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ABSTRACT

Objectives: In this paper, we discuss leveraging cloud-based platforms to collect, visualize, analyze, and share

data in the context of a clinical trial. Our cloud-based infrastructure, Patient Repository of Biomolecular Entities

(PRoBE), has given us the opportunity for uniform data structure, more efficient analysis of valuable data, and

increased collaboration between researchers.

Materials and Methods: We utilize a multi-cloud platform to manage and analyze data generated from the clini-

cal Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging And moLecular Analysis

2 (I-SPY 2 TRIAL). A collaboration with the Institute for Systems Biology Cancer Gateway in the Cloud has addi-

tionally given us access to public genomic databases. Applications to I-SPY 2 data have been built using R

Shiny, while leveraging Google’s BigQuery tables and SQL commands for data mining.

Results: We highlight the implementation of PRoBE in several unique case studies including prediction of bio-

markers associated with clinical response, access to the Pan-Cancer Atlas, and integrating pathology images

within the cloud. Our data integration pipelines, documentation, and all codebase will be placed in a Github re-

pository.

Discussion and conclusion: We are hoping to develop risk stratification diagnostics by integrating additional

molecular, magnetic resonance imaging, and pathology markers into PRoBE to better predict drug response. A

robust cloud infrastructure and tool set can help integrate these large datasets to make valuable predictions of

response to multiple agents. For that reason, we are continuously improving PRoBE to advance the way data is

stored, accessed, and analyzed in the I-SPY 2 clinical trial.
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OBJECTIVES

Clinical trial centers need to address the untenability of data storage

and analysis on local machines, as medical data grows in both size

and complexity. To address these hurdles, a new paradigm is emerg-

ing that moves the conduct and management of clinical trials to

cloud-based applications. With cloud-based technology, sponsors

such as academic centers can build end-to-end data applications and

transform their clinical development management in areas of data

storage, aggregation, analysis, and sharing. Importantly, these

cloud-based data platforms stowing genomic and clinical data must

be interoperable so that information can be migrated and utilized
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between these complex systems. Leveraging cloud-based systems

provides these benefits, all under a consolidated and secure frame-

work.

Background and significance
Several recent initiatives have been focused on data sharing and col-

laboration between researchers through cloud platforms. A major

part of this shift occurred in 2013 when the National Cancer Insti-

tute (NCI) initiated the Cloud Resources pilot program, which

sought to democratize access to data generated through publicly

funded research.1 The initiative has made massive data sets publicly

available as part of a public service known as the Cancer Research

Data Commons.2 These cloud resources aimed to make cancer geno-

mics data sets, radiology and pathology images, together with tools

and compute-power, available and accessible to a broad range of

users using multiple access modes.

In the neoadjuvant breast cancer clinical trial, Investigation of

Serial Studies to Predict Your Therapeutic Response with Imaging

And moLecular Analysis 2 (I-SPY 2), we are leveraging the Institute

for Systems Biology Cancer Gateway in the Cloud (ISB-CGC) plat-

form to build a cloud infrastructure to be used within the context of

a trial with multiple data collection timepoints and datatypes. ISB-

CGC has made connecting to public databases, such as TCGA,

straightforward through the use of Google tools and SQL com-

mands. We aimed to use Google Cloud Platform (GCP) and the ISB-

CGC infrastructure to store and analyze clinical, molecular, and pa-

thology fingerprints from patient biopsies.

Here, we outline our work to improve the integration of research

into clinical care within a multi-site breast cancer clinical trial. We

have constructed a multi-cloud system, Patient Repository of Bio-

molecular Entities (PRoBE), which promotes the use of various

cloud tools and data services to build custom applications for the I-

SPY 2 trial. We highlight the implementation of PRoBE in several

unique case studies including access to the Pan-Cancer Atlas, predic-

tion of biomarkers associated with clinical response, and integrating

pathology images within the cloud. Technical developments in our

platform have adhered to the underlying guidelines of FAIR data ac-

cess, and provide resources used to build an end-to-end cloud based

clinical trial system. Our data integration pipelines, documentation,

and all codebase will be placed in a Github repository. We address

our stakeholders’ requirements for a mature biorepository and out-

line current and future stages of this work. Our underlying goal

through this technical integration effort is to identify biomarkers of

clinical response to multiple drug regimens at differing timepoints.

