

generation as opposed to order by recent sire. This result may

have been confounded by some of the admixed individuals in this

dataset undergoing different rotations of sire breed (for example,

HOL-MON-VKR versus HOL-VKR-MON) for the purpose of

other research objectives. Still, a comparison of the breeds

estimation produced between the two VKR representations

showed a small effect on the breed estimation when

considering generation where F4 and F5 individuals in

ProCROSS showed a significant difference. No significant

difference in breed composition was observed in the

Grazecross individuals in the aspect of generation number.

The reliability of pedigree-estimated breed composition can

be compromised by missing, inaccurate, or incomplete records

(Akanno et al., 2018). The pedigree composition was compared

with estimates of genomic breed composition produced from the

Q matrix in unsupervised mode; genomic breed composition

offers more robust result estimations (Chiang et al., 2010).

Factors such as a study population composed of only

unrelated animals, adequate representation of all ancestral

breeds, and low levels of linkage equilibrium between markers

improve genomic breed-composition accuracy produced in the

Q matrix (Alexander et al., 2009). Therefore, pedigree and

FIGURE 5
Comparison of average breed composition based on pedigree and genomic breed estimations comparing VKR population influence. Barplot A
is for ProCROSS datasets and Barplot B is for Grazecross dataset. X-axis represent the average breed composition; Y-axis provides the percentage of
breed composition. A t-test is used to compare between the methods/datasets the change in breed composition average. Error bars use one
standard deviation and letters indicate significant difference between estimations with p-value < 0.05 within breed composition.
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TABLE 3 p-value of comparison between 20% high performance and 20% low-Performance group in both admixed populations with different VKR’s datasets.

Ancestral VKR Parental VKR

ProCROSS Trait Mean performance difference P(T ≤ t) two-tail Trait Mean performance difference P(T ≤ t) two-tail

HOL BC MON BC VKR BC HOL BC MON BC VKR BC

Milk yield 7428.96 (lb)* 0.00049* 0.00311* 0.73512 Milk yield 7428.96 (lb)* 0.00026* 0.01237* 0.41987

Fat yield 266.86 (lb)* 0.00011* 0.00012* 0.87084 Fat yield 266.86 (lb)* 0.00008* 0.00025* 0.96101

Protein yield 239.76 (lb)* 0.00155* 0.00263* 0.96903 Protein yield 239.76 (lb)* 0.00100* 0.00785* 0.74218

Somatic cell score 2.93* 0.52640 0.35307 0.71494 Somatic cell score 2.93* 0.29760 0.78010 0.44794

Grazecross Trait Mean performance difference P(T ≤ t) two-tail Trait Mean performance difference P(T ≤ t) two-tail

JER BC Nor BC VKR BC JER BC Nor BC VKR BC

Milk yield 6609.60 (lb)* 0.31386 0.70962 0.58421 Milk yield 6609.60 (lb)* 0.35468 0.50522 0.90795

Fat yield 253.75 (lb)* 0.22590 0.64534 0.10836 Fat yield 253.75 (lb)* 0.21537 0.73295 0.13973

Protein yield 217.50 (lb)* 0.42124 0.85183 0.57467 Protein yield 217.50 (lb)* 0.45279 0.67317 0.82319

Somatic cell score 2.96* 0.52466 0.00060* 0.00325* Somatic cell score 2.96* 0.61365 0.00090* 0.00231*

Significant difference with p-value < 0.05.
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genomic breed estimations were compared across admixed

individuals using the two different VKR representations.

Figure 5 categorizes the variation in breed estimations for each

pure breed used in the analysis, distinguishing pedigree, VKR

parental, and VKR ancestral populations. For every breed found in

ProCROSS orGrazecross, except for JER in Grazecross, there was a

significant difference (p-value < 0.05) in average breed estimation

dependent upon the use of either the ancestral VKR or the parental

VKR. However, results were not as straightforward when

comparing the two genomic estimates to pedigree estimates,

with sometimes one or the other VKR representation causing

changes in estimates or being more similar to pedigree estimates.

