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Abstract

During development, homeostasis, and disease, organisms must balance responses that

allow adaptation to low oxygen (hypoxia) with those that protect cells from oxidative stress.

The evolutionarily conserved hypoxia-inducible factors are central to these processes, as

they orchestrate transcriptional responses to oxygen deprivation. Here, we employ genetic

strategies in C. elegans to identify stress-responsive genes and pathways that modulate the

HIF-1 hypoxia-inducible factor and facilitate oxygen homeostasis. Through a genome-wide

RNAi screen, we show that RNAi-mediated mitochondrial or proteasomal dysfunction

increases the expression of hypoxia-responsive reporter Pnhr-57::GFP in C. elegans. Inter-

estingly, only a subset of these effects requires hif-1. Of particular importance, we found

that skn-1 RNAi increases the expression of hypoxia-responsive reporter Pnhr-57::GFP and

elevates HIF-1 protein levels. The SKN-1/NRF transcription factor has been shown to pro-

mote oxidative stress resistance. We present evidence that the crosstalk between HIF-1

and SKN-1 is mediated by EGL-9, the prolyl hydroxylase that targets HIF-1 for oxygen-

dependent degradation. Treatment that induces SKN-1, such as heat or gsk-3 RNAi,

increases expression of a Pegl-9::GFP reporter, and this effect requires skn-1 function and

a putative SKN-1 binding site in egl-9 regulatory sequences. Collectively, these data support

a model in which SKN-1 promotes egl-9 transcription, thereby inhibiting HIF-1. We propose

that this interaction enables animals to adapt quickly to changes in cellular oxygenation and

to better survive accompanying oxidative stress.

Introduction

Oxygen homeostasis has profound effects on health and fitness. Oxygen serves as the terminal

electron acceptor in the oxidative phosphorylation processes that generate energy for life.

When oxygen levels are low (hypoxia), cells and tissues must adapt quickly by increasing oxy-

gen delivery, adjusting the levels of key metabolic enzymes, and limiting the accumulation of

misfolded proteins. While oxygen is essential, it is also highly reactive. The reactive oxygen

species (ROS) generated by cellular metabolism and signaling processes can damage
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macromolecules, and excess ROS are thought to contribute to cellular aging and deterioration

[1–3]. One of the central challenges of aerobic life is to coordinate the biological networks that

control disparate aspects of oxygen homeostasis.

This balance between surviving hypoxic stress and mitigating the potential damage caused

by reactive oxygen species is especially important in cardiovascular development and disease.

When ischemia blocks circulation to a mammalian tissue, oxygen levels drop, and cells induce

hypoxia-inducible transcription factors (HIFs). Upon reperfusion and reoxygenation of the

tissue, mammalian cells respond by rapidly degrading HIF and inducing the NRF2 transcrip-

tion factor [4, 5]. However, intermittent hypoxia has been shown to induce both HIF-1α and

NRF2 [6, 7]. NRF2 activates phase II detoxification genes to mitigate the effects of oxidative

insults [8, 9]. Although mammalian HIF and NRF2 share some common target genes such as

aldehyde dehydrogenase 1A1 or heme oxygenase-1 HO-1, the genes induced by re-oxygen-

ation are largely distinct from those that respond to oxygen deprivation [5, 10, 11]. Crosstalk

between these two pathways is complex and context specific in mammals [12], as these impor-

tant transcription factors facilitate the rapid changes in gene expression needed to limit reper-

fusion injury and regulate oxygen-dependent developmental processes.

C. elegans has been proven to be an excellent model system for studying the regulatory net-

works that govern oxygen homeostasis. The C. elegans genome encodes a single hypoxia-

inducible factor alpha subunit (HIF-1), and the hif-1 gene has been shown to have important

roles in stress response and in aging [13–17]. HIF protein levels and HIF activity are tightly

regulated. When oxygen is abundant, the HIF alpha subunit is hydroxylated by the PHD/EGL-

9 enzymes. Once modified, HIFα protein interacts with the Von Hippel-Lindau tumor sup-

pressor (VHL) and is targeted for ubiquitination and proteasomal degradation [18–23]. Thus,

in hypoxic conditions, HIF-1 protein is stable, and the transcription factor complex can acti-

vate the expression of a battery of genes that enable adaptation to low oxygen. This pathway

for oxygen-dependent degradation of HIF protein is evolutionarily conserved. The C. elegans
hif-1, aha-1, egl-9, and vhl-1 genes are orthologous to mammalian HIFα,HIFβ, PHD, and

VHL, respectively [24–26]. The targets of C. elegansHIF-1 include egl-9 and rhy-1, genes that

inhibit HIF-1 expression and activity [27–30]. In wild-type animals, these negative feedback

loops keep HIF-1 activity in check and limit the potentially adverse effects of HIF-1 over-

activation.

The C. elegans skn-1 gene is homologous to mammalian NRF1/2/3 [31]. SKN-1 regulates

the expression of a battery of genes with cytoprotective functions, including phase II detoxifi-

cation genes [32, 33]. SKN-1 is activated by a range of stresses or toxicants that cause oxidative

stress, and SKN-1 promotes resistance to these insults [32, 34–37].

Here, we investigate the cellular processes and transcriptional networks that regulate HIF-1

function. We describe an unbiased RNAi screen to identify genes that inhibit C. elegansHIF-1.

