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Humans carry trillions of viruses that thrive because of their ability to exploit the host. In this exploitation, viruses promote 
their own replication by suppressing the host antiviral response and by inducing changes in host biosynthetic processes, 
often with extremely small genomes of their own. In the review, we discuss the phenomenon of histone mimicry by viral 
proteins and how this mimicry allows the virus to dial in to the cell’s transcriptional processes and establish a cell state 
that promotes infection. We suggest that histone mimicry is part of a broader viral strategy to use intrinsic protein disorder 
as a means to overcome the size limitations of its own genome and to maximize its impact on host protein networks. In 
particular, we discuss how intrinsic protein disorder may enable viral proteins to interfere with phase-separated host protein 
condensates, including those that contribute to chromatin-mediated control of gene expression.
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There are an estimated 37.2 trillion cells in the human body 
(Bianconi et al., 2013), organized into anatomically and func-
tionally defined tissues that maintain their phenotypic stabil-
ity in the face of environmental pressure, stochastic changes 
in gene and protein expression, and even structural genetic 
alterations (Barabási and Oltvai, 2004; Stelling et al., 2004). 
Yet, cells can be challenged with extreme perturbations caused 
by invasion of foreign life forms (pathogens) that aim to exploit 
the cell’s resources to ensure their own replication. Viruses, 
both DNA and RNA forms, represent the most impactful types 
of pathogens with respect to the interference with intracellu-
lar environment. Although bacterial species and protozoans 
mostly use extracellular resources to support their replication, 
viral replication requires cooperation from the host cell’s bio-
synthetic processes and concomitant suppression of the host 
antiviral response (Virgin, 2014; Pfeiffer and Virgin, 2016). To 
understand the degree to which viruses impact on human life, 
one needs to consider the actual number of viruses that exist in 
the biosphere. Although many of the calculations can be seen 
as arbitrary, it is estimated that there are ∼100 million different 
viruses populating 1,740,330 species of vertebrates, inverte-
brates, plants, lichens, mushrooms, and brown algae (Woolhouse 
et al., 2012). All adult humans are chronically infected with RNA 
and DNA viruses—most originating in animals—that could be 
either pathogenic or innocuous (Virgin et al., 2009; Cadwell, 
2015). Each human harbors an estimated 8–12 chronic infec-
tions (Virgin et al., 2009). The size of the mammalian virome 

is not known, but the fact that there are 108–109 viruses, which 
represent multiple viral species, per gram of human feces offers 
a glimpse into the complexity and abundance of viruses in the 
human body (Mokili et al., 2012; Reyes et al., 2012). This num-
ber significantly underestimates viruses residing outside of the 
gastrointestinal tract; with these considered, the total number of 
viruses within the human body is probably closer to ∼1015 (Mokili 
et al., 2012; Nikolich-Zugich et al., 2017).

Beneficial virome–host interactions
In their enormous diversity, human viruses can be pathogenic 
and disease-causing or opportunistic and relatively harmless. 
The pathogenic and highly destructive viruses such as influenza, 
dengue fever, yellow fever, HIV, and hepatitis C viruses (HCVs) 
affect the health of hundreds of millions people worldwide 
every year. By contrast, opportunistic viruses can benefit the 
host, and this virus mutualism is evolutionarily old. An impres-
sive example of this mutualism is the rosy apple aphid, Dysaphis 
plantaginea—a major pest of apple trees—which is infected by 
a densovirus that induces wing development in the aphid. This 
morphotype is important in enabling aphids to move to new 
plants (Ryabov et al., 2009; Roossinck and Bazán, 2017).