In ProCROSS, the use of ancestral VKR resulted in a comparable

MON composition but reduced the HOL composition and

increased the VKR composition as compared to the pedigree

estimation. In Grazecross, ancestral VKR also caused an

increase in both VKR and NOR composition while decreasing

the JER composition based on the p-value produced from the

t-test. On the other hand, the commercial parental VKR estimated

a closer HOL and VKR composition with the pedigree estimation

in ProCROSS and Grazecross populations. The smaller datasets

consisting of select HOL and JER animals that demonstrated>95%
breed purity did not yield significant differences (p-value < 0.05) in

breed estimations for the admixed individuals.

3.4 Phenotypic association with breed
composition

The effect of recent sire breed and breed generation was

assessed with the genomic breed composition. Following the

PCA plot in Supplementary Figure S4, a clear sub-cluster was

shown in both admixed populations. This sub-cluster can also be

seen in the admixture plot of Figure 4 when the admixed

individuals are ordered based on their recent sire breed. The

overall plot for the four (4) major traits MY, FY, PY, and SCS

versus these two variables (Supplementary Figure S5) suggested a

linear relationship between them, particularly for breed recent

sire. Higher MY, FY, and PY ProCROSS cattle tend to have HOL

as the recent sire, whereas Grazecross cattle with lower SCS have

VKR as their recent sire. In assessing breed generation, most

cattle in both admixed populations with the smallest number of

generations (F3) tend to produce animals with higher

performance in MY, FY, and PY traits than other generations.

Both linear regression models supported the observed trends

that recent breed sire has a significant effect on performance

traits (p-value < 0.05) including all three major breeds for MY,

FY, and PY performance in the ProCROSS population and SCS

performance in Grazecross (Supplementary Figure S4). However,

the generation of the admixed animal (F3, F4, F5, F6, etc)

typically did not significantly affect trait performance. Only

the F6 generation of ProCROSS individuals showed an

association to higher performance in contrast to the

F3 generation that seemed to carry this trend in the plot.

Both models successfully explained a high number of variance

with a R-squared value between 93.1 and 97.4%.

The t-test analysis investigated whether breed composition is

significantly different in high versus low-performance groups,

confirming that breed composition is indeed important to

performance. Fifty-two admixed individuals in each of the two

extreme tails were selected in the ProCROSS population, while

32 individuals represented each extreme group in the Grazecross

population. Then, the t-test was used to evaluate the difference in

average genomic breed composition using the two VKR

representations. The t-test results (Table 3) suggested that the

percentage of MON and HOL composition plays a significant role

in MY, FY, and PY in ProCROSS, whereas VKR and NOR

composition plays a significant role in Grazecross SCS. Despite

the degree of certain breeds being significantly different within elite

and poor performing ProCROSS and Grazecross for specific traits,

there was a substantial degree of variation in breed composition

within each performance group. For instance, in the high-

performance ProCROSS population, the HOL composition

ranged between 9.0 and 68.0%, whereas MON composition

ranged between 10.0 and 75.0% in individuals. On the other

hand, low-performance animals were estimated to have

3.0–68.0% HOL composition and 4.0–75.0% MON

composition. The same amount of variation could be seen in

the Grazecross population. High-performance Grazecross

individuals were estimated to have between 3.0 and 56.0%

NOR or 26.0%–78.0% VKR composition. While low-

performance individuals had a similar degree of variation of

5.0%–68.0% NOR or 10.3%–80.0% VKR composition. Despite

many of the previous analyses showing that VKR representation

had a significant effect on breed estimation, the usage of different

VKR representations did not show an effect on determining

performance association with the breed composition. Both VKR

representations yielded the same breeds corresponding to different

traits’ performance in both admixed populations, with the same

ancestries being significantly associated with performance.

4 Discussion

The PCA plots in Figure 1 provided the first insight into the

genomic population structure of the admixed ProCROSS and

Grazecross and their three major parental breeds. Distinct

separation was seen between the breeds and the admixed

populations except for an overlap between VKR

representation and the ProCROSS. In general, there was a

greater distinction between the ancestral VKR and the

ProCROSS and more overlap between the parental VKR and

ProCROSS, as expected given the difference in relationship to the

ProCROSS progeny. Even though VKR is the marketing term for

the breed that share the same ancestry, such as SWD, FAY, DNR,

and even Norwegian Red. Our selected SNPs successfully showed
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to differentiate these two VKR representations. The observation