The I-SPY 2 trial
The I-SPY 2 platform trial is an adaptively randomized, multi-

center, multi-arm phase 2 study of investigational agents in combi-

nation with or in place of standard-of-care chemotherapy for breast

cancer patients at high risk of recurrence.3 One of the more innova-

tive features of the trial is the ability to efficiently evaluate multiple

experimental agents (or combinations of agents) simultaneously. I-

SPY 2 employs a Bayesian adaptive randomization algorithm that

preferentially assigns patients to agents that have accumulated evi-

dence of efficacy in the same intrinsic subtype (Figure 1). Figure 1

displays the I-SPY 2 neoadjuvant trial schema that uses an adaptive

randomization engine for targeted treatments specific to biomarker

subtypes. Timepoints are denoted by “TX,” in which various tests

are performed, for example, magnetic resonance imaging (MRI), bi-

opsies, and blood draws.

Serial imaging and biopsies performed over the treatment period

inform adaptive randomization and are used as part of a wide-

ranging biomarker discovery and validation program. The trial uses a

neoadjuvant treatment model, which permits rapid assessment of tu-

mor response to treatment (�6 months from beginning of treatment).

As such, the primary endpoint of I-SPY 2 is pathological complete re-

sponse (pCR), defined as the complete disappearance of invasive tu-

mor, both in the breast and axilla.4 A recently submitted manuscript

demonstrates that pCR is a robust predictor of 3-year event-free and

distant relapse-free survival in this population. We also use a residual

cancer burden (RCB) index as a co-primary endpoint. The RCB index

is a continuous variable (as opposed to pCR, which is binary) to

quantify the extent of residual disease for patients who did not

achieve pathologic complete response.5 RCB index combines several

factors, such as area of cancer, percent area that is invasive, number

of positive nodes and largest node in area to name a few.5 Both are

useful prognostic factors for long-term survival in I-SPY 2 patients.

Continuously enrolling since 2010, I-SPY 2 is a mature trial

(n>4000), proven in its efficiency and meeting its primary objective

of accelerating agent development and targeting.6 To date, the trial

has completed 16 experimental arms across 23 sites in the United

States. Through the course of treatment, several diagnostic entities

are collected such as tumor biopsies, MRIs, and a variety of molecu-

lar data at pre-treatment, inter-regimen, and post-treatment time-

points. The molecular data including gene expression, DNA and

RNA sequencing, and protein modifications, are analyzed by a vari-

ety of biomedical vendors. Thus, we have an extensive database on

I-SPY 2 patients and multiple requirements to be met across trial

sites regarding data collection, sharing, privacy, and reporting.

LAY SUMMARY

Multi-omics data in the world of medicine is ever increasing in size and complexity. Clinical trials are often challenged to de-

velop methods for not only storing but also analyzing the molecular and clinical data generated. Due to the massive size

requirements, local machines struggle, and data validation is often slow and inefficient. In this paper, we discuss leveraging

cloud-based platforms to organize, visualize, analyze, and share data in the context of a clinical trial. Our cloud-based infra-

structure, PRoBE, enables efficient analysis of data, such as predicting biomarkers of response, provides easy access to The

Cancer Genome Atlas (TCGA), and allows for increased collaboration between researchers. Additionally, through a software

integration our platform accommodates curation of pathology images so they can be directly accessed and viewed from the

cloud. Through PRoBE, our stakeholders and trial managers now have a closer relationship to valuable clinical and biologi-

cal data, under the umbrella of a consolidated and secure framework. We are heavily invested in further development of

this platform as we continue to refine our ability to optimally identify biomarkers, discover therapeutic agents, and help ev-

ery patient achieve an excellent long-term outcome.
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MATERIALS AND METHODS

Cloud-computing environment
Our electronic data capture software is hosted on Amazon Web Serv-

ices (AWS), and so we use AWS to store clinical and raw molecular

data (eg, whole-genome sequencing, exome arrays, etc.) (Figure 2). Fig-

ure 2 shows a map of data flow throughout a cloud-based platform. A

cloud environment allows for fluidity of data through multiple analytic

platforms. Data originates from the patient, passes through various

cloud platforms for analysis and querying, and ends with the investiga-

tor. For analysis, we have the ability transfer clinical and biological

data from AWS to GCP to explore and visualize data in real time.