Virus-induced changes to the mammalian immune system 
that benefit the host are also common. The mouse norovirus can 
replace the function of commensal gut bacteria in the establish-
ment of intestinal architecture and subsequent establishment 
of the innate immune system (Kernbauer et al., 2014). Mouse 
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γ-herpesvirus protects mice from the bacterial pathogens that 
cause bubonic plague (Yersinia pestis) and the foodborne dis-
ease listeriosis (Listeria monocytogenes) via prolonged produc-
tion of IFN-γ and macrophage activation (Barton et al., 2007). 
Human cytomegalovirus, a nearly ubiquitous latent herpesvirus, 
provides enhanced immune response to influenza, especially in 
young adults, with evidence for heightened immune activation 
(Furman et al., 2015). This appears not to be an isolated case 
because other herpesviruses may also increase the immune 
response to other pathogens (Sandalova et al., 2010). In humans, 
the Flavivirus GB virus C, also known as hepatitis G virus, is 
asymptomatic and could thus be considered a commensal virus, 
but under some conditions it behaves as a mutualist. For exam-
ple, HIV-positive patients who are infected with GBV0C show 
slower disease progression, a process that involves down-regu-
lation of cell receptors for HIV entry, normalization of IFN and 
other cytokine levels, and decreased HIV replication (Bhattarai 
and Stapleton, 2012). The beneficial effect of viruses on the host 
are indicative of the existence of virus-encoded molecules that 
can drive the establishment of complex nondevelopmentally pre-
determined phenotypes in animal or human cells.

Viral tactics for maximal replication and immune evasion
At the core of the viral strategy is the ability of viruses to atten-
uate innate and adaptive immune responses, while coopting the 
transcriptional and translational machineries of infected cells 
to generate new viral particles (García-Sastre and Biron, 2006). 
This strategy generates a phenotypically new infected cell state 
that combines the features of the normal host cell with the fea-
tures that support viral replication and spreading (Nagy and 
Pogany, 2011). The strategic aims of the rely on different tactics 
that reflect differences between viral genomes as well as the 
nature of the affected cells (García-Sastre, 2017). In turn, the 
differences in virus tactics yields phenotypic diversity among 
infected cells as defined by patterns of gene and protein expres-
sion and metabolic states.

In case of pathogenic viruses such as influenza, suppression 
of type I IFN expression and numerous IFN-stimulated genes 
(ISGs) dominates the infected cell phenotype (García-Sastre, 
2017). With type I IFN and ISGs suppressed, the influenza virus 
can survive and use cell biosynthetic machinery to generate 
new viral particles. In the case of pathogenic flaviviruses such 
as dengue, yellow fever, or HCV, infection not only suppresses 
IFN/ISG but also results in accumulation of a new ER-associated 
lipid compartment that supports viral infection. To achieve this 
aim, the flaviviruses alter expression of genes that control lipid 
accumulation by fatty acid oxidation (Bozzao et al., 1989). These 
gene expression changes alter lipid metabolism in a way that 
facilitates the build-up of a membranous web—a de novo-gen-
erated intracellular compartment that supports virus RNA 
replication and assembly of the viral particles (Martín-Acebes 
et al., 2016). HVB, a double-stranded DNA virus of the Hepad-
naviridae family, encodes a regulatory X protein, HBx, that 
triggers lipogenesis and ensuing generation of the lipid vesicles 
that support virus replication (Na et al., 2009; You et al., 2013). 
Human cytomegalovirus infection also induces major metabolic 
reprogramming, thus stimulating broad-spectrum RNA and DNA 

synthesis associated with an increase in cellular ribosome num-
bers (Tanaka et al., 1975), as well as increased glucose uptake and 
glycolysis in infected fibroblasts (Landini, 1984).

Nonpathogenic viruses affect transcription in a yet more 
stealthy fashion. Studies that have directly assessed the effects 
of chronic herpesvirus or polyomavirus infection on expression 
of host genes in different tissues have revealed substantial virus- 
and organ-specific effects (White et al., 2012; Canny et al., 2014). 
The numerous examples of virus-mediated manipulation of host 
gene expression have been thoroughly discussed in many out-
standing reviews (García-Sastre and Biron, 2006; García-Sastre, 
2017). The diversity of virus-induced phenotypes is contrasted by 
the common outcome of successful infection, in which the final 
phenotype is the production of new viruses. The ability of an 
infected cell to reach an end point in which it acquires an infec-
tion-supporting phenotype (or viral infection state) can be seen 
as a state of virus-induced quasidifferentiation.