was supported by FST calculated in Table 2; both ProCROSS and

Grazecross showed a comparable genetic differentiation from

parental VKR at 0.038, which is lower than the FST estimated

using ancestral VKR (0.049 and 0.046 respectively). Although the

number of individuals used to represent both VKR datasets was

imbalanced, estimated FST provide intrinsic evidence of the

sufficient power of the number of informative SNPs used in

the analysis to discriminate between all the populations,

including both VKR representations. The 229 Grazecross

animals showed a higher degree of separation within their

population, with 3 sub-groups reflecting recent sires. While

the 378 ProCROSS had the same basic sub-structure reflecting

recent sire used, there was less separation between the 3 sub-

groups. This slight variation in the degree of sub-structure may

result from 17 unique sires used in developing the larger

population of ProCROSS animals compared to 12 sires used

in the development of the smaller Grazecross population. Other

considerations may be due to the ProCROSS breeds being more

related than the Grazecross breeds due to the effect of their

parental source. VKR is not purebred with historical

crossbreeding, which may include HOL (Dechow and Hansen,

2017). In addition, Red and white HOL have been used

historically in MON improvement (Heins et al., 2006a; Heins

et al., 2006b). On the contrary, Grazecross parental NOR is

unlikely to have contributed to the development of VKR, and JER

was mostly pure until recently (Dechow and Hansen, 2017).

Due to the genomic similarities between breeds or signatures

of breed mixture within individuals, the estimated genomic breed

composition for purebred animals is complicated by small

admixture components. Thus, not all animals designated as

purebred have 100% genomic breed composition for their

respective breed categories, as shown in Figure 2. This

increases complexity in estimating accurate breed composition

in an admixed population. The purebred populations used in this

analysis included HOL, JER, MON, and NOR. The animals

representing each breed had an average breed composition of

92, 90, 86, and 87%, respectively. In comparing different

representative purebred animals having differing purebred

breed averages, no significant effect on the admixed

population breed composition estimation was seen. These

findings support our assumption that any changes in the

breed composition estimation are due to the different sources

of the VKR population used in the analysis.

With the exception of the JER breed composition in Grazecross,

all other estimates of the purebred contribution to the ProCROSS

and Grazecross showed a significant difference in their estimation

when using the VKR ancestral versus the VKR parental (Figure 5)

groups. Subsequently, both estimations were compared to the

estimation produced from pedigree information. It is noted that

in Figure 3, the use of VKR parental animals in ProCROSS increased

the MON origin to 36.4%, compared to the pedigree estimation of

34.0% which was a significant difference between the estimations.

This could be explained by VKR and MON being selected for the

same fertility and health traits for over 30 years (Heringstad et al.,

2007; Dezetter et al., 2015). This observation may prove that both

breeds shared comparable allele frequencies due to similar selection

pressure on the same haplotype, causing increased similarity

between these two breeds. Whereas the use of VKR parental in

Grazecross also significantly increased NOR composition. Hence,

including VKR ancestral reference breeds introduced a higher noise

level in estimating purebred composition (Figure 2), offsetting the

estimated composition for the ancestral breeds. The rest of the

estimated genomic breed composition using the VKR ancestral

datasets showed similar patterns. Except for VKR estimations,

using the ancestral VKR representation decreased other breed

composition within admixed individuals compared to both

pedigree and genomic estimates using the parental VKR

representation.