Data preparation
GCP provides several options in various programming languages for

exploring data in a specified project. The primary, and simplest,

method is to use the built-in analytics data warehouse “BigQuery.”

SQL queries of BigQuery tables can be executed both interactively

through the Google Cloud web interface and programmatically

through Python or R, enabling researchers to connect with data

analysis and data visualization algorithms. As the service is entirely

managed by Google, users can take advantage of robust computing

power without having to manage their own cluster or configure

database software. The massively parallel backend query engine

enables SQL queries to be processed at incredibly fast speeds allow-

ing researchers to mine through terabytes and even petabytes of can-

cer data in a relatively short amount of time. Google BigQuery is

self-scaling; it identifies resource requirements for each query to fin-

ish quickly and efficiently and provides those resources to meet the

demand. Once the workload has completed, BigQuery reallocates

those resources to other projects and other users. Multi-user analysis

is not an issue, and all handled by Google’s job prioritization. A Big-

Query slot is a virtual CPU (vCPU) used by BigQuery to execute

SQL queries. BigQuery automatically calculates how many slots are

required by each query, depending on query size and complexity. At

any point, 100 simultaneous queries can be performed in a project.7

To effectively use BigQuery, a number of limited pre-processing

steps need to be performed before uploading the data. BigQuery uti-

lizes tabular data sets and data tables, which can be organized in

many ways. We transformed I-SPY 2 data into the “tidy” format,

which additionally works well within R’s “Tidyverse” and all its asso-

ciated tools for data science. The tidy data format requires: (1) each

variable have its own column, (2) each observation must have its own

row, and (3) each value must have its own cell.8,9 This allows specific

and unique results to be data mined through BigQuery in a consistent

format. Once transformed, the data was uploaded and catalogued

into various datasets, for example, clinical, biological, and pathology

imaging data. In addition to I-SPY 2 data, ISB-CGC makes a large

number of datasets publicly available in BigQuery, which allows for

easy access and comparisons to private and public data. For example,

ISB-CGC has made Pan-Cancer TCGA data publicly available using

BigQuery. A web-based application that allows users to explore data

available in ISB-CGC BigQuery tables is provided in the “Resource

Availability” section at the end of the paper. Other databases, such as

dbSNP10 and ClinVar,11 are also accessible through BigQuery, en-

abling I-SPY 2 researchers to query annotations for a particular SNP

and compare gene or protein expressions. With I-SPY 2 data uploaded

into BigQuery tables, we were able to discover various methods of

data exploration and visualization, including an interactive and cus-

tom data query system using RShiny in conjunction with BigQuery,

which leverages cloud computing power in the background. These

applications are discussed in detail in the “Results” section.

Cloud script conversion
Pre-cloud implementation, I-SPY 2 pre-processing data functions

were performed with local scripts using the R language.12 Processing

was slow, taxing on computer storage, and made it difficult for mul-

Figure 1. The I-SPY 2 neoadjuvant trial schema that uses an adaptive randomization engine for targeted treatments specific to biomarker subtypes. Timepoints

are denoted by “TX,” in which various tests are performed, for example, MRIs, biopsies, and blood draws.
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tiple analysts to work on the same datasets. We have leveraged the

use of virtual machines in GCP to run RStudio directly in the cloud.

This conversion gives us a high-speed connection to data stored in

the cloud, as opposed to needing it on local machines. Working

“within region,” meaning the data and VMs are co-located, makes

data transfers free and extremely fast. Users can scale between sev-

eral virtual machine options, including memory size, vCPU count,

and persistent disk limits. These VMs can be prioritized between

general purpose, memory optimized, and compute optimized

machines, well beyond our requirements (up to 224 vCPUs and 224

GB memory as of this writing).13 Several R packages are available,

predominantly those built by developer Mark Edmondson, such as

googleAuthR, googleComputeEngineR, and googleCloudStorageR,

that aid in transferring local scripts to a google RStudio server14

(Github posted in “Resource Availability” section). Running R

scripts in the cloud not only removed the need for local storage

space, but drastically sped up our pre-processing functions.