Establishment of the infected cell state
To generate the viral infection state, viruses must overcome 
the robustness of the infected cell phenotype. In development, 
robustness is described as canalization, whereby developing cells 
are directed toward a specific outcome from uncertain starting 
conditions and despite various cellular and environmental per-
turbations (Waddington, 1942). In Waddington’s “epigenetic land-
scape,” environmental influences lead to the establishment of 
“valleys” that guide the direction of genetic processes and define 
a generation of cell types with a discrete nature (Waddington, 
1942). Accordingly, distinct cell phenotypes are represented by the 
placement of a cell state within a particular valley (Fig. 1 A). The 
Waddington landscape is not just a metaphor but rather an accu-
rate reflection of the state of gene regulatory networks that oper-
ate within cells (Huang et al., 2005). The gene expression levels in 
the cells can be viewed within the high-dimensional state space, 
where each point in the state space represents one gene expres-
sion pattern within the gene regulatory network (Fig. 1 B). The 
convergence of individual dimensions, i.e., gene expression tra-
jectories, from the high energy, unstable state to the low energy, 
stable state generates the so-called attractor state, toward which 
specific cells are pulled over time (Macarthur et al., 2009; Fig. 1 C). 
The stable attractor state occupies the basin of the state space 
and is surrounded by unstable states. Such topography provides 
an explanation for the self-stabilizing nature of gene networks 
where the hills that separate attractors represent unstable net-
work states. It has been proposed that attractor states define the 
stable phenotypes of specific cell types (Sooranna and Saggerson, 
1979; Huang et al., 2009). The self-organizing and self-stabilizing 
property of the cell state, which defines gene expression profiles, 
is a natural feature conferred by attractors. The attractor state can 
be reached via an almost infinite number of paths, all of which 
lead to cell type–specific gene expression patterns that are highly 
resistant to noise and can reestablish themselves after small per-
turbations (Huang et al., 2009). However, in the presence of suffi-
ciently high levels of fluctuations or in response to a deterministic 
signal, cells can switch between attractors and generate new and 
potentially heritable phenotypes (Kalmar et al., 2009; Muñoz-
Descalzo et al., 2012; Li et al., 2016).
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The ability of viruses to install the viral infection state implies 
the existence of mechanisms that allow the virus to override the 
robustness of the differentiated cell state imposed by the gene 
regulatory network (Macarthur et al., 2009; Huang, 2010). Viral 
infection may cause a destabilization of the high-dimensional 
gene regulatory network, thereby facilitating exit of the cell 
from the differentiated attractor and entry into a potentially 
new metastable attractor state that benefits infection (Fig. 1 C). 
To achieve this aim, viruses need to interfere with the gene reg-
ulatory networks at points that operate as network hubs, or at 
multiple points, thus generating multiple perturbations to the 
system. The attractor view of the virus-induced cell phenotype 
can help to explain how multiple and diverse virus-driven events 
can lead to a common outcome, characterized by reduced antivi-
ral responses and a rewiring of biosynthetic pathways to favor 
viral replication. In support of this model, screens for genes that 
control influenza infection performed by different laboratories 
have suggested highly variable cellular approaches toward anti-
viral resistance, with an abundance of host factors shown to 
contribute to the outcome of influenza infection. Remarkably, 
out of 1,539 total hits obtained in five genetic screens, 1,417 were 
unique to individual screens, and no genes were common to all 
five (Mehle and Doudna, 2010). Moreover, only four genes were 
common in genome-wide screens in human cells (Brass et al., 
2009; Karlas et al., 2010; König et al., 2010). The same degree of 
inconsistency has been observed in multiple screens for the HIV 
host factors, for which several explanations have been proposed, 

mostly based on technical nuances of the screens (Goff, 2008; 
Bushman et al., 2009; Mehle and Doudna, 2010). In our view, it 
is conceivable that these variations reflect the fact that establish-
ment of the viral infection state can follow different paths that 
involve different genes. One can speculate that individual effects 
of the virus on the host do not need to be particularly specific 
or severe, but that the multiplicity of effects contributes to the 
establishment of the infected cell state. Such a scenario is similar 
to the use of different genetic networks for the generation of mac-
rophages from undifferentiated tumor HL60 cells in response to 
chemically distinct triggers, all of which drive cells to the same 
attractor state (Huang et al., 2005). How can viruses, frequently 
carrying just a bundle of genes, establish the infected cell state?

