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Bacterial infections in the central nervous system (CNS) can be life threatening and often
impair neurological function. Biofilm infection is a complication following craniotomy, a
neurosurgical procedure that involves the removal and replacement of a skull fragment
(bone flap) to access the brain for surgical intervention. The incidence of infection following
craniotomy ranges from 1% to 3% with approximately half caused by Staphylococcus
aureus (S. aureus). These infections present a significant therapeutic challenge due to the
antibiotic tolerance of biofilm and unique immune properties of the CNS. Previous studies
have revealed a critical role for innate immune responses during S. aureus craniotomy
infection. Experiments using knockout mouse models have highlighted the importance of
the pattern recognition receptor Toll-like receptor 2 (TLR2) and its adaptor protein MyD88
for preventing S. aureus outgrowth during craniotomy biofilm infection. However, neither
molecule affected bacterial burden in a mouse model of S. aureus brain abscess
highlighting the distinctions between immune regulation of biofilm vs. planktonic
infection in the CNS. Furthermore, the immune responses elicited during S. aureus
craniotomy infection are distinct from biofilm infection in the periphery, emphasizing the
critical role for niche-specific factors in dictating S. aureus biofilm-leukocyte crosstalk. In
this review, we discuss the current knowledge concerning innate immunity to S. aureus
craniotomy biofilm infection, compare this to S. aureus biofilm infection in the periphery,
and discuss the importance of anatomical location in dictating how biofilm influences
inflammatory responses and its impact on bacterial clearance.

Keywords: biofilm, Staphylococcus aureus, craniotomy, myeloid-derived suppressor cell, neutrophil,
macrophage, microglia
INTRODUCTION

Craniotomy and decompressive craniectomy are neurosurgical procedures where part of the skull
(i.e. bone flap) is removed to access the brain (Figure 1). Craniotomy involves the temporary
removal of the bone flap for procedures that include tumor resection, localization and resection of
epileptogenic foci, and aneurysm clipping, where the bone is replaced intraoperatively (1).
Decompressive craniectomy refers to the excision of the bone flap for an extended period
following traumatic brain injury, ischemic stroke, or intracranial hemorrhage to treat intracranial
org February 2021 | Volume 12 | Article 6254671
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hypertension (2). Upon removal, the bone flap is typically
cryopreserved or implanted subcutaneously in the abdomen of
the patient to preserve vascularization and replaced after cerebral
edema has resolved (3, 4). However, complications can occur
with prolonged absence of the bone flap including extracranial
herniation, trephine syndrome, hydrocephalus, seizures, and
neurological dysfunction (5, 6).

Despite peri- and post-operative prophylaxis, infectious
complications occur in approximately 1% to 3% of craniotomy
and craniectomy procedures (7, 8). These infections are
associated with a high mortality rate and poor prognosis if not
treated early (9–11). In terms of therapy, the decision of whether
to salvage or discard the bone flap is left to the neurosurgeon and
is often dictated by the length of time from the initial surgery to
the presentation of clinical signs of infection. The first option is
to salvage the infected bone flap with a combination of
debridement and long-term antibiotic therapy. Alternatively,
the bone flap can be discarded and, following extended
antibiotic treatment, a cranioplasty is performed to correct the
acquired skull defect with an autologous bone graft or prosthesis
(12–15). Prior craniotomy infection increases the risk for re-
infection, which may result from the outgrowth of residual
bacteria that were not eliminated due to biofilm formation
(see below).

Approximately one half of craniotomy/craniectomy
infections are attributed to S. aureus (7, 16–18), a gram-
positive pathogen that forms a biofilm on native bone (19).
Infections can be caused by other bacteria and fungi, although
these occur at a much lower rate (8, 17). Around 30% of the
human population is colonized with S. aureus, typically in the
nares and skin, and colonized individuals have an increased risk
for invasive S. aureus infection (20). Although pre-surgical
screening for S. aureus carrier status is routinely performed to
decolonize carriers prior to orthopedic surgery (21), this
Frontiers in Immunology | www.frontiersin.org 2
approach has not been universally adopted in neurosurgery for
patients that require a craniotomy/craniectomy.

S. aureus is a versatile pathogen, which is attributable to
several features. First, the organism is prone to genetic
adaptation, particularly the ability to acquire antibiotic
resistance. An example is the mecA cassette that affords S.
aureus resistance to the entire class of methicillin antibiotics
(22). Second, S. aureus expresses an extensive repertoire of
virulence factors that promote its pathogenesis and interfere
with host immune recognition and bacterial clearance. These
include cell surface attachment factors, capsular polysaccharides,
enzymes, pore-forming toxins, superantigens, and numerous
immune modulatory molecules (23–28). In addition to
encoding a myriad of virulence factors, S. aureus can form
biofilm that represents another virulence determinant (29).
Biofilms are complex microbial communities surrounded by a
matrix composed of extracellular DNA (eDNA), protein, and
polysaccharide (29). The organization of bacteria within a
biofilm creates microdomains with differential access to oxygen
and nutrients leading to a sub-population of organisms that are
less metabolically active, referred to as persisters (30, 31).
Because most antibiotics target bacterial cell wall and protein
synthesis, the metabolic dormancy of some biofilm-associated
bacteria is responsible for the well-known antibiotic tolerance of
biofilm. Compared to planktonic bacteria, the mechanisms
responsible for S. aureus biofilm to evade immune-mediated
clearance are only beginning to be understood. Work from our
group and others has shown that S. aureus biofilm evades Toll-
like receptor (TLR)-mediated recognition (32, 33), inhibits
phagocytosis (33–37), and induces the recruitment of
granulocytic-myeloid-derived suppressor cells (G-MDSCs) that
inhibit monocyte/macrophage proinflammatory activity (38–
40). Recent work has demonstrated that S. aureus metabolites
(D- and L-lactate) play a key role in inducing epigenetic changes
FIGURE 1 | Example of a unilateral (left) or bilateral (right) craniotomy/craniectomy. Figure created with BioRender.
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in G-MDSCs and macrophages to promote the production of the
anti-inflammatory cytokine IL-10 and biofilm persistence (41).

Novel therapeutic approaches for S. aureus infection
continued to be explored, since most antibiotics have poor
efficacy against biofilm and a fine balance must be achieved
with currently available antibiotics to reach an optimal minimum
inhibitory concentration (MIC) during chronic administration
while minimizing toxicity (31, 42). An effective vaccine against S.
aureus has remained elusive (43, 44). This is likely explained by
the fact that the organism can cause a wide range of infections
with distinct attributes, and that it expresses numerous virulence
factors that impair host immunity. The latter point has recently
been shown to play an important role in a mouse model of S.
aureus bacteremia where immunization with S. aureus toxoids
reduced mortality, bacterial burden, and organ dysfunction (45).
A better understanding of S. aureus colonization dynamics, how
the organism interacts with different leukocyte populations, and
influences of the local tissue milieu will be necessary to develop
improved therapeutics for infections caused by S. aureus.
MOUSE S. AUREUS CRANIOTOMY
MODEL: SIMILARITIES TO
HUMAN INFECTION

As mentioned above, S. aureus is a major cause of infectious
complications following craniotomy (7, 9, 10); therefore, our
laboratory developed a mouse model of S. aureus craniotomy
infection to understand the immune mechanisms responsible for
bacterial persistence (19). In the mouse model, a craniotomy is
performed and the bone flap is colonized with S. aureus, which
leads to biofilm formation on the bone and chronic infection in
both the brain and subcutaneous galea that cannot be cleared
with systemic antibiotics (46). Importantly, the mouse model
shares several features with human craniotomy infection. This
includes a conserved biofilm structure on the bone flap as
revealed by scanning electron microscopy with similarities in
extracellular matrix deposition, foci of bacterial aggregates on the
bone flap, and complex tower-like structures (19). In addition,
magnetic resonance imaging (MRI) revealed galeal inflammation
with superficial cortical brain involvement (19), which is also an
attribute of human infection and supports the translational
relevance of the mouse model.
COMPARTMENTALIZATION OF IMMUNE
RESPONSES DURING S. AUREUS
CRANIOTOMY INFECTION

The CNS was once considered immune privileged based on the
restrictive attributes of the blood brain barrier (BBB) (47–49).
However, it is now clear that immune responses do occur in the
CNS in a wide range of neurodegenerative and infectious diseases,
and immune surveillance of the CNS takes place in the absence of
pathology (50–52). Over the past decade, our laboratory has
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characterized the immune responses to S. aureus biofilm
infection in both the CNS (craniotomy-associated infection) and
periphery (prosthetic joint infection (PJI)) (19, 40, 41, 46, 53–56).
Comparisons between these models clearly show that the immune
responses elicited are distinct, which will be discussed later in this
review, reflecting influences of the local tissue milieu. The impact
of infection site and how this shapes the subsequent immune
response has also been reported by other groups and emphasizes
the need to understand niche-specific factors that influence S.
aureus-immune crosstalk (57–61).