This approach builds upon and extends mutational screens that identified negative regulators

of HIF-1 [17, 29]. We discover that SKN-1/NRF represses HIF-1 protein levels. Hence, SKN-

1-mediated repression of HIF-1 may provide a mechanism by which cells can rapidly respond

to specific environmental stresses and optimize gene expression to achieve oxygen homeosta-

sis. We investigate the hypothesis that this cross talk is mediated by EGL-9, the oxygen-sensing

prolyl hydroxylase that modulates HIF-1 stability and activity.

Results

To identify genes and cellular processes that attenuated HIF-1-mediated gene expression, we

conducted a genome-wide RNAi screen. This experimental strategy relied on the Pnhr-57::

GFP reporter gene, which had been shown to be responsive to HIF-1 and hypoxia [28, 29].
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Through chromatin immunoprecipitation experiments, we confirmed that nhr-57 was a direct

target of HIF-1 (S1 Fig). We screened a bacterial RNAi library representing ~80% of C. elegans
genes [38], and we identified 179 genes for which RNAi increased Pnhr-57::GFP expression, as

assayed by inspection under a fluorescent stereomicroscope (screen design illustrated in Fig

1). These genes and their related functions are listed in S1 Table. Among these genes, the most

enriched biological terms are proteasome (23 genes, 13%, p-value = 1.38E-37) and mitochon-

drion (39 gene, 22%, p-value = 4.49E-37). Table 1 lists the top 10 most enriched biological

terms associated with this gene list.

Recognizing that most eukaryotic genes are coordinately regulated by multiple transcrip-

tion factors, we did a secondary screen to identify those RNAi treatments that had a clear hif-
1-dependent effect on Pnhr-57::GFP expression. To do this, we compared the Pnhr-57::GFP
induction of these 179 RNAi treatments in wild-type animals and hif-1-deficient animals.

Most of the 179 RNAi treatments increased the expression of Pnhr-57::GFP independent of

hif-1. However, the Pnhr-57::GFP induction by 13 RNAi treatments showed a strong hif-1-

dependent effect (S2 Table). Among these 13 genes, as expected, RNAi for egl-9, rhy-1, and

Fig 1. Genome-wide RNAi screen to identify negative regulators of HIF-1-mediated gene expression. Illustration

of screen design. C. elegans expressing the Pnhr-57::GFP reporter were fed bacteria expressing gene-specific RNAi.

Prior studies had shown that this reporter is induced by hypoxia and is positively regulated by the HIF-1 transcription

factor. In controls (photo at the top), animals exhibited a low level of fluorescence, while RNAi treatments that

increased expression of the reporter resulted in high levels of fluorescence.

https://doi.org/10.1371/journal.pone.0249103.g001
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vhl-1, previously characterized negative regulators of C. elegansHIF-1 [26, 29], increased

Pnhr-57::GFP expression in wild-type animals, but not in hif-1mutants. These results validated

the efficacy of our screen approach, and gave us the confidence to continue investigating the

potentially new negative regulators of HIF-1 among these 13 genes.

skn-1 attenuates HIF-1 protein levels and HIF-1 function

We were especially intrigued by the finding that skn-1 RNAi increased the expression of HIF-

1-responsive reporter. The Transcription factor SKN-1 has been shown to have critical roles in

enabling C. elegans to respond to oxidative stress [32–34, 39]. Our finding suggested a poten-

tial crosstalk between hypoxia response and oxidative stress response. To quantify the effect of

skn-1 RNAi on this HIF-1-responsive reporter, we examined Pnhr-57::GFP levels using protein

blots. In the normal room air culture conditions, Pnhr-57::GFP was 40% higher in skn-1 RNAi

compared to control RNAi (Fig 2A) (��p< 0.01, from three independent experiments). To

gain insight to the effects of this interaction in hypoxic conditions, we moved the animals to

0.5% oxygen. After 4 hours of hypoxia treatment, Pnhr-57::GFP was 50% higher in skn-1 RNAi

compared to control RNAi (Fig 2A) (��p< 0.01, from three independent experiments). Thus,

skn-1 RNAi increased Pnhr-57::GFP levels under normoxic and hypoxic conditions.

We next asked whether skn-1 RNAi increased HIF-1 protein levels. We tested two skn-1
RNAi constructs, and each resulted in an increase of HIF-1 protein levels by 2 to 3-fold as

shown in Fig 2B (��p< 0.01, from three independent experiments). In sum, these results

showed that skn-1 RNAi increased HIF-1 protein level and HIF-1 reporter expression.

Differential requirements for skn-1 and hif-1
The finding that SKN-1 repressed HIF-1 protein levels suggested that there might be condi-

tions in which it would be beneficial for the animal to express one of these two stress-respon-

sive transcription factors, but not the other. To address this, we examined the relative

requirements for skn-1 and hif-1more closely.

In previous studies, we and others had shown that hif-1 was required for survival in moder-

ate hypoxia [25, 41]. As validated in the experiments described in Table 2, loss of hif-1
impaired animal development and survival in 0.5% oxygen: after 24 hours of hypoxia treat-

ment, only 75.8% of hif-1-deficient eggs hatched, and only 25.6% developed to adulthood

within 72 hours. In contrast, skn-1 RNAi had no effect on C. elegans development and survival

Table 1. Top 10 enriched biological terms for the 179 genes that increased Pnhr-57::GFP expression when

knocked-down by RNAi.