Intrinsically disordered proteins (IDPs) in virus–
host interactions
It appears that viruses are well equipped to implement a multi-
target strategy toward interference with multiple cell functions. 
At the foundation of this viral feature is the abundance of poten-
tially polyreactive IDPs or intrinsically disordered regions (IDRs) 
in the viral proteome (Dunker et al., 2000, 2001, 2005; Tompa, 
2002; Uversky, 2002; Ward et al., 2004; Uversky and Dunker, 
2010). IDPs/IDRs, which are also common in the mammalian 
proteome, are characterized by high proportions of charged 
and hydrophilic amino acids combined with a low abundance of 
bulky hydrophobic amino acids. The IDP are unable to fold spon-
taneously into stable three-dimensional globular structures and 

Figure 1. Viral infection leads to generation of novel cell states. (A) Simplified scheme of the epigenetic landscape. The gene regulatory network that 
operates in pluripotent cells (open circle) yields the stable and distinct (attractor) states of network that define the specific cell types. The attractor occupies 
the low-energy stable basin, and providing robustness against perturbations. The y axis represents the relative stability of individual cell states where higher 
positions indicate less stability. The valleys represent stable attractor states. (B and C) Gene regulatory networks (B) generate stable differentiated cell pheno-
types (red) as well as innate antiviral states (blue) of differentiated cells (C). The latter is defined by expression levels of various antiviral proteins in the absence 
of detectable viral infection. Progression of viral infection is associated with virus-mediated suppression of the antiviral state, characterized by expression of 
type I IFN and ISGs, and establishment of the proviral state (yellow) that supports viral replication. Generation and stability of antiviral or proviral attractors 
may determine the outcome of the viral infection.
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Figure 2. The structure and function of histone mimics. (A) The methyltransferases G9a and GLP possess a functional histone-like sequence (red letters), 
localized within the N-terminal domain of the proteins. The G9a histone mimic methylation (red hexagon) is mediated in cis by the catalytic SET domain that is 
flanked by pre- and post-SET domains. The ankyrin repeat domain is involved in G9a interaction with methylated histones, and the methylated histone mimic 
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fluctuate through a range of conformations (Dyson and Wright, 
2005). This feature allows IDPs to form dynamically heteroge-
neous complexes with multiple binding partners (Ferreon et al., 
2009; Ishiyama et al., 2010). The dynamic nature of most IDPs 
also allows for increased availability of binding sites, with bind-
ing diversity greatly augmented by the propensity of IDPs to 
be posttranslationally modified (Gibson, 2009). These features 
contribute to the governing role of IDPs in signaling networks 
(Dunker et al., 2005; Dyson and Wright, 2005; Ishiyama et al., 
2010). IDRs participate in the assembly of numerous signaling 
complexes through reversible protein–protein interactions that 
promote formation of either fully reversible cellular assemblies 
or stable amyloid scaffolds (Li et al., 2012).