Even within a given infection, compartmentalization of immune
responses can be observed. An example is the S. aureus craniotomy
model where patterns of leukocyte recruitment and inflammatory
mediator expression are distinct in the brain vs. subcutaneous galea
despite both tissues being exposed to bacteria on the bone flap. For
example, monocytes, innate lymphoid cells (NK and ɣd T cells),
and T cells are preferentially recruited to the brain, whereas G-
MDSCs and neutrophils (PMNs) are the main leukocyte infiltrates
in the galea (Figure 2) (19, 56, 62). The attributes of these cell types
and their role during S. aureus infection will be described in more
detail below. Likewise, the expression of chemokines, such as CCL2
(monocyte chemoattractant protein-1; MCP-1) and CXCL10
(interferon-inducible protein 10 kDa; IP-10) are higher in the
brain (19, 56), which coincides with the enhanced recruitment of
monocytes and lymphocyte populations. In the galea, chemokines
responsible for PMN and G-MDSCs influx (CXCL2; macrophage
inflammatory protein-2; MIP-2) are generally enriched (19, 56) in
agreement with the preferential recruitment of these populations to
this compartment.

Interactions between the immune system and CNS are not only
important for controlling infection, but also for maintaining
homeostatic functions including neurogenesis, behavior, and
neuronal activity (63–66). Therefore, a delicate balance must be
achieved to elicit sufficient inflammatory responses to clear
infection without becoming overactive, which can lead to
collateral tissue damage. Indeed, many bacterial infections in the
CNS, including those caused by S. aureus, result in areas of tissue
necrosis that vary according to infection severity. CNS biofilm
infection represents an interesting dilemma since the chronicity of
these infections is not characteristic of an overactive immune
response, but instead one that is non-productive or anti-
inflammatory. In this instance, CNS pathology may be mediated
by products released from the biofilm, such as bacterial proteases,
nucleases, or via the consumption of metabolites that are critical
for CNS function (i.e. glucose). In the following section, we present
an overview of the different immune populations associated with
S. aureus craniotomy infection and their functional attributes.
MICROGLIA AND MYELOID CELLS
ASSOCIATED WITH S. AUREUS
CRANIOTOMY INFECTION

Microglia
Microglia comprise approximately 10% of brain parenchymal
cells, which undergo slow proliferation throughout the lifespan
February 2021 | Volume 12 | Article 625467
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of an organism to maintain their numbers (67, 68). Historically,
there was much debate about the origin of microglia, where
earlier dogma considered microglia to be bone marrow-derived;
however, this has now been definitively disproved (69, 70). It is
now well established that microglia arise from erythromyeloid
precursors in the primitive yolk sac that migrate to the brain
where they differentiate into microglia (71, 72). Microglia
continuously survey the CNS parenchyma by expanding and
retracting their processes to monitor the extracellular milieu,
surrounding neurons and other glial cells, as well as to detect
invading pathogens and CNS damage (73–75). Microglia play a
key role in the phagocytosis of microbes, apoptotic cells, and
protein aggregates, and produce a wide array of inflammatory
mediators based on their diverse repertoire of pattern-
recognition receptor (PRR) expression. Pertinent to S. aureus,
microglia express 1) TLR2 and TLR9 that recognize bacterial
lipoproteins and non-methylated CpG DNAmotifs, respectively;
2) nucleotide-binding oligomerization domain-containing
protein 2 (NOD2), an intracellular PRR that senses muramyl
dipeptide, a component of peptidoglycan that is abundant in the
cell wall of S. aureus and other gram-positive bacteria; and 3)
CD14 (76–79). Following PRR activation, microglia produce a
wide array of proinflammatory cytokines and chemokines (i.e.
TNF-a, IL-6, IL-1b, IL-12, and CCL2) as well as reactive oxygen
and nitrogen species (ROS, RNS). These mediators have
pleotropic effects including promoting BBB permeability (TNF-
a, IL-6, IL-1b), leukocyte recruitment (CCL2) and activation
(TNF-a, IL-6, IL-1b, IL-12) and bactericidal activity (ROS/RNS),
but they can also negatively impact neuronal function and
survival if not tightly regulated (80). Therefore, the induction
of anti-inflammatory mechanisms are critical to resolve
Frontiers in Immunology | www.frontiersin.org 4
inflammation and promote tissue repair, which are largely
mediated by cytokines such as IL-10 and transforming growth
factor-beta (TGF-b) (81–83). The chronicity of S. aureus
craniotomy infection suggests a potential imbalance towards
an anti-inflammatory state. This is supported by the presence
of immune suppressive G-MDSCs as well as PMN and monocyte
infiltrates that also possess anti-inflammatory activity as reflected
by their ability to inhibit T cell activation (62).

Although as myeloid cells microglia and bone marrow-
derived macrophages have distinct origins, they share many
attributes including similarities in marker expression, cytokine
production, and dependence on macrophage colony-stimulating
factor-1 (CSF-1) for survival and proliferation (84–87). During
CNS inflammatory conditions, it is not possible to discriminate
between microglia and infiltrating macrophages in histological
sections since activated microglia transform to an amoeboid
morphology that is indistinguishable from macrophages.
However, microglia can be discerned from infiltrating
monocytes and macrophages by flow cytometry based on
CD45 expression (macrophages are CD45high whereas
microglia are CD45low/intermediate) (88). Furthermore, advances
in next generation sequencing (NGS) and scRNA-seq have
identified unique transcriptional profiles of resident microglia
versus infiltrating macrophages (89–92), which has led to the
identification of markers that are either uniquely (Tmem119,
P2YR12, Hexb) or more highly expressed (CX3CR1) in microglia
compared to macrophages to aid in their discrimination.
Emerging studies from our laboratory have established the
transcriptional heterogeneity of resident microglia and
macrophage infiltrates in the brain during S. aureus
craniotomy infection with the goal of identifying unique
FIGURE 2 | Immune responses during S. aureus craniotomy infection. S. aureus biofilm formation of the bone flap elicits a unique inflammatory response in the
subcutaneous galea and brain. TLR2-mediated signaling via MyD88 induces pro-IL-1b production that is cleaved by a caspase-1 (casp-1)-containing inflammasome
for secretion and to prevent S. aureus outgrowth. S. aureus containment is also mediated by neutrophils (PMNs), as shown by depletion using anti-Ly6G. MDSC,
myeloid-derived suppressor cell; NF-kB, nuclear factor-kappa B; NK, natural killer. Figure created with BioRender.
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markers that will enable the purification of distinct microglial/
macrophage clusters to understand their functional role and
whether this shapes the chronicity of CNS biofilm infection (62).

Monocytes and Macrophages
Monocytes are bone marrow-derived and invade the inflamed
CNS in response to injury or infection primarily via a CCR2-
dependent pathway (93–95). Studies have implicated monocytes
in the pathogenesis of several neurological diseases, including
experimental autoimmune encephalomyelitis (EAE) an animal
model of multiple sclerosis (MS), where preventing monocyte
recruitment or monocyte depletion reduced disease severity (96,
97). To date, fewer studies have examined monocyte responses to
S. aureus. TLR2 has been shown to regulate S. aureus
intracellular survival in monocytes via a type I IFN pathway
and induce IL-10 production to limit T cell responses (98, 99).
Future studies are needed to assess the role of monocytes during
craniotomy infection since they represent the predominant
leukocyte infiltrate in the brain following S. aureus invasion (56).

Upon migrating into tissues, bone marrow-derived
monocytes differentiate into macrophages. Macrophages are
professional phagocytes that, along with microglia, play an
important role in eliminating debris and apoptotic cells during
inflammation in the brain parenchyma, which is critical for
maintaining CNS homeostasis (100). There are three resident
macrophage populations associated with the CNS, namely
perivascular, meningeal, and choroid plexus macrophages.
Perivascular and meningeal macrophages are derived from
yolk sac progenitors, whereas choroid plexus macrophages
originate from both yolk sac progenitors and the bone marrow
(71). Each macrophage population possesses unique phenotypes
with different capacities for self-renewal (71, 101), which is likely
influenced by the local tissue microenvironment.