Biological term Count % p-value

Proteasome 23 13 1.38E-37

Mitochondrion 39 22 4.49E-37

Transit peptide 23 13 9.57E-23

Mitochondrion inner membrane 17 10 2.58E-18

Ribosomal protein 21 12 3.07E-18

Ribonucleoprotein 21 12 1.25E-16

Transport 31 18 8.99E-13

Hydrogen ion transport 9 5 3.63E-11

Electron transport 10 6 7.64E-11

Threonine protease 7 4 3.39E-10

https://doi.org/10.1371/journal.pone.0249103.t001
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Fig 2. Identification of SKN-1 as a regulator of HIF-1. (A) skn-1 RNAi increased expression of the Pnhr-57::GFP
reporter. Reporter gene expression was quantitated in L4-stage animals in normal culture conditions or after 2 or 4

hours of hypoxia treatment (0.5% oxygen). The protein levels were calculated from three independent experiments and

normalized to 0 hour hypoxia control RNAi. A representative western blot is shown. In each lane, lysates from 80

L4-satge worms were loaded. Asterisks indicate significant differences between control RNAi and skn-1 RNAi at any

given time point. �: p< 0.05; ��: p< 0.01. (B) skn-1 RNAi increased HIF-1 protein levels. These animals expressed an

epitope-tagged HIF-1 protein [40]. The protein levels were calculated from three independent experiments and

normalized to control RNAi. Two different RNAi clones were assayed, and they are designated as skn-1(1) and skn-1
(2) here. A representative western blot is shown. In each lane, lysates from 100 L4-satge worms were loaded. Asterisks

indicate significant differences between control RNAi and skn-1 RNAi at any given time point. ��: p< 0.01.

https://doi.org/10.1371/journal.pone.0249103.g002

PLOS ONE SKN-1/NRF inhibits the HIF-1 hypoxia-inducible factor in Caenorhabditis elegans

PLOS ONE | https://doi.org/10.1371/journal.pone.0249103 July 9, 2021 5 / 20

https://doi.org/10.1371/journal.pone.0249103.g002
https://doi.org/10.1371/journal.pone.0249103


in hypoxic conditions: after 24 hours of hypoxia treatment, 99.4% of skn-1 RNAi treated eggs

hatched and completed normal development to adulthood within 72 hours.

Prior studies also suggested that there were differential requirements for HIF-1 and SKN-1

in oxidative stress conditions. Mutants carrying loss-of-function mutations in skn-1 have been

shown to decrease the ability of C. elegans to survive exposure to agents that cause oxidative

stress [34, 42–44]. In contrast, C. elegans carrying loss-of-function mutations in hif-1 have

been reported to be relatively resistant to peroxide [40]. We compared these phenotypes

directly, and the data are provided in Table 3. These experiments confirmed that, while skn-1-

deficient animals were sensitive to t-butyl peroxide, mutants lacking hif-1 were remarkably

resistant to this oxidative stress: while none of the skn-1-deficient mutants survived 6 hours of

t-butyl peroxide treatment, 97.5% of hif-1-deficient mutants survived 10 hours of t-butyl per-

oxide treatment.

SKN-1/NRF promotes egl-9 expression

We next sought to discover the mechanism by which SKN-1 inhibits HIF-1 protein levels. In

silico analyses identified a potential SKN-1 binding site in the egl-9 promoter region (Fig 3A).

EGL-9 is a central inhibitor of HIF-1 protein levels [26, 27] and of HIF-1 transcriptional activ-

ity [29, 30]. This suggested a model in which the SKN-1 DNA-binding complex bound directly

to the egl-9 regulatory sequences to promote egl-9 expression, which, in turn, would ultimately

decrease HIF-1 protein levels. To test this, we employed real-time quantitative RT-PCR to

compare egl-9mRNA levels in worms fed with skn-1 RNAi versus control RNAi. To produce

reliable and reproducible results, egl-9mRNA levels were quantitated in three independent

real-time quantitative RT-PCR experiments in L4-stage animals in room air or hypoxic condi-

tions (0.5% oxygen). Each sample was performed with three technical replicates, and they

Table 2. Relative requirements for skn-1 and hif-1: Survival in 0.5% oxygen.

Genotype % hatched ± SEM % survive to adult ± SEM n a

N2 (wild type) 99.1 ± 0.25 99.1± 0.3 672

hif-1(ia04) 75.8 ± 2.5 25.6 ± 0.9 616

N2;control(RNAi) 99.6 ± 0.19 99.6 ± 0.2 558

N2;skn-1(RNAi) 99.4 ± 0.42 99.4 ± 0.4 640

a n is the total number of animals assayed in three independent experiments.

https://doi.org/10.1371/journal.pone.0249103.t002

Table 3. Relative requirements for skn-1 and hif-1: Survival on t-butyl-peroxide.

Exposure time Genotype Mean Survival ± SEM N a

6 hours N2 (wild type) 95.2 ± 2.6 106

skn-1(zu67) 0.0 ± 0 117

hif-1(ia04) 100.0 ± 0 120

8 hours N2 (wild type) 29.08 ± 7.7 106

skn-1(zu67) 0.0 ± 0 117

hif-1(ia04) 99.17 ± 0.8 120

10 hours N2 (wild type) 2.78 ± 2.8 106

skn-1(zu67) 0.0 ± 0 117

hif-1(ia04) 97.50 ± 2.5 120

a n is the total number of animals assayed in three independent experiments.

https://doi.org/10.1371/journal.pone.0249103.t003
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produced similar Ct values. There are seven isoforms of egl-9mRNA transcripts (https://

wormbase.org/species/c_elegans/gene/WBGene00001178#0-9f-10). The real-time quantitative

PCR primer set used in this study can detect six egl-9mRNA isoforms. In room air, skn-1
RNAi decreased egl-9mRNA levels by 30% compared to control RNAi (��p< 0.01, from three

independent experiments) (Fig 3B). HIF-1 has been shown to activate egl-9mRNA expression

under hypoxia, creating a negative feedback loop [27, 28]. In accordance with this, the inhibi-

tion effects of skn-1 RNAi on egl-9mRNA levels were minimized by placing the animals in

hypoxic conditions (Fig 3B).