The recent studies of 2,278 viral genomes comprising 41 
viral families (Selenko et al., 2008) show striking variation in 
the amount of protein disorder both within and between viral 
families (from 2.9 to 23.1% of residues). Remarkably, the degree 
of disorder correlates negatively with the genome sizes within 
each of the five main viral types (single-stranded [ss]DNA, dou-
ble-stranded [ds]DNA, ssRNA+, dsRNA, retroviruses), with the 
exception of negative single-stranded RNA viruses, in which dis-
order increases with the size of the genome. More than 20 small 
viruses that encode five or fewer proteins have 50% or more dis-
ordered residues in their proteomes (Xue et al., 2014a). As the 
proteome size increases among different viruses, the fractions 
of disordered residues converges to 20–40%. Protein disorder is 
highly abundant in human viruses such as HCV, HIV-1 (Xue et al., 
2012), and human papillomaviruses (Uversky et al., 2006; Fan et 
al., 2014; Xue et al., 2014b), and the varying magnitude of disor-
der may enable viruses to impact numerous host factors. Addi-
tionally, the lack of inherent structure reduces the constraints of 
protein function and allows for creation of novel protein motifs 
that could be used by the virus to subvert host functions (Selenko 
et al., 2008; Sanjuán and Domingo-Calap, 2016). It has been also 
suggested that flexible structures may help viral proteins to 
evade the host immune system (Goh et al., 2008, 2009, 2012, 
2013). In particular, protein disorder may help viruses tolerate 
a high mutation rate and hence adapt to the host defenses. Addi-
tionally, a lack of structural constraints is supposed to promote a 
multiplicity of viral protein interactions with the host proteins 
and target multiple elements of the host cell defense system (Xue 
et al., 2014a).

Short linear motifs and histone mimicry by viruses.
The peptide motifs most found in IDPs fall into two groups: dis-
ordered sequences that adopt structure upon binding to other 
proteins, or short linear motifs (commonly referred to as SLiMs; 
Tompa et al., 2014). SLiMs, also called eukaryotic linear motifs, 

contribute to localized interactions of the IDPs with their part-
ners (Neduva and Russell, 2005; Tompa et al., 2005, 2014; Van 
Roey et al., 2014). The interactions are transient and have low 
micromolar affinities (Dyson and Wright, 2002; Van Roey et al., 
2014), and multiple SLiMs can act synergistically to increase the 
binding affinity of an IDP to a target (Dyson and Wright, 2002). 
The human proteome is estimated to contain more than 100,000 
short linear binding motifs located within IDRs. Because most 
of the binding specificity and affinity of a SLiM is embedded 
within a 2–5-residue-long core of amino acids, it is predictable 
that potential host SLiMs could be easily mimicked by viruses. 
Indeed, viruses carry numerous motifs that resemble host pro-
tein SLiMs (Ferreon et al., 2010; Sakon and Weninger, 2010; 
Gebhardt et al., 2013).

One of the most remarkable constellations of SLiMs is 
found in histone proteins. The N-terminal histone tail could 
be viewed as a collection of multiple overlapping SLiMs, with 
each motif (whether unmodified or posttranslationally modi-
fied) functioning as a discrete unit that is recognized by a par-
ticular histone-binding protein (or reader; Fischle et al., 2003; 
Ruthenburg et al., 2007; Taverna et al., 2007). This feature of the 
histone tail may contribute to its unique capability to facilitate 
binding of numerous nonhistone proteins and the formation of 
highly diverse protein complexes involved in various aspects of 
chromatin function.

The existence of histone-like SLiMs (histone mimics) in 
nonhistone proteins was first demonstrated in our studies that 
revealed the presence of a histone H3–like sequence within the 
histone methyltransferase G9a, which catalyzes dimethylation at 
lysine 9 of histone H3 (Sampath et al., 2007; Fig. 2 A). G9a carries 
a 163-ARKT-166 motif that resembles the 7-ARKS-10 motif of its 
histone H3 target. Consistent with the presence of the histone 
mimic, G9a can automethylate itself on lysine 165 (Sampath et al., 
2007), and this methylation facilitates the formation of a repres-
sor complex between G9a and chromodomain-containing pro-
tein HP1γ (Sampath et al., 2007; Fig. 2 A). The H3-like sequence 
in G9a is also conserved in its homologue and heterodimerization 
partner GLP (Sampath et al., 2007), although the two proteins 
share relatively poor primary sequence conservation in their 
N-terminal domains. The initial discovery of histone mimics in 
G9a/GLP led to the identification of numerous histone mimics in 
other nuclear and nonnuclear proteins, where they contribute 
to protein–protein interactions or protein stability (Dzimiri and 
Odenthal, 1990; Lee et al., 2010; Shi et al., 2014).