Macrophages are critical effector cells during infection, with
planktonic S. aureus inducing robust proinflammatory cytokine
and ROS/RNS production and bactericidal activity (102, 103).
However, S. aureus expresses a number of virulence
determinants to counteract macrophage effector mechanisms.
This includes the production of molecules that interfere with
TLR2-dependent recognition (104), such as lipase (Geh) (105),
staphylococcal superantigen-like protein 3 (SSL3) (106), and
molecular mimicry via blocking the Toll-interacting receptor
(Tir) domain of TLR2 (107, 108). In addition, the paired-
immunoglobulin-like receptor (PIR)-B contains an inhibitory
immunoreceptor tyrosine-based inhibition motif (ITIM) that,
upon binding S. aureus l ipoteichoic acid, dampens
proinflammatory cytokine production (109, 110). Biofilm
formation by S. aureus also represents another virulence
determinant to escape macrophage effector functions. S. aureus
biofilm evades TLR2-mediated recognition, and macrophage
invasion into biofilm is limited in vitro and in vivo. This biases
cells towards an anti-inflammatory profile that prevents bacterial
clearance (33). Macrophages are not capable of phagocytosing S.
aureus biofilm (33), which leads to frustrated phagocytosis and
cell death that is mediated, in part, through the action of toxins
(a-toxin and leukocidin AB) (37). The adoptive transfer of
proinflammatory macrophages in a mouse model of S. aureus
Frontiers in Immunology | www.frontiersin.org 5
catheter-associated infection was shown to transform the biofilm
milieu into a proinflammatory state concomitant with reduced
arginase-1 (Arg-1) expression, which decreased biofilm burden
in a MyD88-dependent manner (34). Metabolic reprogramming
of monocytes/macrophages to promote their proinflammatory
activity was also capable of reducing biofilm burden in a mouse
model of PJI (55) highlighting the importance of augmenting
macrophage proinflammatory activity as a novel approach to
target chronic biofilm infection. The impact of monocytes and
macrophages in the pathogenesis of S. aureus craniotomy
infection and how their metabolic status influences their
inflammatory properties remains to be determined and
represents an area of investigation in our laboratory.

Neutrophils
PMNs are bone marrow-derived and are released into the
circulation at a rate of 109/kg body weight per day (111).
PMNs are the first leukocytes recruited to sites of bacterial
infection by several chemoattractants including IL-8
(functional mouse homologs are CXCL1 and CXCL2),
complement split products (C3a and C5a), and formylated
peptides released from bacteria (f-Met-Leu-Phe). Upon
extravasation, PMNs exert potent bactericidal activity through
the action of antimicrobial peptides and granule enzymes, ROS
production, neutrophil extracellular traps (NETs), and
phagocytic activity (112, 113).

S. aureus encodes an extensive repertoire of virulence factors to
escape PMN killing. Molecules such as chemotaxis inhibitory
protein of Staphylococcus aureus (CHIPS), formyl peptide
receptor-like 1 (FPRL1), staphopain A, and staphylococcal
superantigen-like proteins (SSLs) disrupt various aspects of
PMN priming, activation, chemotaxis, and adhesion (23, 114,
115). Moreover, S. aureus secretes proteins that target complement
and opsonophagocytosis (protein A), antioxidants that neutralize
ROS (catalase, superoxide dismutase), and numerous toxins with
pore-forming properties (phenol soluble modulins, leukocidins, a-
toxin) all of which function to diminish PMN antibacterial activity
(116–123). Individuals with mutations in NADPH oxidase
(chronic granulomatous disease; CGD) are highly susceptible to
severe and life-threatening S. aureus infections highlighting the
critical role of PMNs in bacterial containment (124). Although
PMNs are recognized for their beneficial roles during injury or
infection (125), dysregulated activity has been implicated in tissue
pathology originating from bystander damage via products
released from activated PMNs (126–128).

The majority of PMNs during S. aureus craniotomy infection
localize to the galea and bone flap, whereas PMN infiltrates are
minimal in the brain. These patterns are similar to the profiles of
G-MDSCs recruitment (56). Although earlier work in the S.
aureus craniotomy infection model suggested an important role
for PMNs in preventing bacterial outgrowth, this was with an
anti-Gr-1 depletion strategy (19). This approach also targets
Ly6C+ monocytes, since the Gr-1 antibody recognizes both Ly6G
and Ly6C (129). The functional importance of PMNs during S.
aureus craniotomy infection was recently demonstrated by our
laboratory using a more selective targeting approach (i.e. Ly6G
depletion). PMNs were critical for bacterial containment,
February 2021 | Volume 12 | Article 625467
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although the chronicity of craniotomy infection indicates that
PMNs are not capable of eliminating biofilm in the wild type
setting (62).

Myeloid-Derived Suppressor Cells
Under physiological conditions, immature myeloid cells undergo
maturation in the bone marrow, whereupon they are released
and migrate to tissues to become effector macrophages, dendritic
cells, or PMNs. During pathologic conditions such as cancer,
infection, or chronic inflammation, proinflammatory mediators
and/or endoplasmic reticulum (ER) stress drive immature
myeloid cell expansion and their conversion into MDSCs
(130–132). The growth factors G-CSF and GM-CSF are important
for stimulating MDSC expansion with proinflammatory
cytokines (IL-1b , TNF-a , IL-6) playing a key role in
their activation (133–135). MDSCs exert potent immune-
regulatory activity through several mechanisms, including
suppressing macrophage and dendritic cell proinflammatory
activity, promoting regulatory T cell (Treg) activation, and
inhibiting CD4+ and CD8+ T cells. These effects are mediated
by the action of several molecules including Arg-1, nitric oxide
(NO), TGF-b, IL-10, cyclooxygenase-2 (COX-2), and ROS
(133, 134, 136, 137). Through these mechanisms, MDSCs
limit inflammation to perpetuate chronic infection by
suppressing immune effectors that are important for disease
resolution (138).

MDSCs consist of two groups referred to as granulocytic (G-
MDSCs or PMN-MDSCs) and monocytic (M-MDSCs) that
share phenotypic characteristics with PMNs and monocytes,
respectively. Each MDSC subset utilizes distinct mechanisms to
attenuate immune responses, where generally M-MDSCs
suppress using NO (134, 139, 140), whereas G-MDSCs utilize
ROS (141, 142). MDSCs have been best characterized in cancer;
however, reports describing their importance during infection
and chronic inflammation have emerged in recent years (143–
146). Our group has been investigating MDSC-S. aureus biofilm
crosstalk since 2014, and the role of MDSCs during S. aureus
infection has been confirmed by other groups (38–41, 147–150).
In response to peripheral S. aureus biofilm (i.e. PJI), G-
MDSCs are critical for inhibiting monocyte/macrophage
proinflammatory activity primarily through IL-10 production
(38–41). IL-10 is induced by lactate released from S. aureus
biofilm, which inhibits HDAC11 to induce epigenetic changes at
the Il-10 promoter as well as other genes (41). G-MDSCs are also
enriched in humans during PJI, and are expanded in the blood
following orthopedic infection (151, 152). This suggests that they
may play an important role in dictating infection persistence
and/or susceptibility, respectively. MDSCs are the major
leukocyte infiltrate in the galea and bone flap during S. aureus
craniotomy infection, but are rare in the brain parenchyma (56).
The transcriptional profiles of MDSCs during craniotomy
infection identified them as G-MDSCs, which were shown to
inhibit PMN S. aureus bactericidal activity (62). The effector
molecules that are critical for G-MDSC suppressive activity in
the context of S. aureus craniotomy infection remain to
be identified.
Frontiers in Immunology | www.frontiersin.org 6
OTHER CELL TYPES IN THE
BRAIN DURING S. AUREUS
CRANIOTOMY INFECTION

Astrocytes
Astrocytes are the most abundant cell type in the CNS
parenchyma. They play a key role in maintaining neuronal
homeostasis, BBB integrity, and can contribute to immune
responses by the production of a wide array of chemokines
that promote leukocyte recruitment to the CNS (153–155). S.
aureus triggers TLR2 signaling in astrocytes and the secretion of
NO, IL-1b, and TNF-a via NF-kB- and MAPK-dependent
pathways (156). Other studies have shown that TLR activation
induces astrocyte chemokine production (CCL2, CCL3, CCL5)
and augments adhesion molecule expression (157, 158). In
astrocytes, the intracellular pattern recognition receptor NOD2
was shown to activate NF-kB leading to IL-6, TNF-a, and co-
stimulatory molecule expression, which amplified the anti-
bacterial immune response (159). Based on their ability to
influence immune responses via robust chemokine production,
it is possible that astrocytes play an important role in leukocyte
recruitment to the brain during S. aureus craniotomy infection.
Of particular interest would be the production of monocyte, NK
cell, and ɣd T cell chemokines, since these cell types represent the
most abundant leukocyte infiltrates in the brain (62). Studying
this will require the use of transgenic mouse models where
candidate chemokines are selectively depleted in astrocytes (i.e.
Aldh1l1-Cre) (160), since it is not feasible to eliminate astrocytes
due to their essential role in brain physiology. However,
assigning a biological role to only one chemokine in the
context of craniotomy infection might prove difficult based on
the known redundancy in chemokine actions (161). An
alternative approach would be to identify the chemokine
receptors that are required for monocyte, NK cell, and ɣd T
cell recruitment into the brain and leverage this information to
identify the responsible chemokines.

T Cells
T cells participate in CNS immune surveillance and are
important for normal learning and memory, behavior, and
neurogenesis through IL-4 and IFN-ɣ production (162–164). It
is important to note that these effects occur in the absence of
CNS pathology when T cell numbers are low, since it is well
recognized that increased T cell recruitment to the brain during
diseases such as MS or normal aging is associated with adverse
outcomes (164–166).