Next, the correlation between genomic breed composition and

four traits was investigated. Both linear regression models suggested

that all three major breeds significantly affect the MY, FY, and PY

production traits in ProCROSS and health trait SCS trait in

Grazecross as denoted in Supplementary Figure S5. This

observation was further explored by comparing the extreme

performance groups of each trait. Surprisingly, the results shown

in Table 3 indicate no significant difference in ancestry importance

for performance when comparing the two sources of VKR

(p-value < 0.05). Both VKR representations identified the same

breeds as being significantly different between performance groups

and at similar levels within the elite or poor performance groups. As

expected, HOL and MON composition were significantly higher in

the animals with higher performance in MY, FY, and PY. HOL is

known to have superior performance in milk yield, whereas MON

was improved for milk solids to produce speciality cheese, resulting

in a higher emphasis on the fat and protein yield traits. Thus, both of

these breeds contribute to the high production performance of the

admixed population. In contrast, in Grazecross, only NOR andVKR

showed a significant difference in composition related to SCS. The

Grazecross admixed population was developed to cater to demand

for efficient high performing animals in low input grazing

environments. Thus, different traits and breeds were used for this

admixed population. NORwas developed inNorthwestern France, a

region known to have pasture. This environment produced a breed

with exceptional feed conversion rates, making it a great genetic

source for developing low grazing crossbred cattle (Dillon et al.,

2003). The same study showed that NOR has a substantially higher

survival rate than three dairy cattle breeds, including Dutch

Holstein, Irish Holstein, and Montbeliarde. In addition, VKR was

developed to have higher fertility and health performance

(Heringstad et al., 2007). This complements our finding that

high-performance Grazecross animals in SCS have a higher NOR

and VKR composition. However, we did not see the same

complementary effect on SCS performance in ProCROSS with

regards to their VKR ancestry. One thought potentially

explaining this variation in VKR correlation to SCS is the
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influence of JER ancestry within Grazecross that is not present in

ProCROSS. The JER breed is known to have higher SCS compared

to other dairy breeds in the USA (Dechow andHansen, 2017). Thus,

as NOR and VKR breed proportions increase in Grazecross, the JER

breed proportion is decreasing which may contribute to the

reduction in SCS even though JER were not statistically

associated with this trait. It may be the unique combination of

the different breeds used in each of these 3-breed rotations that alters

the degree of impact of any breed on a performance trait.

Furthermore, individually assessing the animals within the two

extreme groups showed a dispersed distribution of the identified

breeds. For instance, higher HOL composition cattle have the

highest chance of producing high-performance production

animals, yet some elite production animals only had 4% HOL

composition and vice versa in the low-performance animals.

These observations may suggest that some haplotypes at specific

locations have a large effect on determining the performance of these

traits. For instance, the elite 4% HOL ProCROSS suggests that they

possess HOL ancestry at key genomic regions most influential on

production and additional HOL ancestry is not actually required to

be elite. Therefore, the association between increased performance

and increased HOL breed ancestry could be based on the fact that

increased HOL ancestry increases the chance that an animal

possesses HOL ancestry at the most important regions of the

genome as seen in the 4% HOL ProCROSS and the remainder

of the HOL ancestry is incidental to their performance. Key

haplotypes may be directly linked and preserved in particular

ancestral breeds used in the crossbreeding program. Identifying

the existence and influence of breed-specific haplotypes in future

studies may leverage breed complementary and accelerate selection

through more precise and accurate genomic prediction. In all, the

correlation analysis was also able to capture the effect of heterosis on

the performance of both admixed populations. Interestingly, the

linear regression model suggested that individuals developed from

generation six (two round of 3 breed rotational crossbreeding

systems) significantly capitalize on heterosis similar with what we

expected from generation three (One round of 3 breed rotational

crossbreeding systems). This observation may serve as additional

evidence of the advantages provided by a 3-breed rotational

crossbreeding system to retain the highest heterosis level in the

crossbreeding population.

5 Conclusion

The main inquiry of this project was to identify the impact

of different animal groups serving as the reference population

when assessing admixture in crossbred cattle. The results

showed differences in the estimated breed composition of

both ProCROSS and Grazecross individuals when two

different VKR reference panels were used. Interestingly, the

breed composition estimates from admixture were significantly

different from pedigree estimates but the variation sometimes

diverged, with one panel having an increased estimate of a

particular breed when the other reference panel would show a

lower estimate of that same breed as compared to the pedigree

estimate. Surprisingly, despite the two different VKR references

panels providing significantly different breed compositions of

ProCROSS and Grazecross, we found no significant difference

in the relationship of breed composition to performance traits

as HOL, MON, NOR, and VKR were all similarly important to

ProCROSS and Grazecross performance. It is important to

identify the most appropriate and informative animals to use

as reference animals in admixture analysis to correctly interpret

relationship and population structure results. Any application

of admixture output in directing dairy cattle crossbreeding

strategies should proceed with caution depending upon the

reference populations used to prevent over- or under-

interpretation of the contribution and impact of ancestry

breeds.
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