Histone mimicry by influenza viruses
The first example of viral histone mimicry was the identification 
of a histone H3–like sequence within the C-terminal portion of 

in G9a (red hexagon) binds to the chromodomain-containing protein HP1γ, which can also interact with methylated histone H3 (red hexagon). (B) The NS1 
proteins of the influenza A H3N2 virus possess a functional histone H3K4-like sequence (yellow letters), localized within the nonstructured C terminus of the 
protein, whereas the homologous H3 sequence (red letters) is localized within its N terminus. The NS1 histone mimic (yellow tail) is present in the nucleus, 
where it interacts with Paf1 complex and Chd1 proteins. Interaction with Chd1 depends on NS1 lysine methylation, whereas Paf1 can bind to the unmethylated or 
methylated NS1 histone mimic. The pattern of Paf1 and Chd1 binding to NS1 is similar to the interactions between these proteins and histone H3. The schematic 
model describes a putative mechanism of NS1 interference with Paf1-mediated transcription of virus-induced genes. (C) Histone mimicry by the core protein 
of the YFV. The N-terminal portion (40 aa) of the H4 histone and the YFV core protein display a high degree of homology, and share the presence of the lysine 
residues in YFVC that become acetylated in the infected cells (not depicted).
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Figure 3. The model for viral protein interference with gene regulatory network. (A) The intrinsic disorder of viral proteins that carry histone mimics (red) 
may facilitate multiple interprotein interactions followed by formation of phase-separated viral protein condensates (liquid droplets). The ability to form liquid 
droplets may maximize the impact of viral proteins, including those that carry histone mimics, on chromatin followed by alteration of host chromatin–associated 
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the nonstructural protein 1 (NS1) of the H3N2 subtype of influ-
enza A virus (Marazzi et al., 2012; Fig.  2  B). The NS1 protein 
suppresses the type I IFN response during influenza infection 
(García-Sastre et al., 1998; Wang et al., 2000) and is essential for 
virus infection. The sequence 226-ARSK-229 of NS1 resembles 
the first four amino acids (1-ARTK-4) of the histone H3 protein. 
The H3N2 subtype of influenza is the predominant carrier of 
the histone H3K4-like sequence, whereas tails of NS1 proteins 
from other influenza subtypes (Bao et al., 2008) either display no 
recognizable motifs or possess highly specific motifs, such as PDZ 
ligand (PL) motifs (Obenauer et al., 2006; Jackson et al., 2008; 
Thomas et al., 2011) or SUMOylation sequences, as found within 
the NS1 tail of the H1N1 (1918) strain (Santos et al., 2013). This 
NS1 tail diversity may contribute to unique features of the indi-
vidual virus subtypes. The PL motifs ESEV and EPEV within the 
NS1 tails of avian-derived influenza strains have been associated 
with highly pathogenic human isolates such as H5N1 (Obenauer 
et al., 2006; Jackson et al., 2008; Thomas et al., 2011). These PL 
motifs enable viruses to attenuate apoptotic death of the infected 
cells, thus increasing the viral load (Golebiewski et al., 2011).

In the H3N2 strain, the presence of the histone mimic may 
contribute to the unique ability of the virus to compete with the 
cognate histone sequences for their common binding partners, 
including those that drive antiviral gene expression. In support 
of this model, we found that both the histone H3 tail and the 
H3N2 NS1 tail bind in a sequence-dependent fashion to the poly-
merase-associated factor 1 (Paf1) component of the Paf1 complex 
that contributes to RNA elongation as well as other cotranscrip-
tional processes (Marazzi et al., 2012). As expected, the NS1 tails 
from influenza H5N1 (Marazzi et al., 2012) and H1N1 (Schaefer et 
al., 2013) that lack the histone mimic did not bind to Paf1.

Overall, the NS1 tail could be viewed as a highly interactive, 
internally disorganized motif where amino acid variations con-
tribute to target specificity and hence to the unique features of 
individual virus subtypes. This feature of NS1, which was recently 
underscored by a study showing that the NS1 domain interacts 
with the chromatin remodeling protein CHD1 (Qin et al., 2014), 
might be critical in the ability of different influenza subtypes to 
choose their optimal strategy for the host–pathogen interaction, 
based on the genetic and epigenetic state of the infected host 
during the emergence of infection. In turn, the counterselection 
against certain viral subtypes, including some of the NS1 tail-less 
viruses, could be explained by the inability of NS1 to match host 
factors, including those localized in the cell nucleus.