Interestingly, there are conflicting reports on the role of T
cells during S. aureus biofilm infection in the periphery. In a
model of tibial infection where titanium implants were pre-
coated with S. aureus (high infectious inoculum), a beneficial role
for Th2 and Treg cells in promoting biofilm clearance has been
reported (167). In contrast, in a mouse model of S. aureus PJI
with a low infectious inoculum, few T cells were observed, and
tissues from PJI patients have fewer T cell infiltrates compared to
individuals with aseptic trauma (39, 151). The reasons for this
discrepancy are unclear, but they are likely influenced by
February 2021 | Volume 12 | Article 625467
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differences in the infectious dose, background strain of mice, or
site of implant infection. T cells are observed in the brain during
S. aureus craniotomy infection, but are largely absent from the
galea and bone flap (62). This pattern of recruitment suggests
that T cells may play an important role in regulating the host
response to craniotomy infection in the brain, but it remains to
be determined whether this contributes to infection chronicity,
or if T cells are a bystander population and do not significantly
influence S. aureus biofilm persistence.
IMMUNE RESPONSES DURING
S. AUREUS CRANIOTOMY INFECTION

As discussed earlier, an intriguing aspect of S. aureus craniotomy
infection is the generation of distinct immune responses within
the CNS (brain) versus peripheral compartments (galea and
bone flap; Figure 2). Although it might be expected that
immune responses would differ in the brain compared to the
periphery, prior studies in a mouse model of S. aureus brain
abscess revealed that inflammatory changes in the brain were
similar in nature to peripheral abscesses as described below.
Therefore, the S. aureus craniotomy model can be leveraged to
elucidate signals that orchestrate unique inflammatory events in
the brain vs. periphery, which may lead to tailored therapies for
each compartment. This would be particularly useful given the
fact that CNS neurons cannot regenerate and, as such, eliciting
efficient pathogen neutralization without excessive bystander
damage that can accompany inflammation is paramount.
During S. aureus craniotomy infection, PMN influx is
significantly higher in the galea compared to the brain despite
the presence of CXCL1 and CXCL2 in both compartments (19).
This might be explained by the higher bacterial burden in the
galea compared to the brain (typically 1-log), although both
surfaces of the bone flap are colonized with S. aureus (19).
Furthermore, the meninges that cover the surface of the brain are
patrolled by resident meningeal macrophages that likely serve to
limit S. aureus invasion into the brain. Interestingly, meningitis is
not observed at the histological level in the S. aureus craniotomy
infection model (19, 56), suggesting that any bacteria that detach
from the ventral aspect of the bone flap are prevented from
significant expansion in the subarachnoid space. The
predominance of PMNs in the galea suggests that they are
important for containing infection. This was supported by the
finding that mice treated with a Gr-1 antibody became more
moribund with increased bacterial burden (19). However, the
Gr-1 antibody targets both Ly6G+ and Ly6C+ cells, meaning that
not only were Ly6G+ PMNs (and G-MDSCs) depleted, but also
Ly6C+ monocytes (168). A subsequent study from our group
utilizing selective depletion of Ly6G+ cells has revealed that
PMNs are critical for preventing S. aureus outgrowth during
craniotomy infection, yet mice were not moribund unlike that
observed following Gr-1 antibody treatment (62). By extension,
this suggests that monocytes/macrophages also play a protective
role during craniotomy infection, since they were not depleted
with anti-Ly6G. An interesting observation is that although G-
Frontiers in Immunology | www.frontiersin.org 7
MDSCs are also targeted by anti-Ly6G, the removal of this
suppressive population did not improve biofilm clearance.
Instead, the opposite was observed, suggesting that PMNs are
the main driver of biofilm containment in the craniotomy
infection model (62).

Based on the chronicity of S. aureus craniotomy infection in
the mouse model (at least 9 months, the latest time point
examined to date), it might be assumed that there is minimal
involvement of proinflammatory mechanisms (46). However, as
alluded to above, there is some degree of proinflammatory tone
during craniotomy biofilm infection because PMN/monocyte
depletion with anti-Gr-1 results in rapid S. aureus outgrowth in
the brain, galea, and on the bone flap (19). Another indication
that proinflammatory cytokines are critical for bacterial
containment has been through the examination of TLR
signaling pathways. Our initial study examined MyD88, the
adaptor molecule that facilitates signaling through all TLRs
(except TLR3), IL-1R, and IL-18R, and is a critical factor in
innate immune defense (169). MyD88 KO mice were extremely
susceptible to S. aureus craniotomy infection with a significant
reduction in PMN infiltrates and proinflammatory mediator
production (CXCL1 and IL-1b) that resulted in increased
bacterial burden in the brain, galea, and bone flap (19). These
phenotypes combined with the enhanced morbidity of MyD88
KOmice were akin to the effects seen during anti-Gr-1 treatment
where essentially all innate immune effectors were depleted
(PMNs and monocytes) (19). The importance of TLRs and
downstream effector mechanisms was further demonstrated by
our recent work that revealed a crucial role for TLR2 and
caspase-1 during S. aureus craniotomy infection, primarily via
IL-1b action (56). Interleukin-1b is produced in an inactive pro-
form that requires proteolytic cleavage by the inflammasome
whose active moiety is caspase-1 (170). Inflammasome activation
involves two signals; the first being delivered by a PRR, such as
TLR2, which leads to the production of inflammasome subunits
and pro-IL-1b. The second signal can be delivered by any
number of stimuli depending on the type of NLR sensor (i.e.
NLRP3, NLRC1, etc.) that results in inflammasome assembly
and caspase-1 activation (170). Mice lacking either functional
TLR2 or caspase-1 displayed increased bacterial burden in the
brain, galea, and bone flap, which coincided with significant
decreases in the production of several proinflammatory
mediators including IL-1b (56). A critical role for IL-1b in
bacterial containment was established by the fact that
treatment of caspase-1 KO mice with IL-1b-containing
microparticles returned the exaggerated bacterial burden in
these animals to levels observed in WT mice (56). These
findings revealed the essential role of the TLR2/caspase-1/IL-
1b axis in bacterial containment during S. aureus craniotomy
infection (Figure 2). The importance of TLR2 in preventing S.
aureus outgrowth is intriguing given the number of S. aureus
virulence factors that target this signaling pathway (28) as
described earlier. One explanation is that these TLR2 evasion
molecules have been described during planktonic growth, and it
is unknown whether they are expressed during biofilm
formation. In addition, it is clear that although TLR2-
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dependent pathways are capable of limiting S. aureus biofilm
outgrowth, they are not sufficient to clear infection, since biofilm
persists in the wild type setting. This was further demonstrated
by the finding that exogenous IL-1b treatment was not able to
reduce S. aureus burden in WT mice, revealing the recalcitrance
of biofilm to proinflammatory signals (56). Interestingly,
although TLR9 is an important sensor for staphylococcal DNA
that is a major component of the S. aureus biofilm matrix (29),
TLR9 had minimal impact on the course of craniotomy infection
(56). This may result from the fact that TLR9 is an intracellular
PRR that requires phagocytic uptake of bacteria or eDNA, and
prior studies have demonstrated that S. aureus biofilm interferes
with macrophage phagocytosis (33, 37). Collectively, these
findings highlight the fact that anti-bacterial pathways are
operative during craniotomy infection; however, this is difficult
to appreciate in a wild type setting based on the chronicity
of infection.

There are many unknowns regarding the pathogenesis of S.
aureus craniotomy infection. One critical point relates to
identifying the mechanisms responsible for biofilm persistence
despite antibiotic treatment. Second, we know little about the
contributions of brain-resident cells, such as microglia and
astrocytes, which are capable of influencing immune responses.
In addition, we have recently identified a prominent influx of NK
and gd T cells in the brain during S. aureus craniotomy infection
(62) and it will be interesting to examine the functional
significance of each population in future studies. Finally, it will
be critical to identify S. aureus virulence determinants that are
important for promoting biofilm persistence, and to evaluate
whether unique S. aureus transcriptional signatures are observed
in bacteria recovered from the brain, galea, or the bone flap
where the physical biofilm resides. These are all topics for
future investigation.
S. AUREUS CRANIOTOMY INFECTION
AND BRAIN ABSCESS: SIMILARITIES
AND DISTINCTIONS

Brain abscesses pose a challenging clinical problem, which can be
associated with high mortality rates due to brain compression
and neuronal death from associated edema (171). Pyogenic
staphylococci and streptococci are among the most prevalent
bacterial species associated with brain abscesses emanating from
hematogenous spread (172). Abscess formation may also arise as
a complication of neurosurgery or head trauma, and is
commonly associated with S. aureus (8, 173). Anatomically, a
brain abscess possesses a well-formed necrotic center containing
bacteria and PMNs and is surrounded by a dense capsule
composed of macrophages and myofibroblasts (174). Activated
microglia and astrocytes are observed in the brain parenchyma
surrounding the abscess margins along with extensive edema.
Astrocytes have been shown to play an important role in
regulating brain abscess pathology, since mice deficient for the
astrocytic intermediate filament glial fibrillary acidic protein
(GFAP) displayed increased bacterial burden, large lesion size,
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and diffuse leukocyte infiltration (175). These effects likely
resulted from the inability to wall off the abscess, since GFAP
is a cytoplasmic protein and its loss does not eliminate astrocytes
in the brain parenchyma.