To test the hypothesis that conditions that activate SKN-1 can promote egl-9 promoter

activity, we generated a reporter construct in which 1.6 kb of egl-9 regulatory sequence

directed the expression of GFP (Fig 4A). To distinguish the effects of SKN-1 on egl-9 expres-

sion from those of HIF-1, we conducted these experiments in a hif-1mutant background. In

agreement with prior studies [45], Pegl-9::GFP was visible in several tissues, including the body

muscle, vulva, pharynx, anterior intestine, rectal cells and additional cells in the tail in standard

culture conditions (20˚C) (Fig 4B and 4C). When the animals were treated with heat shock

conditions that had been shown to activate SKN-1 (29˚C for 20 hours) [34], we observed dra-

matic induction of Pegl-9::GFP in the intestine. (Fig 4D and 4E).

We next asked whether heat shock induction of Pegl-9::GFP required skn-1 function. We

found that heat shock increased Pegl-9::GFP by 2.5-fold in animals carrying the wild-type skn-
1 allele. However, the heat shock induction of Pegl-9::GFP was abolished in skn-1(zu67) loss-

Fig 3. Identification of egl-9 as a potential transcriptional target of SKN-1. (A) Sequence from the egl-9 promoter

was aligned with established SKN-1 binding sites in gcs-1,med-1, andmed-2. Asterisks identify sequence identities

shared by all four promoter regions in this interval, and predicted SKN-1 binding sites are in red. (B) skn-1 RNAi

decreased egl-9mRNA levels. egl-9mRNA levels were quantitated from three independent real-time quantitative

RT-PCR experiments. The values at each time point were normalized to the 0 hour hypoxia control RNAi. Asterisks

indicate significant differences between control RNAi and skn-1 RNAi at any given time point. �: p< 0.05; ��: p< 0.01.

https://doi.org/10.1371/journal.pone.0249103.g003
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of-function mutants (Fig 5A). Analyses of another independent Pegl-9::GFP transgenic line

yielded similar results (S3 Fig).

To test the hypothesis that the putative SKN-1 binding site in the egl-9 promoter was

required for heat shock induction of Pegl-9::GFP, we generated the P(m)egl-9::GFP construct,

which contained mutations in the putative SKN-1 binding site (in red type in Fig 3A). Heat

shock increased Pegl-9::GFP by 2.1-fold. However, heat shock failed to induce the expression

of P(m)egl-9::GFP (Fig 5B). Experiments with a second P(m)egl-9::GFP transgenic line gave

similar results (S4 Fig). Collectively, these data demonstrated that heat shock induction of

Pegl-9::GFP required skn-1 function and the putative SKN-1 binding site in the egl-9 promoter.

We employed gsk-3 RNAi as an independent means of activating SKN-1. GSK-3 (glycogen

synthase kinase-3) is a negative regulator of SKN-1. Under normal conditions, SKN-1 is pres-

ent at low levels in intestinal nuclei. Prior studies had demonstrated that gsk-3 RNAi caused

constitutive expression of SKN-1 in intestinal nuclei in the absence of oxidative stress [39, 46].

As shown in Fig 6, gsk-3 RNAi increased the expression of Pegl-9::GFP by 1.5-fold. Notably,

gsk-3 RNAi failed to induce the expression of P(m)egl-9::GFP, in which the SKN-1 binding site

is disrupted. Collectively, these data support a model in which SKN-1 promotes the transcrip-

tion of egl-9, thereby repressing HIF-1 (Fig 7).

Discussion

This study provides new insights to the mechanisms that allow animals to respond appropri-

ately to diverse stresses. While HIF-1 and SKN-1 are both stress responsive transcription fac-

tors, they have distinct functions. For example, skn-1-deficient animals are less able to survive

exposure to peroxide, while hif-1-deficientmutants are relatively resistant to this oxidizing

agent [40] (Table 3). Conversely, while a deletion mutation in hif-1 dramatically impairs sur-

vival in 0.5% oxygen [25], skn-1 RNAi has little effect (Table 2). Thus, animals may benefit

Fig 4. Heat shock alters Pegl-9::GFP expression. (A) The Pegl-9::GFP construct includes 1.6 kb of sequence 5’ to the

egl-9 translational start. GFP coding sequence is diagramed as a green box. The red oval indicates the position of the

putative SKN-1 binding site. (B-E) Pegl-9::GFP expression in L4-stage animals under normal culture conditions and

heat shock. Animals are shown as DIC images (B and D) and corresponding images of GFP fluorescence (C and E). In

all images, the head is to the right. (B and C) Under normal conditions, Pegl-9::GFP was expressed in the body muscle,

vulva, pharynx, anterior intestine, rectal cells and additional cells in the tail. (D and E) After heat shock treatment

(29˚C for 20 hours), Pegl-9::GFP was strongly induced in the intestine. ThePegl-9::GFP expression patterns in the L1,

L2, L3 and adults were similar to that in the L4 worms, under both normal and heat shock conditions (S2 Fig).