For collaborative programming and analytical work, GCP also

has a free python-based Jupyter style notebook called Colaboratory

notebook. ISB-CGC has created a community notebook repository

that contains a rich compendium of codes for specific bioinformatics

tasks (GitHub posted in “Resource Availability” section).

High-throughput image data analysis
A major advancement made possible through cloud integration is our

ability to share and view pathology images. Google’s Health Care

API,15 which supports standard based data formats and protocols of

existing healthcare technologies, allows for real time integration with

various software programs. We utilize the Google Cloud Healthcare

Datasets and Datastores, which accepts Digital Imaging and Commu-

nications in Medicine (DICOM) images, in sync with QuPath16

(Github posted in “Resource Availability” section). QuPath is a soft-

ware platform for whole slide image analysis, and a tool we have of-

ten used to view I-SPY 2 pathology images. Viewing pathology

images from the cloud is discussed in detail in the results section.

I-SPY 2 controlled data access and sharing
An I-SPY 2 Data Access and Publications Committee (DAPC)

accepts proposals from internal and external investigators interested

in accessing clinical trials data, including radiology and pathology

imaging for original research. If an investigators concept is approved,

access to I-SPY 2 curated data sets can be granted, including any

PRoBE applications that have been created, after a data use agree-

ment has been signed. This allows researchers fast access to multi

omics data acquired through I-SPY 2, as well as any data sets ISB-

CGC has transformed and made available in BigQuery format, as

explained in the results section. A recommended best practice is to

additionally execute a Google Cloud Business Association Agree-

ment, that covers the scope of the project. GCP is HIPAA compli-

ant17 and uses role-based privileges to grant access to individual

buckets. Additionally, the DAPC ensures no I-SPY 2 data released to

investigators can be traced back to an individual patient, in keeping

with Section 164.514(a) of the HIPAA Privacy Rule.18 As an extra

security measure, we have instituted a double-blind patient identifier.

This double-blind ID is applied and known to a select group at the I-

SPY 2 trial’s central location, unknown to hospital sites who have

applied the original patient identifier. All datasets are double blinded

before being released to interested investigators or for publications.

Before a dataset gets uploaded to PRoBE, it must pass through in-

ternal quality controls from a panel of biostatisticians and scientists,

field dependent, as well as members of the lab that originally gener-

ated the data. Both clinical and biological data must be approved and

locked, before being made accessible to interested researchers. In this

way, we are better able to control versioning of data, as approved

Figure 2. A map of data flow throughout a cloud-based platform. A cloud environment allows for fluidity of data through multiple analytic platforms. Data origi-

nates from the patient, passes through various cloud platforms for analysis and querying, and ends with the investigator. Cloud analytic platforms have connec-

tion capabilities to public genomic databases like the TCGA.
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users are pulling from a controllable, single source of truth. Although

it is possible for other sites to contribute data to this platform, PRoBE

currently only uploads data directly related to the I-SPY 2 trials.

While leveraging the computing power and massive storage capa-

bilities of cloud environments provides an enormous opportunity to

bioinformaticians, it is important to remember these tools may not be

as easily accessible to those who are less technically adept. User-

friendly tools must be developed so data can be accessed and analyzed

by additional members of any research team. Due to the number

of clinical variables that may need to be queried in parallel, we have

developed a few web-based applications for routine use by I-SPY

2 clinical trials team. Additionally, these applications will enable

investigators both within and outside of I-SPY 2 to corroborate and

compare efficacy and molecular signatures under both public and

controlled access. We have leveraged Google’s access control and ac-

count permissions to assign view, edit, and grant privileges based on a

person’s role in the trial. Should a researcher be approved for full ac-

cess to data, this would not prevent a user’s capability to download

data and work on local machines.

Below, we discuss these applications to help I-SPY 2 case coordi-

nators, investigators, and the research community at large to access

all public datasets that we are hosting.