S. aureus craniotomy and brain abscess fundamentally differ
based on their chronicity and degree of inflammation. In mouse
models, S. aureus brain abscesses are shorter in duration typically
resolving within 14–21 days (174); whereas during S. aureus
craniotomy infection, bacteria are detectable on the infected
bone flap, galea, and the brain for as long as 9 months (46)
despite both models utilizing a similar infectious dose (i.e. 103 cfu
vs. 104 cfu for craniotomy and brain abscess, respectively).
Second, there are distinctions at the histological level.
Craniotomy-associated infection is not typified by abscess
formation in the brain parenchyma of WT animals (19, 56),
which is obviously distinct from brain abscess where a solitary
lesion is elicited (176, 177). Furthermore, brain abscesses are
associated with significant edema (177, 178), whereas edema is
not a prominent feature of craniotomy infection in the brain,
although a purulent exudate forms in the galea (19, 56). Third,
there are distinctions in the patterns of leukocyte recruitment.
Craniotomy infections are typified by a more complex immune
response owing to differential leukocyte recruitment across the
brain, galea, and bone flap. The infected bone flap and galea are
dominated by granulocytic infiltrates (i.e. PMNs and G-MDSCs)
in regions that coincide with the highest bacterial burden (56). In
contrast, the brain is typified by a monocytic infiltrate and an
approximate 1-log reduction in bacteria compared to the bone
flap and galea. Although brain abscesses are typically a solitary
lesion, there is still some degree of specificity in leukocyte
homing to particular niches. PMNs migrate primarily to the
necrotic core, whereas macrophages are detected along the
fibrotic abscess capsule (179).

When comparing the functional roles of TLR2 and MyD88 in
both models, some similarities and distinctions are noted (Figure
3). First, differences between S. aureus craniotomy infection and
brain abscesses can be seen at the level of TLR2 and MyD88
involvement in bacterial containment. For example, bacterial
burden was similar in brain abscesses of MyD88 KO and WT
mice (178); whereas, MyD88 was critical for preventing S. aureus
outgrowth during craniotomy-associated infection (19). A
similar finding was observed with respect to TLR2 where
bacterial burden was exaggerated in TLR2 KO animals during
craniotomy-associated infection (56), but was comparable in
brain abscesses of WT and TLR2 KO mice (180). This is
particularly interesting since proinflammatory mediator
production was reduced in TLR2 KO animals in both models,
revealing the involvement of TLR2-independent pathways in
controlling bacterial burden during brain abscess formation.

In terms of similarities between S. aureus craniotomy
infection and brain abscess three examples are evident. First,
neither model is dependent on TLR9, which could explained by
the fact that TLR9 is an endosomal receptor that requires
phagocytosis for pathogen-derived DNA to engage the receptor
(181). S. aureus is known to inhibit opsonophagocytosis via
protein A (SpA) production, and S. aureus biofilm attenuates
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macrophage phagocytic activity (33, 37, 182). Second, IL-1b
plays an important role in S. aureus containment in both
craniotomy infection and brain abscess although the pathways
leading to IL-1b production differ (Figure 3) (56, 183, 184).
During S. aureus craniotomy infection, caspase-1 was required
for maximal IL-1b production; however, there was no role for the
well-characterized inflammasome protein NLRP3 or its adaptor
molecule ASC (56). Therefore, the NLR sensor that is required
for inflammasome assembly and caspase-1 activation during
craniotomy infection remains unknown. In contrast, IL-1b
release during S. aureus brain abscess required the AIM2
inflammasome and ASC but, similar to craniotomy infection,
was NLRP3-independent (184). These findings demonstrate the
involvement of distinct inflammasome platforms for triggering
IL-1b release during S. aureus biofilm-associated craniotomy
infection versus brain abscess.

Finally, S. aureus craniotomy and brain abscess infection
share a critical role for PMNs in bacterial containment (Figure
3). Mice lacking CXCR2, the receptor for the PMN chemokines
CXCL1 and CXCL2, showed minimal PMN recruitment into the
infected brain parenchyma and higher bacterial burden in the
brain abscess model (185). Likewise, anti-Gr-1 treatment
mimicked these findings with exaggerated bacterial burden and
a failure to limit the extent of tissue damage during brain abscess
development, although monocytes were also targeted with this
antibody (185). Similar phenotypes were observed during S.
aureus craniotomy infection, where anti-Gr-1 administration
led to a significant outgrowth of bacteria in the brain, galea,
and bone flap within 48 h post-infection concomitant with
Frontiers in Immunology | www.frontiersin.org 9
increased morbidity (19). Subsequent studies to refine cell
depletion to only the PMN/G-MDSC populations with anti-
Ly6G produced similar findings with exaggerated bacterial
burden (62). However, unlike anti-Gr-1 depletion where effects
were observed within 48 h the anti-Ly6G phenotype was delayed
in comparison, becoming significant at day 7 post-infection, and
no morbidity was observed (62). Collectively, these findings
reveal the essential role of PMNs in S. aureus brain abscess
resolution and although PMNs are important for preventing
bacterial outgrowth during S. aureus craniotomy infection, the
fact that animals tolerate PMN depletion suggests the
involvement of other immune populations, the identity of
which remains to be determined. Furthermore, it is important
to emphasize that S. aureus craniotomy infection persists even
when PMNs are present establishing their ineffectiveness at
biofilm clearance in vivo. This may result, in part, by the
ability of G-MDSCs to inhibit PMN killing of S. aureus (62).
S. AUREUS CRANIOTOMY VERSUS
PERIPHERAL BIOFILM INFECTION:
IMPORTANCE OF TISSUE NICHE

S. aureus is a common etiologic agent of infections associated
with prosthetic joints and other indwelling medical devices (186,
187). Over the years, our laboratory and others have identified
numerous mechanisms used by S. aureus biofilm to evade host
immune responses (186, 188, 189). One hallmark of S. aureus
FIGURE 3 | Comparisons in immune responses elicited by S. aureus in the CNS versus periphery. TLR2 signaling is critical for preventing bacterial outgrowth during
S. aureus craniotomy infection (left), but is dispensable during brain abscess (center) and peripheral biofilm infection (right). MyD88-dependent signals are critical for
restricting S. aureus growth during craniotomy and peripheral biofilm infection, and IL-1b production is key in all three models. PMNs are essential for brain abscess
resolution and bacterial containment during craniotomy infection, but do not influence peripheral biofilm infection where infection chronicity is mediated by the
inhibitory action of MDSCs on monocyte pro-inflammatory activity. Figure created with BioRender.
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biofilm infection outside the CNS is the prevalence of leukocyte
infiltrates that display anti-inflammatory properties. One
example is MDSCs, immature myeloid cells that have the
ability to suppress T cell activation and monocyte/macrophage
proinflammatory activity (38). G-MDSCs are the major
leukocyte infiltrate in a mouse model of S. aureus PJI in
addition to patients with PJI (38, 40, 41, 151). Depletion of G-
MDSCs and PMNs in the mouse S. aureus PJI model using anti-
Ly6G transformed infiltrating monocytes to a proinflammatory
state that led to a significant reduction in biofilm burden (38). In
contrast, although G-MDSCs and PMNs are most abundant in
the galea and bone flap during S. aureus craniotomy infection,
Ly6G depletion of these cells resulted in bacterial outgrowth (62).
Therefore, although both models are associated with G-MDSC
infiltrates, these results suggest their differential involvement in
dictating infection outcome (Figure 3). An alternative
explanation could be differences in the abundance of PMNs in
both infection models. PMN infiltrates are minimal in S. aureus
PJI (which instead is dominated by G-MDSCs), whereas PMNs
are more abundant in the galea and bone flap during S. aureus
craniotomy infection. Therefore, the inability to contain S.
aureus following Ly6G depletion in the craniotomy model may
result from the loss of the larger PMN population that is a critical
bactericidal effector.

Another distinction between PJI and craniotomy infection is
the presence of innate and adaptive lymphoid populations in the
latter. Both human PJI and the mouse model have few T cell
infiltrates (39, 151) in agreement with the ability of the dominant
G-MDSC population to inhibit T cell activation/proliferation
(190). In contrast, S. aureus craniotomy infection is associated
with significant NK and ɣd T cell recruitment in the brain, with
fewer T and B cells (62). These populations are largely absent from
the galea and bone flap revealing a unique microenvironment
in the brain that is responsible for the recruitment of these
lymphoid populations.