Other examples of viral histone mimicry
In addition to the histone mimicry by NS1, a few other examples 
of viral histone mimicry have been described (King et al., 2016). 
The insect polydnavirus Cotesia plutellae bracovirus (CpBV) 
encodes an orthologue of the insect histone H4 (CpBV-H4; Hepat 

et al., 2013) that enables the wasp to parasitize its host, the dia-
mondback moth, Plutella xylostella. The life cycle of C. plutellae 
requires colonization of young larvae of P. xylostella, which dis-
play growth retardation and immunosuppression once parasit-
ized. These phenotypic changes are mediated by CpBV-H4, which 
is highly homologous to the host histone H4 and is additionally 
equipped with an extended lysine-rich 38-residue-long N-ter-
minal tail. CpBV-H4 suppresses host immunity by inhibiting 
expression of genes encoding phenoloxidase and other antimi-
crobial peptides (Hepat and Kim, 2011), and causes developmen-
tal retardation by inhibiting expression of insulin-like peptide in 
host larvae. CpBV-H4 affects host chromatin by joining eukary-
otic nucleosomes (Hepat and Kim, 2013), the epigenetic impact 
of which is gene expression changes affecting nearly 20% of the 
moth genome (Kumar et al., 2017). Notably, the gene expression 
and phenotypic alterations mediated by CpBV-H4 depend com-
pletely on its lysine-rich N-terminal tail (Kim and Kim, 2010).

Viral histone mimicry with relatively broad effects has also 
been reported for human adenoviruses. The human adenovi-
rus–encoded protein VII shares limited sequence similarity with 
histone H3 and carries a conserved AKK​RS histone mimic motif 
in the N terminus of the protein (Lee et al., 2003; Avgousti et 
al., 2016). Binding of protein VII to chromatin appears to sustain 
binding of the immune modulatory protein HMGb1 to chromatin 
in the infected cells, which reduces HGMn1-mediated activation 
of innate immune response (Avgousti et al., 2016).

Overall, in silico analyses show the presence of the his-
tone-like sequences in numerous DNA and RNA viruses. For 
example, the core protein of the yellow fever virus (YFV), which 
contributes to virus assembly but also accumulates in the nucleus 
of the infected cells (not depicted), possesses impressive homol-
ogy to the histone H4 as well as other histone proteins (Fig. 2 C). 
The YFV core is intrinsically disordered and features lysine resi-
dues that are spaced in a fashion similar to histone H4. Moreover, 
our unpublished studies show that the YFV core is acetylated in 
infected cells and binds to nuclear proteins in a fashion similar 
to acetylated histone H4.

Histone mimicry and phase separation
The other fascinating aspect of the histone mimicry—in the 
context of the overall disordered nature of NS1 and flavivirus 
core proteins—is the ability of IDP/IDR to facilitate formation of 
nonmembranous structures that are based on phase separation 
(Banani et al., 2017). The multivalent protein–protein interac-
tions often mediated by IDR can promote liquid–liquid separation 
to form membraneless cytoplasmic and nuclear compartments 
(Pontius, 1993; Oldfield et al., 2005; Weber and Brangwynne, 
2012). It has been speculated that assembly of numerous tran-
scriptional regulators of the enhancer arrays (coined super-
enhancers [SE]) leads to formation of these gel-like structures 