https://doi.org/10.1371/journal.pone.0249103.g004

PLOS ONE SKN-1/NRF inhibits the HIF-1 hypoxia-inducible factor in Caenorhabditis elegans

PLOS ONE | https://doi.org/10.1371/journal.pone.0249103 July 9, 2021 8 / 20

https://doi.org/10.1371/journal.pone.0249103.g004
https://doi.org/10.1371/journal.pone.0249103


Fig 5. SKN-1 acts through the putative SKN-1 binding site in the egl-9 promoter to activate egl-9 expression. (A)

Heat shock induced Pegl-9::GFP in animals carrying the wild-type skn-1 allele, but did not induce the reporter in

animals carrying the skn-1(zu67) loss-of-function mutation. The vertical axis shows the log2 fold changes of GFP

caused by heat shock for each strain with standard errors, as determined by four biological replicates. A representative

western blot is shown. For each sample, 20 L4- stage worms were boiled and lysates corresponding to 10 worms were

loaded to each lane. (B) Heat shock increased the expression of Pegl-9::GFP, but did not increase the expression of the

reporter in which the putative SKN-1 binding site was mutated (P(m)egl-9::GFP). The vertical axis shows the log2 fold

changes of GFP caused by heat shock for each strain with standard errors, as determined by five biological replicates. A

representative western blot is shown. For each sample, 20 L4- stage worms were boiled and lysates corresponding to 10

worms were loaded to each lane.

https://doi.org/10.1371/journal.pone.0249103.g005
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from cross-talk between these two transcription factors as they are challenged by oxygen depri-

vation and oxidative stress. Here, we provide evidence that SKN-1 promotes egl-9 expression,

thereby attenuating HIF-1 function.

SKN-1 promotes egl-9 expression, thereby inhibiting HIF-1

Our data support a model in which SKN-1 binds directly to the egl-9 promoter to increase egl-
9 expression. This conclusion is further substantiated by the genome wide chromatin immu-

noprecipitation experiments that determined that SKN-1::GFP associated with DNA

sequences in the egl-9 5’ regulatory region [47]. EGL-9 functions as a cellular oxygen sensor,

and it mediates oxygen-dependent degradation of HIF-1 [26]. Hence, skn-1 RNAi results in

increased HIF-1 protein levels (Fig 2B). We expect that this regulatory interaction, in which

SKN-1 can quickly down-regulate HIF-1, would allow animals to adapt quickly to changes in

cellular conditions.

Fig 6. gsk-3 RNAi induction of Pegl-9::GFP. gsk-3 RNAi increased expression of Pegl-9::GFP, relative to control RNAi

(the L4440 empty vector). This effect was dependent upon the putative SKN-1 binding site in the reporter (mutated in

P(m)egl-9::GFP). The figure shows the log2 fold change of GFP from four biological replicates, with standard errors. A

representative western blot is shown. For each sample, 20 L4-stage worms were boiled and lysates corresponding to 10

worms were loaded to each lane.

https://doi.org/10.1371/journal.pone.0249103.g006

Fig 7. SKN-1 regulates egl-9 expression to attenuate HIF-1. Model illustrating interactions between key regulators of

oxygen homeostasis in C. elegans. SKN-1 promotes egl-9 transcription, and EGL-9 controls oxygen-dependent

degradation of HIF-1 protein.

https://doi.org/10.1371/journal.pone.0249103.g007
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Prior studies have identified genes that are positively regulated by either SKN-1 or HIF-1,

and these gene lists are largely non-overlapping [28, 32, 48–50]. Genes that are commonly reg-

ulated by both SKN-1 and HIF-1 include K10H10.2/cysl-2, F57B9.1, M05D6.5, and rhy-1. Two

lines of evidence suggest that rhy-1may be a direct target of SKN-1. First, Oliveira et al. (2009)

identified a potential SKN-1 binding site in the rhy-1 promoter region. Second, the modEN-

CODE project found that rhy-1 5’ regulatory sequences associated with SKN-1 in vivo [47].

Like egl-9, rhy-1 is also a negative regulator of HIF-1 [28, 29]. Collectively, these data suggest

that SKN-1 may act through both egl-9 and rhy-1 to reduce HIF-1 function. SKN-1 may also

act through other pathways including the proteasomal pathway to influence the expression of

HIF-1 targets. The RNAi screen reported here demonstrated that proteasomal dysfunction can

increase the expression of the Pnhr-57::GFP reporter. Prior studies have shown that skn-1 reg-

ulates several protesome components [32, 42, 47, 51–53], including six of the genes identified

in the Pnhr-57::GFP RNAi screen (rpn-11, rpt-5, rpt-6, pas-4, pbs-5, and pbs-6).

Interactions between HIF-1 and SKN-1 are likely to be different in select cells, developmen-

tal stages, or environmental contexts. HIF-1, EGL-9 and SKN-1 each have other developmental

functions, and some of these are specific to certain cell types [34, 54–58]. The downstream

effects of SKN-1 or HIF-1 activation are further influenced by cellular or environmental con-

texts. For example, C. elegans SKN-1 can be activated by arsenite or by t-butyl hydroperoxide,

but only a subset of SKN-1 targets are activated by either toxicant [32]. Also, while C. elegans
SKN-1 and HIF-1 have distinct roles in peroxide and hypoxia stress responses, their functions

overlap in selenium and hydrogen sulfide stress responses [13, 15, 35–37].