A final difference between S. aureus biofilm infection in the
CNS vs. periphery is demonstrated by the role of TLR2 in disease.
As mentioned earlier, TLR2 is critical for bacterial containment
during S. aureus craniotomy infection (56), whereas the receptor
is dispensable during peripheral biofilm infection (Figure 3)
(33). Despite the differential involvement of TLR2, the TLR/IL-
1R adaptor MyD88 is plays an equally important role in
preventing S. aureus outgrowth during both CNS and
peripheral biofilm infection (19, 34, 191). This phenotype is
likely driven by IL-1b given that the loss of IL-1b production or
signaling results in increased bacterial outgrowth in both CNS
and peripheral models of S. aureus biofilm infection (32, 56, 192).
THERAPEUTIC STRATEGIES FOR
CRANIOTOMY-ASSOCIATED INFECTION

Despite extensive precautionary measures, post-operative
complications following craniotomy continue to occur with
S. aureus responsible for approximately one-half of these
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infections (18). Multiple surgeries, prolonged hospital stays, and
significant mortality confound the complications arising from
craniotomy infections (193). Current treatment strategies include
the ex vivo submergence of the infected bone flap in an antiseptic
solution and aggressive debridement prior to re-insertion;
however, these have not yet been adopted as standard-of-care
practices (194, 195). Surgical drainage in combination with a
prolonged antibiotic regimen can often effectively control
infection (196), which is largely dictated by the interval between
surgery and presentation of clinical signs of infection. In some
instances, the bone flap cannot be salvaged and a cranioplasty is
performed using a bone graft or alloplastic prosthesis. In either
case, patients are subjected to an extended antibiotic regimen
lasting for months. Because a second surgery is often required
for treatment, and the potential for infection recurrence, devising
novel therapeutic approaches may significantly improve the
outcome of craniotomy infection without the need for more
radical interventions.

Previously, our laboratory demonstrated the efficacy of
administering proinflammatory macrophages to promote
biofilm clearance in vivo (34). We leveraged this observation to
evaluate the efficacy of a 3D bioprinted bone scaffold that
incorporated viable macrophages and an antibiotic cocktail as
a localized delivery system for the treatment of S. aureus
craniotomy infection (46). The rationale for including viable
macrophages was that they might facilitate biofilm dispersal
making bacteria more susceptible to antibiotic action. The 3D
bioprinted scaffold was capable of reducing established biofilm
infection, since scaffold implantation at day 7 post-infection led
to a significant reduction in bacterial burden and reduced BBB
damage that is associated with chronic S. aureus infection (46).
Interestingly, although macrophage incorporation into 3D
scaffolds was effective at diminishing an established biofilm,
this was not the case in a prophylactic paradigm; therefore,
subsequent studies focused on increasing the antibiotic dose in
the scaffold. This approach mitigated bacterial burden to below
the limit of detection for 2 weeks; however, S. aureus outgrowth
was observed after this period due to the loss of antibiotic from
the scaffold. Therefore, second generation 3D scaffolds are
currently being developed by our group that incorporate
additional bioactive moieties designed to negate the outgrowth
of residual bacteria after the antibiotic has exited the scaffold.
Other strategies that could be leveraged to enhance therapeutic
efficacy include the use of tagged nanoparticles to target a specific
immune population to enhance its microbicidal activity.
Furthermore, the use of systemic antibiotics once the primary
biofilm burden has been reduced by 3D bioprinted scaffolds will
be critical to clear residual bacteria, which was supported by our
recent study (46).

Other therapeutic approaches have utilized nanoparticle-
based delivery systems to augment immune cell function (197,
198). We recently employed a similar strategy to deliver IL-1b-
containing microparticles to attenuate bacterial burden in
caspase-1 KO mice during S. aureus craniotomy infection (56).
It will be interesting to see how these rapidly evolving
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therapeutics can modulate infection in mouse biofilm models for
potential translation to the clinic.
CONCLUSIONS AND PERSPECTIVES

Several studies have highlighted niche-specific differences in the
composition of leukocyte infiltrates and their ensuing
inflammatory responses during infection (199, 200). One
example is a mouse model of visceral leishmaniasis, where
parasites are cleared within 2 months following intravenous
injection in the liver but are present in the spleen and bone
marrow throughout the life of the animal (201). This is thought
to result from alterations in adaptive immunity and macrophage
function in each of these locations. Tissue-specific cues are
exemplified when comparing the immune responses elicited by
S. aureus biofilm in the periphery that, in general, are
characterized by an anti-inflammatory phenotype whereas
more proinflammatory responses are elicited during CNS
biofilm infection. Deciphering the signals emanating from
different tissues will be crucial for understanding the
pathogenesis of biofilm infection and for developing selective
treatment strategies to avoid adverse side effects. The use of
conditional KO mice will be an extremely important tool to
understand the role of immune mediators in leukocyte
populations enriched in a given tissue niche. This is
particularly relevant in the case of S. aureus craniotomy-
associated infection that is more complex in terms of distinct
leukocyte subsets across various tissue domains.

It is intriguing how S. aureus can elicit markedly different
immune responses depending upon the site of infection. As
discussed, S. aureus craniotomy infection displays a
compartmentalized immune response within affected CNS
Frontiers in Immunology | www.frontiersin.org 11
regions, and recent RNA-seq studies have begun to decipher
the pathways that program a given immune population in its
unique niche (62). Imaging modalities such as intravital
microscopy would provide an unprecedented window into S.
aureus-leukocyte interactions and migratory patterns associated
with CNS resident vs. invading immune cells in real time.
Identifying the factors that modulate changes in transcriptional
networks, the nature of host-pathogen interactions, and patterns
of leukocyte migration would provide a better understanding of
S. aureus-leukocyte crosstalk and ultimately pave the way for
developing tailored therapeutic strategies to mitigate S. aureus
biofilm infections within the CNS or periphery.
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144. Dorhoi A, Glarıá E, Garcia-Tellez T, Nieuwenhuizen NE, Zelinskyy G, Favier
B, et al. MDSCs in infectious diseases: regulation, roles, and readjustment.
Cancer Immunol Immunother (2019) 68(4):673–85. doi: 10.1007/s00262-
018-2277-y

145. Schrijver IT, Théroude C, Roger T. Myeloid-Derived Suppressor Cells in
Sepsis. Front Immunol (2019) 10:327. doi: 10.3389/fimmu.2019.00327

146. Hu C, Pang B, Lin G, Zhen Y, Yi H. Energy metabolism manipulates the fate
and function of tumour myeloid-derived suppressor cells. Br J Cancer (2020)
122(1):23–9. doi: 10.1038/s41416-019-0644-x

147. Stoll H, Ost M, Singh A, Mehling R, Neri D, Schafer I, et al. Staphylococcal
Enterotoxins Dose-Dependently Modulate the Generation of Myeloid-
Derived Suppressor Cells. Front Cell Infect Microbiol (2018) 8:321. doi:
10.3389/fcimb.2018.00321

148. Ledo C, Gonzalez CD, Poncini CV, Mollerach M, Gomez MI. TNFR1
Signaling Contributes to T Cell Anergy During Staphylococcus aureus
Sepsis. Front Cell Infect Microbiol (2018) 8:259. doi: 10.3389/
fcimb.2018.00259

149. Tebartz C, Horst SA, Sparwasser T, Huehn J, Beineke A, Peters G, et al. A major
role for myeloid-derived suppressor cells and a minor role for regulatory T cells
in immunosuppression during Staphylococcus aureus infection. J Immunol
(2015) 194(3):1100–11. doi: 10.4049/jimmunol.1400196

150. Skabytska Y, Wolbing F, Gunther C, Koberle M, Kaesler S, Chen KM, et al.
Cutaneous innate immune sensing of Toll-like receptor 2-6 ligands
suppresses T cell immunity by inducing myeloid-derived suppressor cells.
Immunity (2014) 41(5):762–75. doi: 10.1016/j.immuni.2014.10.009

151. Heim CE, Vidlak D, Odvody J, Hartman CW, Garvin KL, Kielian T. Human
prosthetic joint infections are associated with myeloid-derived suppressor
cells (MDSCs): Implications for infection persistence. J Orthop Res (2018) 36
(6):1605–13. doi: 10.1002/jor.23806

152. Heim CE, Yamada KJ, Fallet R, Odvody J, Schwarz DM, Lyden ER, et al.
Orthopaedic Surgery Elicits a Systemic Anti-Inflammatory Signature. J Clin
Med (2020) 9(7):2123. doi: 10.3390/jcm9072123

153. Allen NJ, Lyons DA. Glia as architects of central nervous system formation
and function. Science (2018) 362(6411):181–5. doi: 10.1126/science.aat0473

154. Colombo E, Farina C. Astrocytes: Key Regulators of Neuroinflammation.
Trends Immunol (2016) 37(9):608–20. doi: 10.1016/j.it.2016.06.006

155. Sofroniew MV. Astrocyte Reactivity: Subtypes, States, and Functions in CNS
Innate Immunity. Trends Immunol (2020) 41(9):758–70. doi: 10.1016/
j.it.2020.07.004

156. Esen N, Tanga FY, DeLeo JA, Kielian T. Toll-like receptor 2 (TLR2) mediates
astrocyte activation in response to the Gram-positive bacterium
Frontiers in Immunology | www.frontiersin.org 15
Staphylococcus aureus. J Neurochem (2004) 88(3):746–58. doi: 10.1046/
j.1471-4159.2003.02202.x

157. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD.
Differential activation of astrocytes by innate and adaptive immune stimuli.
Glia (2005) 49(3):360–74. doi: 10.1002/glia.20117