RESULTS

Case study: evaluating clinical efficacy data with PRoBE
To examine the efficacy of a given drug versus the control, PRoBE

offers an application that displays the distribution of select clinical

variables collected in the I-SPY 2 trial. In this example, we focus on

2 co-primary endpoints, pCR and RCB index. We leverage PRoBE’s

visualization pipeline and R Shiny to make interpretable plots for

both clinicians and researchers (Figure 3) (Github posted in

“Resource Availability” section). Figure 3 shows an R Shiny appli-

cation that accesses BigQuery tables in the background and displays

pCR and RCB plots for treatment and control arms. Data is mined

through use of SQL commands, for any tables uploaded in Big-

Query. We show a distribution of those who achieved and did not

achieve pCR in the experimental and control arm. We also plot the

distribution of RCB indices, which tangentially relates to pCR (ie,

pCR¼1 equivalent to RCB¼0). In this example, patients in the

“Drug A” arm have a higher pCR rate, and lower RCB index

(RCB¼0¼no cancer; RCB¼5¼ extensive residual cancer) than

patients in the control arm. Other clinical variables such as subtype

(eg, HER2, receptor status) can also be used to filter through the ap-

plication.

Case study: accessing public genomic datasets
The Pan-Cancer Atlas was the penultimate project following The

Cancer Genome Atlas, where 33 types of cancer were investigated,

producing over a petabyte of publicly accessible data.19 The Pan-

Cancer Atlas project contains batch-corrected RNA-seq data for

20 502 genes across 9921 patients. The ISB-CGC BigQuery resource

was created to mirror the data, but in a format that facilitated proc-

essing, analyzing, and integrating “big data,” thus shifting the large-

scale compute power needed away from local systems and into Goo-

gle cloud.20

Figure 3. R Shiny application that accesses BigQuery tables in the background. Application displays pCR and RCB plots for treatment and control arms, with filters

on drug and clinical subtype.
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We have leveraged the instantiation of the Pan-Cancer Atlas re-

source, available now in BigQuery, so that our investigators can

compare and validate findings within a large cohort of multiple can-

cers. I-SPY 2 is particularly interested in whether single genes are

over or under expressed, especially in complicated and difficult dis-

eases such as basal-like breast cancer that are hard to treat. Given

immune signatures are emerging as useful predictors of therapeutic

response in breast cancer,21 we display expression of PD-L1

(CD274), a well-known immune modulator across multiple sub-

types including basal-like, HER2, and luminal A (Figure 4) (Github

posted in “Resource Availability” section). Figure 4 shows distribu-

tion of Gene Expression Values from data collected in the I-SPY 2

Trial and TCGA Cohorts.

Data of both public and private tables are easily mined through

the use of SQL commands. The boxplot on the top displays I-SPY 2

data and bottom displays the Pan-Cancer Atlas data (BRCA cohort).

We also included the number of observations seen in each subtype

(n), as well as a t-statistic between subtypes (in the same dataset).

This interface quickly allows for a rapid visualization of expression

levels in any gene of interest in I-SPY 2 patients, and larger public

databases like Pan-Cancer Atlas.

Case study: discovering biomarkers of resistance

across different arms using machine learning
For every consented I-SPY 2 patient, tumor biopsies are collected, an-

alyzed via microarray, and sequenced (among many other tests, clini-

cal arm dependent). PRoBE offers a pipeline, using RWEN, a

weighted elastic net method22 to predict response of treatment across

any experimental arm of choice. The resulting output is a list of candi-

date gene expression markers, predictive of sensitivity or resistance.

Through systematic benchmarking and literature surveys, we show

that our method has an overall lower median root-mean-squared er-

ror (RMSE) of response compared to traditional statistical methods

that do not predict well on sample outliers (median RMSE¼0.18).22

PRoBE allows this analysis to be performed for a single subtype

through one simple operation, and for each arm separately.