Similarly, the mammalian NRF and HIF transcription factors are very sensitive to environ-

mental and physiological cues or stresses, and their regulatory relationships are context spe-

cific. Ischemia causes tissue hypoxia, which stabilizes HIF transcription factors. Once the

ischemic tissue is reperfused, HIF transcription factors are degraded quickly and NRF2 is up-

regulated, presumably to limit the oxidative damage [4, 5]. However, intermittent hypoxia has

been shown to induce both HIF-1α and NRF2 [6, 7]. While NRF2 signaling activates HIF-1 in

several cancer types [12], studies of the anti-inflammatory drug andrographolide in endothelial

cells revealed interactions between NRF2 and the PHDs that modulate HIF-1 [59]. NRF2 and

the HIF transcription factors have key roles in angiogenesis and iron regulation, and their

functions can converge on developmental processes or feedback loops that modulate their

activities [12, 60–62].

While the studies presented here illuminate key regulatory networks that govern stress

response, they also point to outstanding questions. Given that HIF-1 is subject to oxygen-

dependent degradation, why are hif-1mutants more resistant to oxidative stress? Prior studies

provide some insight. Angeles-Albores et al. [63] showed that the genes up-regulated in hif-1
mutants included genes involved in detoxification and stress response, such as glutathione S-

transferases and cytochrome P450 CYP2 family enzymes. Hence, while C. elegans cannot

adapt quickly to hypoxia in the absence of a functional hif-1 gene [25], the hif-1mutation also

causes widespread changes in gene expression that protect the animals from other insults, such

as peroxide treatment. Future studies will further explore the ways in which stress response

networks adapt to genetic or environmental changes and the impacts of these changes on

organismal health.

Pnhr-57::GFP as a marker for hypoxia-induced gene expression:

Discoveries and insights from a genome-wide screen

Prior studies have demonstrated that nhr-57 was induced by hypoxia in a hif-1-dependent

manner and that over-expression of Pnhr-57::GFP in egl-9mutants required hif-1 [13, 27–30].
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Moreover, Bellier et al. (2009) found that HIF-1-mediated induction of nhr-57 helped to pro-

tect C. elegans from the lethal effects of pore-forming toxins [64]. While these studies showed

that nhr-57 is a direct target of HIF-1, other transcription factors must also contribute to its

expression. The studies presented here show that, while genes such as egl-9 or rhy-1 clearly reg-

ulate HIF-1 to control Pnhr-57::GFP expression, many other RNAi treatments can activate

Pnhr-57::GFP through hif-1-independent pathways. The Pnhr-57::GFP reporter will continue

to be a valuable marker, but these data inform our interpretations of studies that employ this

reporter. While Pnhr-57::GFP is clearly regulated by HIF-1, it is important to compare expres-

sion of the reporter in wild-type and hif-1-deficient animals before drawing conclusions about

HIF-1 activity.

We found that diverse RNAi treatments that compromise metabolic function or protein

homeostasis increased Pnhr-57::GFP expression, and this effect did not require a functional

hif-1 gene. Interestingly, many of the genes integral to these processes have been shown to

have roles in stress response and aging [65–70]. RNAi-mediated depletion of proteasomal

components has also been shown to impact resistance to polyglutamine toxicity and to induce

expression of Pgpdh-1::GFP, a marker for osmotic stress and glycerol production [71, 72].

Further characterization of the 179 RNAi treatments that increased Pnhr-57::GFP identified

13 genes that had much stronger effects in animals carrying a wild-type hif-1 gene. These

genes included vhl-1, egl-9, and rhy-1. These three genes had all been identified in prior studies

as negative regulators of HIF-1 [26, 29]. The succinate dehydrogenase subunit sdhb-1 was also

found to have hif-1-dependent effects. This is especially interesting, since studies in cancer cell

lines have shown that succinate can inhibit the enzymatic activities of HIF prolyl hydroxylases

[73, 74]. sams-1 and sbp-1 encode the C. elegans S-adenosyl methionine synthetase and the

SREBP homologs, respectively. The RNAi treatments of sams-1and sbp-1have a lesser impact

on Pnhr-57::GFP levels in hif-1mutants, suggesting that the effects of sams-1 and sbp-1 RNAi

on the reporter are mediated by HIF-1 (S5 Fig). Both of these genes have key roles in methio-

nine metabolism and fatty acid biosynthesis [75], and it will be interesting to investigate the

ways in which these important processes intersect with hypoxia response.

Materials and methods

Strains

The following strains were used in this study: wild-type N2 Bristol; ZG430: Pnhr-57::GFP
(iaIs07)IV; egl-9(sa307)V; hif-1(ia04)V; Phif-1::hif-1a::Myc::HA (iaIs28); ZG120: Pnhr-57::GFP
(iaIs07)IV; ZG509: rrf-3(pk1426)II; Pnhr-57::GFP(iaIs07)IV; ZG508: rrf-3(pk1426)II; Pnhr-57::

GFP(iaIs07)IV; hif-1(ia04)V; ZG429: hif-1(ia04)V; Phif-1::hif-1a::Myc::HA(iaIs28); ZG472: hif-
1(ia04)V; Pegl-9::GFP(iaEx84); ZG487: hif-1(ia04)V; P(m)egl-9::GFP(iaEx96); ZG488: skn-1
(zu67)IV; hif-1(ia04)V; Pegl-9::GFP(iaEx84). The transgenes expressing epitope-tagged HIF-1

protein were described and characterized previously [40]. The skn-1 (zu67) allele introduces a

premature stop codon affecting skn-1mRNA isoforms a and c (https://wormbase.org/species/

c_elegans/gene/WBGene00004804#0-9f-10).