complexes. The high concentration of the histone mimic within the phase-separated condensate may allow viral proteins to compete with cognate host chro-
matin proteins. The outcome of the competition may differ from loss of the host function, i.e., antiviral gene expression, or generation of aberrant virus–host 
hybrid protein complexes and acquisition of a new cell phenotype that can benefit viral replication. (B) Upon infection, viral RNA (vRNA) recognition by sensor 
proteins (e.g., RIG-I, MDA5) leads to activation of IFN and IFN-driven antiviral immunity. As infections progress, vRNA transcription and translation yield viral 
proteins, including those that carry histone mimics. The accumulation of viral histone mimics in the nucleolus of the infected cells might be sensed by dedicated 
(as yet unknown) sensors followed by nucleolar stress and death of the infected cell, thereby limiting the spread of viral infection.
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(Hnisz et al., 2017). In their model, Hnisz et al. (2017) postulate 
that multiple components of SEs, including bromodomain-con-
taining transcriptional regulator BRD4, RNA Pol II, and RNA, can 
form cross-links, defined as “any reversible feature, including 
reversible chemical modification, or any other feature involved 
in dynamic binding and unbinding interactions” (Hnisz et al., 
2017). Given the documented or computationally predicted 
abundance of IDRs in many of the transcriptional regulators, the 
cross-link is likely to reflect the multivalency of the IDP or IDR. 
The liquid phase separation at the SEs is likely to increase the 
fragility of these transcriptional hubs to perturbations based on 
the interaction between virus-derived and host-derived gel-like 
compartments rather than on specific protein–protein interac-
tions. In this scenario, the viral IDP will interact with chromatin 
not as an individual protein but rather as a virus-derived pro-
tein-based membranous organelle (Fig. 3 A). Such interaction is 
likely to have a dramatic impact on chromatin function, as it will 
drastically increase the concentration of histone-like sequences 
in the vicinity of gene regulatory regions, followed by negative 
or positive changes in gene expression, including genes that are 
critical for the antiviral response as well as genes that support 
virus replication.

Phase separation contributes to the formation of numerous 
intracellular membraneless organelles, including PML bodies 
and the nucleolus (Banani et al., 2017; Woodruff et al., 2018). 
One of the potentially relevant aspects of viral histone mim-
icry relates to the compartmentalization of viral proteins to the 
nucleolus. The presence of viral proteins, including core pro-
teins of different flaviviruses, leads to nucleolar stress followed 
by up-regulation of p53 and cell death (Rawlinson and Moseley, 
2015; Slomnicki et al., 2017; Yan et al., 2017). Virus-induced nucle-
olar stress and cell death cannot be beneficial for the virus, and 
is thus likely to represent a rather dramatic effort by the cell to 
limit spread of infection and effectively counteract viral histone 
mimicry. Moreover, phagocytosis of cells killed by viruses will 
amplify the systemic immune response against infection. It is 
tempting to speculate that nucleolar stress represents an innate 
defense pathway that involves host-mediated uptake of viral pro-
teins to the nucleolus followed by their recognition by hypothet-
ical host-encoded sensors and subsequent nucleolar stress. As 
such, it is possible that nucleolar proteins, such as TCOF1 or other 
proteins involved in prevention of the nucleolar stress (Calo et 
al., 2018), bind to nonmodified or posttranslationally modified 
viral histone mimics, followed by alteration of nucleolar function 
and death of infected cells (Fig. 3 B).

In conclusion, the histone mimicry by pathogens should be 
seen in a big picture context, whereby utilization of intrinsic dis-
order by viruses enables flexible, yet impactful, interaction with 
the host. The presence of histone mimics in structurally distinct 
viral proteins underscores the ability of viruses to use highly 
evolvable host protein sequences to develop optimal strategies 
for pathogen–host interaction. By imitating histones, viruses can 
challenge the adaptive capacity of the host cell, which cannot 
modify the primary sequence of histones without endangering 
the very foundation of its own cellular organization. In this sce-
nario, the pressure imposed by viral proteins may have driven 
cells to devise a strategy whereby compartmentalization of viral 

proteins to the nucleolus leads to nucleolar stress and cell death. 
This could be seen as an example of a cell defense mechanism 
that minimizes the impact of viral disordered proteins on the 
host while preventing further viral spread. Finally, it is tempting 
to speculate that pharmacological imitation of the viral strategy 
to target multiple cellular components or single components that 
target multiple genes/proteins might yield therapeutic outcomes 
by altering attractors associated with pathological cell states 
including cancer or chronic inflammation.
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