PRoBE also offers analysis of various external datasets such as the

Cancer Therapeutics Response Portal23,24 and Sanger Genomics of

Drug sensitivity25 datasets. In each of these datasets, cell lines were

treated with a single agent and cellular response was measured. The

cell lines are characterized for gene expression as well as other genetic

variants. For each arm, we compared the genes in our list to resistance

genes that are present in CTD2 and Sanger datasets (Figure 5)

(Github posted in “Resource Availability” section). Figure 5 shows a

heatmap of significant resistance genes and clinical status for selected

patients in a single arm of the trial (left), and distribution of RCB val-

ues (right). We observed overlaps between the 2 lists; often, common

driver genes were identified by both versions of the pipeline.

Since the pre-processing pipelines are instantiated in the Cloud,

we run the pipeline on gene expression data, accessing gene signa-

ture scores for comparison, and generating plots through an R Shiny

web interface. We use the MSigDB26 database in BigQuery to ex-

tract annotated gene sets and are currently implementing this auto-

mation within our framework.

Case study: viewing pathology images from the cloud
The I-SPY 2 clinical trial collects pathology H&E images from pre-

treatment breast tumors on all consenting patients. Since the incep-

tion of the trial in 2010, we have gathered over 500 GB of images, a

storage size that would be near impossible to work with for most lo-

cal machines. Through the use of Google’s command line tools, we

are able to search and stratify these images into separate cloud stor-

Figure 4. Distribution of Gene Expression Values from data collected in the I-SPY 2 Trial and TCGA Cohorts.

6 JAMIA Open, 2021, Vol. 4, No. 2



age buckets. Each bucket has independent permissions settings,

which enables us to easily and securely share data for a multitude of

investigators. Through Google Cloud Healthcare and QuPath, we

can additionally provide these images without the need for local

downloading. Many of I-SPY 2 investigators have proposals to view

images from multiple drug arms, which without a cloud streaming

solution, would result in downloading hundreds of images.

Linking QuPath to Google Cloud Healthcare’s API requires 2

extensions. The first allows a connection from QuPath to your data-

sets (images) in GCP (Github posted in “Resource Availability” sec-

tion).27 This enables an authorization process, which is a way to

ensure users also have appropriate access to a set of images. The sec-

ond extension28 converts images into a DICOM format (Github

posted in “Resource Availability” section). The pipeline is capable

of converting any file supported by openslide.org (eg, .svs, .tif, .scn,

and .mrxs) to a DICOM whole slide image. The fields of radiology,

cardiology, and ophthalmology have already adopted DICOM as

the standard, and DICOM format seems to be an emerging standard

for pathology images as well, despite most microscopes and scanners

not producing DICOM images by default. The I-SPY 2 in-house

Aperio scanner produces svs images, so this converter was necessary

for us to upload DICOM images.

With the appropriate file formats and a cloud connection, inves-

tigators and pathologists have access to view their requested images,

directly from the cloud, through QuPath (Figure 6) (Github posted

in “Resource Availability” section). Figure 6 displays a QuPath con-

nection to GCP, which allows users to view images directly from the

cloud.

Although this process is in its nascent stage of the I-SPY 2 trial,

several benefits seem clear. Pathologists and researchers alike will

not have to download large sets of images for their research, saving

both time and physical memory space. Sharing sets of data can be as

easy as permission regulation, which will increase collaboration

across varying professions. Additionally, annotations can be saved

and synched to the cloud for all collaborators to view. Clinical per-

sonnel can benefit from this process by having pathologists review

biopsy sections and stratify into stroma versus tumor. While QuPath

is a great option for the I-SPY 2 trial, there are other methods avail-

able such as the DICOMWeb WSI Viewer,29 which is a proof-of-

concept image viewer that is also offered through the Google Health

Care API. The Open Health Imagine Foundation (OHIF), which is

generally more popular with radiologists, is also supported through

GCP.

Additional pipelines available: VCF to BigQuery
A select number of I-SPY 2 tumor biopsy samples were sent for full

exome sequencing and subsequent variant calling. Between the raw

FASTQ, BAM/BAI files, processed VCF, and other flat mutational

files, over 8 TB of data had been generated. GCP has made large-

scale variant analysis relatively seamless with the use of Google na-

tive tools. Namely, loading and storing thousands of VCF files into

BigQuery is simplified using Google Genomics’ Variant Transforms

tool (Github posted in “Resource Availability” section).30 This tool

can transform and load VCF files into Google’s BigQuery platform

giving researchers the flexibility to search through VCF files from

one central table. Using custom SQL queries in BigQuery, research-

ers can search through variants from thousands of VCF files with rel-

ative ease. This can be useful as an initial quality assessment, such as

checking known mutation rates in breast cancer for genes like TP53.