RNAi experiments

The RNAi screen was conducted as previously described [76], with few modifications. Each

bacterial clone (expressing double-stranded RNA for one gene) was cultured in L-broth with

50 ug/mL ampicillin and 12.5 ug/mL tetracycline overnight at 37˚C. The following morning,

the bacteria were inoculated into new L-broth with 100 ug/mL ampicillin for 6 hours at 37˚C

before seeding on 24-well NGM agar plates with 25 ug/mL carbenicillin and 2 mM IPTG.

Each RNAi clone was plated in duplicate. The following day, 15–25 L1-stage worms were
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added to each well. The plates were incubated at 15˚C for 5–6 days, and then the worms were

screened for positive Pnhr-57::GFP green fluorescence by stereomicroscopy. For the initial

screen, 16,265 RNAi clones were assayed. Bacterial RNAi clones that increased the reporter

were rescreened in two independent replicates, and the plasmid inserts were validated by

sequencing.

For skn-1 RNAi, N2 young adults (one day after L4 molt) were put on RNAi plates to lay

eggs. skn-1 RNAi causes maternal-effect lethality, in this study we examined the effects of first

generation skn-1 RNAi. Dead egg percentages given by the first generation skn-1 RNAi adults

were measured to check the skn-1 RNAi efficiency. We routinely achieved as high as 90% dead

egg percentages from the first generation skn-1 RNAi adults, indicating high skn-1 RNAi effi-

ciency. While the skn-1 and sknr-1 genes are related, they are distinct enough to be differen-

tially targeted by RNAi. In the screen reported here, skn-1 RNAi altered Pnhr-57::GFP

function, while sknr-1 RNAi did not.

For gsk-3 RNAi, N2 L4-stage worms were put on gsk-3 RNAi plates or control RNAi plates

to lay eggs. L4-stage progeny worms were sampled for western blot assays.

Gene function annotation and function enrichment analyses

The DAVID (The Database for Annotation, Visualization and Integrated Discovery) tools

(https://david.ncifcrf.gov) were used to annotate the 179 genes which increased Pnhr-57::GFP

expression when knocked-down. These analyses identified the biological functions enriched

among Pnhr-57::GFP regulators.

Hypoxia and oxidative stress assays

To assess the relative effects of t-butyl-peroxide exposure, animals in the first day of adulthood

were placed on NGM plates containing 7.5 mM t-butyl-peroxide, in the presence of bacterial

food. The survival was scored after treating the animals for 6, 8 or 10 hours.

For hypoxia experiments, adults were allowed to lay eggs on standard NGM plates with

OP50 bacterial food for 2 hours. The adults were then removed, and the plates with embryos

were placed in a sealed plexiglass chamber with constant hypoxic gas flow at 21˚C for 24

hours. Compressed air and 100% nitrogen were mixed to achieve 0.5% oxygen, and gas flow

was controlled by an oxygen sensor [28]. After 24 hours, the plates were removed from the

hypoxia chamber, and the un-hatched eggs were counted immediately. The plates were then

maintained in room air (21˚C). The adult worms were counted 72 hours after the eggs had

been laid. Wild-type control animals hatched within 24 hours and reached adulthood within

72 hours.

Pegl-9::GFP expression constructs

To generate the Pegl-9::GFP construct, a fragment that contained 1.6 kb of sequence upstream

of the initiation ATG of egl-9 gene was amplified by PCR using the forward primer 5’-
CGCGCATGCGTGTATGTGTGTGAAAGAG-3’ and the reverse primer 5’-GCGGTCGACGC
AACTTTTTTCTGTCACATTCAG-3’. The PCR product was cloned into the green fluores-

cence protein (GFP) vector pPD95.75 (gift from Andrew Fire). To create the P(m)egl-9::GFP
point mutation construct, the predicted SKN-1 binding site TTTGTCAT [34, 77]was altered

to CGACGGGC. Transgenic animals were generated by injection of DNA into the gonadal

syncitium, using standard methods with rol-6 (pRF4) as the co-injection marker [78]. For each

construct, two independent transgenic lines were generated and assayed. For DIC and GFP

imaging, animals were partially immobilized with sodium azide (10 mM). Sodium azide con-

centrations and duration were minimized to limit added stress to the worms.
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Protein blots

We performed pilot experiments to find the linear range for each western blot assay. To assay

the expression of GFP or HIF-1 proteins, 20–100 L4-stage worms were collected and boiled for

5 min in 1X SDS sample buffer, and the lysates were size fractionated on polyacrylamide gels

and analyzed by Western blots. The GFP-specific mouse monoclonal antibody (from Roche)

was used at 1:500. The HA-specific mouse monoclonal antibody (from Cell Signaling) was

used at 1:250. The secondary antibody (goat anti-mouse IgG+IgM from Biorad) was used at

1:2000 dilutions. The western blot images were analyzed by the Image J software. For each

assay, three to five independent biological replicates were included.