158. Li L, Acioglu C, Heary RF, Elkabes S. Role of astroglial toll-like receptors
(TLRs) in central nervous system infections, injury and neurodegenerative
diseases. Brain Behav Immun (2020) 91:740–55. doi: 10.1016/
j.bbi.2020.10.007

159. Sterka D Jr, Rati DM, Marriott I. Functional expression of NOD2, a novel
pattern recognition receptor for bacterial motifs, in primary murine
astrocytes. Glia (2006) 53(3):322–30. doi: 10.1002/glia.20286

160. Srinivasan R, Lu TY, Chai H, Xu J, Huang BS, Golshani P, et al. New
Transgenic Mouse Lines for Selectively Targeting Astrocytes and Studying
Calcium Signals in Astrocyte Processes In Situ and In Vivo. Neuron (2016)
92(6):1181–95. doi: 10.1016/j.neuron.2016.11.030

161. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev
Immunol (2000) 18:217–42. doi: 10.1146/annurev.immunol.18.1.217

162. Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR,
et al. Regulation of learning and memory by meningeal immunity: a key role
for IL-4. J Exp Med (2010) 207(5):1067–80. doi: 10.1084/jem.20091419

163. Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W, Smirnov I, et al.
Unexpected role of interferon-g in regulating neuronal connectivity and
social behaviour. Nature (2016) 535(7612):425–9. doi: 10.1038/nature18626

164. Mundt S, Mrdjen D, Utz SG, Greter M, Schreiner B, Becher B. Conventional
DCs sample and present myelin antigens in the healthy CNS and allow
parenchymal T cell entry to initiate neuroinflammation. Sci Immunol (2019)
4(31):eaau8380. doi: 10.1126/sciimmunol.aau8380

165. Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R,
Leeman DS, et al. Single-cell analysis reveals T cell infiltration in old
neurogenic niches. Nature (2019) 571(7764):205–10. doi: 10.1038/s41586-
019-1362-5

166. Hauser SL, Oksenberg JR. The neurobiology of multiple sclerosis: genes,
inflammation, and neurodegeneration. Neuron (2006) 52(1):61–76. doi:
10.1016/j.neuron.2006.09.011

167. Prabhakara R, Harro JM, Leid JG, Keegan AD, Prior ML, Shirtliff ME.
Suppression of the inflammatory immune response prevents the
development of chronic biofilm infection due to methicillin-resistant
Staphylococcus aureus. Infect Immun (2011) 79(12):5010–8. doi: 10.1128/
IAI.05571-11

168. Boivin G, Faget J, Ancey P-B, Gkasti A, Mussard J, Engblom C, et al. Durable
and controlled depletion of neutrophils in mice. Nat Commun (2020) 11
(1):2762. doi: 10.1038/s41467-020-16596-9

169. Deguine J, Barton GM. MyD88: a central player in innate immune signaling.
F1000Prime Rep (2014) 6:97–. doi: 10.12703/P6-97

170. Christgen S, Place DE, Kanneganti TD. Toward targeting inflammasomes:
insights into their regulation and activation. Cell Res (2020) 30(4):315–27.
doi: 10.1038/s41422-020-0295-8

171. Brouwer MC, Tunkel AR, McKhann GM, van de Beek D. Brain Abscess.New
Engl J Med (2014) 371(5):447–56. doi: 10.1056/NEJMra1301635

172. Helweg-Larsen J, Astradsson A, Richhall H, Erdal J, Laursen A, Brennum J.
Pyogenic brain abscess, a 15 year survey. BMC Infect Dis (2012) 12:332. doi:
10.1186/1471-2334-12-332

173. Yang KY, Chang WN, Ho JT, Wang HC, Lu CH. Postneurosurgical
nosocomial bacterial brain abscess in adults. Infection (2006) 34(5):247–
51. doi: 10.1007/s15010-006-5607-5

174. Kielian T. Immunopathogenesis of brain abscess. J Neuroinflamm (2004) 1
(1):16. doi: 10.1186/1742-2094-1-16

175. Stenzel W, Soltek S, Schlüter D, Deckert M. The intermediate filament GFAP
is important for the control of experimental murine Staphylococcus aureus-
induced brain abscess and Toxoplasma encephalitis. J Neuropathol Exp
Neurol (2004) 63(6):631–40. doi: 10.1093/jnen/63.6.631

176. Karpuk N, Burkovetskaya M, Fritz T, Angle A, Kielian T. Neuroinflammation
leads to region-dependent alterations in astrocyte gap junction
communication and hemichannel activity. J Neurosci (2011) 31(2):414–25.
doi: 10.1523/JNEUROSCI.5247-10.2011

177. Kielian T, Syed MM, Liu S, Phulwani NK, Phillips N, Wagoner G, et al. The
synthetic peroxisome proliferator-activated receptor-gamma agonist
February 2021 | Volume 12 | Article 625467

https://doi.org/10.1084/jem.20050715
https://doi.org/10.1158/2326-6066.CIR-16-0297
https://doi.org/10.1159/000489830
https://doi.org/10.1159/000489830
https://doi.org/10.1172/jci.insight.128664
https://doi.org/10.1128/IAI.01590-13
https://doi.org/10.1182/bloodadvances.2019031609
https://doi.org/10.3389/fimmu.2018.02499
https://doi.org/10.1038/nri2506
https://doi.org/10.1038/nri2506
https://doi.org/10.1007/s00262-018-2277-y
https://doi.org/10.1007/s00262-018-2277-y
https://doi.org/10.3389/fimmu.2019.00327
https://doi.org/10.1038/s41416-019-0644-x
https://doi.org/10.3389/fcimb.2018.00321
https://doi.org/10.3389/fcimb.2018.00259
https://doi.org/10.3389/fcimb.2018.00259
https://doi.org/10.4049/jimmunol.1400196
https://doi.org/10.1016/j.immuni.2014.10.009
https://doi.org/10.1002/jor.23806
https://doi.org/10.3390/jcm9072123
https://doi.org/10.1126/science.aat0473
https://doi.org/10.1016/j.it.2016.06.006
https://doi.org/10.1016/j.it.2020.07.004
https://doi.org/10.1016/j.it.2020.07.004
https://doi.org/10.1046/j.1471-4159.2003.02202.x
https://doi.org/10.1046/j.1471-4159.2003.02202.x
https://doi.org/10.1002/glia.20117
https://doi.org/10.1016/j.bbi.2020.10.007
https://doi.org/10.1016/j.bbi.2020.10.007
https://doi.org/10.1002/glia.20286
https://doi.org/10.1016/j.neuron.2016.11.030
https://doi.org/10.1146/annurev.immunol.18.1.217
https://doi.org/10.1084/jem.20091419
https://doi.org/10.1038/nature18626
https://doi.org/10.1126/sciimmunol.aau8380
https://doi.org/10.1038/s41586-019-1362-5
https://doi.org/10.1038/s41586-019-1362-5
https://doi.org/10.1016/j.neuron.2006.09.011
https://doi.org/10.1128/IAI.05571-11
https://doi.org/10.1128/IAI.05571-11
https://doi.org/10.1038/s41467-020-16596-9
https://doi.org/10.12703/P6-97
https://doi.org/10.1038/s41422-020-0295-8
https://doi.org/10.1056/NEJMra1301635
https://doi.org/10.1186/1471-2334-12-332
https://doi.org/10.1007/s15010-006-5607-5
https://doi.org/10.1186/1742-2094-1-16
https://doi.org/10.1093/jnen/63.6.631
https://doi.org/10.1523/JNEUROSCI.5247-10.2011
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


de Morais et al. Immunity During Craniotomy Infection
ciglitazone attenuates neuroinflammation and accelerates encapsulation in
bacterial brain abscesses. J Immunol (2008) 180(7):5004–16. doi: 10.4049/
jimmunol.180.7.5004

178. Kielian T, Phulwani NK, Esen N, Syed MM, Haney AC, McCastlain K, et al.
MyD88-dependent signals are essential for the host immune response in
experimental brain abscess. J Immunol (2007) 178(7):4528–37. doi: 10.4049/
jimmunol.178.7.4528

179. Baldwin AC, Kielian T. Persistent immune activation associated with a
mouse model of Staphylococcus aureus-induced experimental brain abscess.
J Neuroimmunol (2004) 151(1-2):24–32. doi: 10.1016/j.jneuroim.2004.02.002

180. Kielian T, Haney A, Mayes PM, Garg S, Esen N. Toll-like receptor 2
modulates the proinflammatory milieu in Staphylococcus aureus-induced
brain abscess. Infect Immun (2005) 73(11):7428–35. doi: 10.1128/
IAI.73.11.7428-7435.2005

181. Fitzgerald KA, Kagan JC. Toll-like Receptors and the Control of Immunity.
Cell (2020) 180(6):1044–66. doi: 10.1016/j.cell.2020.02.041