DISCUSSION AND CONCLUSION

I-SPY 2 demonstrates personalized medicine by leveraging the

power of early endpoints and connecting the early endpoints to re-

currence and survival, using genetic determinants to better predict

response to emerging therapeutics. Importantly, over the past de-

cade the trial has accumulated an incredibly rich and deep compen-

dium of biomarkers that can inform how we learn and treat patients

in the future. Currently, patients are adaptively randomized based

on FDA cleared or standardly used biomarkers, and response to

treatment based on both MRI volume change (an automated mea-

sure of functional tumor volume) as well as the rate of complete

pathologic response. The objective of this biomarker-rich trial is to

use all the available clinical and genetic information to predict the

likelihood of an individual patient’s response to a set of treatment

options. Thus, it is mandatory for the trial to make available data to

investigators using a common framework and applications.

While data sharing is often challenging given strict regulations,

we are committed to making data from the trial public when possi-

ble, with and following primary publications, and accessible at any

time to interested researchers. From the start, we developed a struc-

tured governance and oversight process through our DAPC. Though

all data currently shared is double blinded and in compliance with

Section 164.514(a) of the HIPAA Privacy Rule, there will be hurdles

to address as the I-SPY 2 trials being to collect sequencing data.

While it is common practice to remove patient identifiers from data

before releasing it to the public, there are instances where identifica-

Figure 5. Heatmap of significant resistance genes and clinical status for selected patients in a single arm of the trial (left) and predicted versus observed RCB val-

ues via two statistical methods (right).
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tion of individuals happened anyway through combining anony-

mous gene sequences with genealogical databases and other public

information such as age, state, or surnames.31 These problems can

be solved with further protections, but they require constant vigi-

lance. Our DAPC must carefully review what patient data may be

safely shared when in conjunction with sequencing data. Despite

stricter regulations and considerations for sequencing data, we need

more data sharing rather than less, because the benefits of publicly

available data often outweigh the costs.32 We will constantly work

towards minimizing privacy-related risk, balanced against the bene-

fits of the innovations that may arise from increased data availability

through tools like PRoBE. Governance of I-SPY 2 data covers data

to be released to the public, data shared directly with investigators,

and any tools developed by PRoBE that access data on the cloud.

In the future, we hope to develop better risk stratification by in-

tegrating additional molecular, MRI, and pathology viewing tools

into PRoBE to better elucidate biomarkers that predict drug re-

sponse and outcome in these early-stage, high risk patients. PRoBE

has proven useful in scalability, as we have begun directly ingesting

pathology images from I-SPY 2 sites across the country. By sharing

permission-based links to I-SPY 2 sites, we can directly receive pa-

thology images into our GCP platform, send them through our pipe-

line to QuPath, and ultimately transmit images to our pathologists

more rapidly. We highlighted the use of the TCGA database in one

case study application, however ISB-CGC has uploaded data from

many more public data sources. Future applications could incorpo-

rate data from these public databases, for example, Ensembl,33

Gene Ontology,34 or AACR GENIE35 databases. For example, cross

validation of any significant biomarker signatures, in a cohort out-

side of I-SPY 2, could strengthen our discoveries. In addition to

cloud tools, future analytic processes include advanced sequencing

workflows, automated partitioning and clustering pipelines, and in-

corporating additional machine learning algorithms for response

prediction, tumor subtype analyses, and prediction of clinical out-

comes. A robust cloud infrastructure can help integrate these tools

and workflows to make valuable predictions across multiple agents.

For that reason, we are continuously improving PRoBE to advance

the way data is accessed and analyzed in the I-SPY 2 clinical trial.

We are heavily invested in developing PRoBE so that we can con-

tinue to refine our ability to optimally target agents and help every

patient achieve a complete response an excellent long-term out-

come.
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