RNA extraction and real-time quantitative RT-PCR

Total RNA was isolated from synchronized L4-stage animals using Trizol (Invitrogen) and

RNeasy Mini Kit (Qiagen). After being treated by RNase free DNase (Promega), total RNA

was reverse transcribed to complementary DNA using Oligo dT18 primer and AffinityScript

reverse transcriptase (Stratagene). Real-time quantitative PCR was performed using the iQ

SYBR GREEN supermix (Bio-Rad) and Stratagene Mx4000 multiplex PCR system. In the

assay, three biological replicates were included. And for each sample, three technical replicates

were performed and they gave similar Ct values. And cDNA from 62.5 ng of total RNA was

added to each PCR reaction. Relative mRNA quantification was performed using the effi-

ciency-corrected comparative quantification method [79]. inf-1, a gene not regulated by hyp-

oxia, was used as the reference gene [28]. The primer sequences for inf-1 real-time quantitative

PCR are included in S1 Fig. The primers for egl-9 real-time quantitative PCR are the forward

primer 5’-GCCGACTTTCAATCCACTTC-3’ and reverse primer 5’- AATGATCGGA-
GATCGACTGG-3’. There are seven isoforms of egl-9mRNA transcripts (https://wormbase.

org/species/c_elegans/gene/WBGene00001178#0-9f-10). This primer set can detect six out of

seven egl-9mRNA isoforms. The isoform d.1 will not be detected by this primer set, because

the forward primer is located within the eighth intron of the unspliced isoform d.1.

Statistical analyses

All the experiments for testing the hypothesis that skn-1 transcriptionally regulates egl-9 fol-

lowed a randomized complete block design. All of these experiments were analyzed with an

ANOVA model and an F-test was conducted. Briefly, to assay the simple effect of skn-1 RNAi

treatment on Pnhr-57::GFP at each hypoxia time point, Log2 transformed western blot intensi-

ties of Pnhr-57::GFP were analyzed with hypoxia time (2h, 4h, or 6h, treated as a categorical

variable), RNAi treatment (skn-1 RNAi or control RNAi), hypoxia time by RNAi treatment

interaction, and the three independently replicated experiments treated as fixed effect factors,

assuming normality and homoscedasticity of errors. skn-1(Zu67) effect on Pegl-9::GFP heat

shock induction, and heat shock or gsk-3 RNAi effect on Pegl-9::GFP and P(m)egl-9::GFP

induction were assayed using the similar ANOVA model as that for Pnhr-57::GFP. Except that

Log2 fold changes were analyzed. The fold change was determined by dividing the western

blot intensity of the heat shock (or gsk-3 RNAi) sample by the corresponding non-heat shock

(or control RNAi) sample. Similarly, to assay the simple effect of skn-1 RNAi treatment on egl-
9mRNA expressions at each hypoxia time point, Log2 comparative expression (compared to

inf-1) were analyzed using the same ANOVA model as that for Pnhr-57::GFP, except that error

variances are assumed to be different for different hypoxia time. Accordingly, tests of interest-

ing linear contrasts employed Satterthwaite type approximation to the degrees of freedom.
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Supporting information

S1 Fig. nhr-57 promoter HIF-1 chromatin immunoprecipitation experiments. (A) nhr-57
promoter sequence and positions of primers used for real-time quantitative PCR assays in

HIF-1 chromatin immunoprecipitation experiments. (B) Primer sequences for real-time quan-

titative PCR assays in nhr-57 promoter HIF-1 chromatin immunoprecipitation experiments.

(C) Chromatin co-immunoprecipitation data. In these experiments the endogenous hif-1
locus was disrupted by the ia04 large deletion and HIF-1 function was restored by the Phif-1::

hif-1a::Myc::HA transgene [40]. The relative amounts of nhr-57 promoter regions that co-

immunoprecipitated with HIF-1::Myc::HA was determined by real-time quantitative PCR.

The bars show the average enriched fold from at least three independent replicates. inf-1, a

gene not regulated by HIF-1, was used as the reference gene.

(DOCX)

S2 Fig. Pegl-9::GFP expression in L1, 2, 3 and adult-stage animals under normal culture

conditions and heat shock.

(PDF)

S3 Fig. Heat shock induced another independent Pegl-9::GFP transgenic line in animals

carrying the wild-type skn-1 allele, but did not induce the reporter in animals carrying the

skn-1(zu67) loss-of-function mutation.

(PDF)

S4 Fig. Heat shock increased the expression of Pegl-9::GFP, but did not increase the expres-

sion of the reporter in which the putative SKN-1 binding site was mutated (P(m)egl-9::

GFP) in another independent line.

(PDF)

S5 Fig. RNAi inactivation of sams-1 or sbp-1 increased Pnhr-57::GFP expression. (A) RNAi

for sams-1 (S-adenosyl methionine synthetase) increased Pnhr-57::GFP expression more than

7-fold in animals carrying the wild-type hif-1 allele relative to control RNAi, and increased the

reporter 3-fold in animals carrying the hif-1(ia04) deletion. The difference in RNAi effect

between hif-1(+) and hif-1(ia04) strains is statistically significant (�p< 0.05, from six indepen-

dent experiments, by student t-test). (B) RNAi for the SREBP homolog sbp-1 increased expres-

sion of the reporter more than 3-fold in animals carrying the wild-type hif-1 allele, but had no

effect on Pnhr-57::GFP expression in hif-1(ia04)mutants. The difference in RNAi effect

between hif-1(+) and hif-1(ia04) strains is statistically significant (�p< 0.05, from five indepen-

dent experiments, by student t-test). GFP levels were determined by protein blots, and the con-

trol animals were fed on bacteria carrying the empty RNAi vector (L4440). The experiments

were conducted in RNAi-sensitive strains (rrf-3(pk1426)).

(DOCX)

S1 Table. Genes increased Pnhr-57::GFP expression when knocked-down by RNAi.

(XLSX)

S2 Table. Genes for which RNAi caused hif-1-dependent increase of Pnhr-57::GFP expres-

sion.

(DOCX)

S1 Raw images.

(PDF)
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