182. Higgins J, Loughman A, Van Kessel KPM, Van Strijp JAG, Foster TJ.
Clumping factor A of Staphylococcus aureus inhibits phagocytosis by
human polymorphonuclear leucocytes. FEMS Microbiol Lett (2006) 258
(2):290–6. doi: 10.1111/j.1574-6968.2006.00229.x

183. Kielian T, Bearden ED, Baldwin AC, Esen N. IL-1 and TNF-alpha play a
pivotal role in the host immune response in a mouse model of
Staphylococcus aureus-induced experimental brain abscess. J Neuropathol
Exp Neurol (2004) 63(4):381–96. doi: 10.1093/jnen/63.4.381

184. Hanamsagar R, Aldrich A, Kielian T. Critical role for the AIM2
inflammasome during acute CNS bacterial infection. J Neurochem (2014)
129(4):704–11. doi: 10.1111/jnc.12669

185. Kielian T, Barry B, Hickey WF. CXC chemokine receptor-2 ligands are required
for neutrophil-mediated host defense in experimental brain abscesses. J Immunol
(2001) 166(7):4634–43. doi: 10.4049/jimmunol.166.7.4634

186. Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion,
biofilm formation and immune evasion. Nat Rev Microbiol (2018) 16
(7):397–409. doi: 10.1038/s41579-018-0019-y

187. Ricciardi BF, Muthukrishnan G, Masters E, Ninomiya M, Lee CC, Schwarz
EM. Staphylococcus aureus Evasion of Host Immunity in the Setting of
Prosthetic Joint Infection: Biofilm and Beyond. Curr Rev Musculoskelet Med
(2018) 11(3):389–400. doi: 10.1007/s12178-018-9501-4

188. Bhattacharya M, Berends ETM, Chan R, Schwab E, Roy S, Sen CK, et al.
Staphylococcus aureus biofilms release leukocidins to elicit extracellular trap
formation and evade neutrophil-mediated killing. Proc Natl Acad Sci U S A
(2018) 115(28):7416–21. doi: 10.1073/pnas.1721949115

189. Scherr TD, Heim CE, Morrison JM, Kielian T. Hiding in Plain Sight:
Interplay between Staphylococcal Biofilms and Host Immunity. Front
Immunol (2014) 5:37. doi: 10.3389/fimmu.2014.00037

190. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S.
Myeloid-derived suppressor cells inhibit T-cell activation by depleting
cystine and cysteine. Cancer Res (2010) 70(1):68–77. doi: 10.1158/0008-
5472.CAN-09-2587

191. Hanke ML, Angle A, Kielian T. MyD88-dependent signaling influences
fibrosis and alternative macrophage activation during Staphylococcus aureus
Frontiers in Immunology | www.frontiersin.org 16
biofilm infection. PloS One (2012) 7(8):e42476. doi: 10.1371/
journal.pone.0042476

192. Wang Y, Ashbaugh AG, Dikeman DA, Zhang J, Ackerman NE, Kim SE, et al.
Interleukin-1b and tumor necrosis factor are essential in controlling an
experimental orthopedic implant-associated infection. J Orthop Res (2020)
38(8):1800–9. doi: 10.1002/jor.24608

193. O’Keeffe AB, Lawrence T, Bojanic S. Oxford craniotomy infections database:
A cost analysis of craniotomy infection. Br J Neurosurg (2012) 26(2):265–9.
doi: 10.3109/02688697.2011.626878

194. Wallace DJ, McGinity MJ, Floyd JR. 2nd. Bone flap salvage in acute surgical
site infection after craniotomy for tumor resection. Neurosurg Rev (2018) 41
(4):1071–7. doi: 10.1007/s10143-018-0955-z

195. Widdel L, Winston KR. Pus and free bone flaps. J Neurosurg Pediatr (2009) 4
(4):378–82. doi: 10.3171/2009.5.PEDS0963

196. Kural C, Kırmızıgoz S, Ezgu MC, Bedir O, Kutlay M, Izci Y. Intracranial
infections: lessons learned from 52 surgically treated cases. Neurosurg Focus
(2019) 47: (2):E10. doi: 10.3171/2019.5.FOCUS19238

197. Gendelman HE, Anantharam V, Bronich T, Ghaisas S, Jin H, Kanthasamy
AG, et al. Nanoneuromedicines for degenerative, inflammatory, and
infectious nervous system diseases. Nanomedicine (2015) 11(3):751–67.
doi: 10.1016/j.nano.2014.12.014

198. Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT,
et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and
proinflammatory cytokines for sepsis management. Proc Natl Acad Sci
(2017) 114(43):11488–93. doi: 10.1073/pnas.1714267114

199. Lionakis MS, Lim JK, Lee C-CR, Murphy PM. Organ-specific innate immune
responses in a mouse model of invasive candidiasis. J Innate Immunity
(2011) 3(2):180–99. doi: 10.1159/000321157

200. Hu W, Pasare C. Location, location, location: tissue-specific regulation of
immune responses. J Leukoc Biol (2013) 94(3):409–21. doi: 10.1189/
jlb.0413207

201. Engwerda CR, Kaye PM. Organ-specific immune responses associated with
infectious disease. Immunol Today (2000) 21(2):73–8. doi: 10.1016/S0167-
5699(99)01549-2

Conflict of Interest: A patent has been filed with the US Patent and Trademark
Office covering the application of 3D bioprinted scaffolds for the treatment of
craniotomy-associated infections that is discussed in this review (PCT/US2020/
021440; TK).

The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 de Morais, Kak, Menousek and Kielian. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
February 2021 | Volume 12 | Article 625467

https://doi.org/10.4049/jimmunol.180.7.5004
https://doi.org/10.4049/jimmunol.180.7.5004
https://doi.org/10.4049/jimmunol.178.7.4528
https://doi.org/10.4049/jimmunol.178.7.4528
https://doi.org/10.1016/j.jneuroim.2004.02.002
https://doi.org/10.1128/IAI.73.11.7428-7435.2005
https://doi.org/10.1128/IAI.73.11.7428-7435.2005
https://doi.org/10.1016/j.cell.2020.02.041
https://doi.org/10.1111/j.1574-6968.2006.00229.x
https://doi.org/10.1093/jnen/63.4.381
https://doi.org/10.1111/jnc.12669
https://doi.org/10.4049/jimmunol.166.7.4634
https://doi.org/10.1038/s41579-018-0019-y
https://doi.org/10.1007/s12178-018-9501-4
https://doi.org/10.1073/pnas.1721949115
https://doi.org/10.3389/fimmu.2014.00037
https://doi.org/10.1158/0008-5472.CAN-09-2587
https://doi.org/10.1158/0008-5472.CAN-09-2587
https://doi.org/10.1371/journal.pone.0042476
https://doi.org/10.1371/journal.pone.0042476
https://doi.org/10.1002/jor.24608
https://doi.org/10.3109/02688697.2011.626878
https://doi.org/10.1007/s10143-018-0955-z
https://doi.org/10.3171/2009.5.PEDS0963
https://doi.org/10.3171/2019.5.FOCUS19238
https://doi.org/10.1016/j.nano.2014.12.014
https://doi.org/10.1073/pnas.1714267114
https://doi.org/10.1159/000321157
https://doi.org/10.1189/jlb.0413207
https://doi.org/10.1189/jlb.0413207
https://doi.org/10.1016/S0167-5699(99)01549-2
https://doi.org/10.1016/S0167-5699(99)01549-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


de Morais et al. Immunity During Craniotomy Infection
GLOSSARY

3D three-dimensional
Arg-1 arginase-1
AIM2 absent in melanoma 2
ASC apoptosis-associated speck-like protein containing a carboxy-

terminal CARD
BBB blood-brain barrier
CCL2 monocyte chemoattractant protein-1
CNS central nervous system
CSF-1 macrophage colony stimulating factor-1
CXCL1 keratinocyte chemoattractant
CXCL2 macrophage inflammatory protein-2
CXCL10 interferon-inducible protein 10 kDa
CXCR2 C-X-C receptor 2
EAE experimental autoimmune encephalomyelitis
eDNA extracellular DNA
ER endoplasmic reticulum
G-CSF granulocyte colony-stimulating factor
GFAP glial fibrillary acidic protein
G-MDSC granulocyte myeloid-derived suppressor cell
gd T cell gamma-delta
GM-CSF granulocyte-macrophage colony-stimulating factor
IFN interferon
IL interleukin
KO knockout
MAPK mitogen-activated protein kinase
MDSC myeloid-derived suppressor cell
M-MDSC monocyte myeloid-derived suppressor cell
MyD88 myeloid differentiation factor 88
NET neutrophil extracellular trap
NGS next generation sequencing
NF-kB nuclear factor-kappa B
NK cell natural killer cell
NLR NOD-like receptor
NO nitric oxide
NOD2 nucleotide-binding oligomerization domain-containing protein 2
PJI prosthetic joint infection
PMN neutrophil
PRR pattern recognition receptor
RNI reactive nitrogen intermediate
ROS reactive oxygen species
S. aureus Staphylococcus aureus
scRNA-
seq

single cell RNA-sequencing

Spa protein A
TGF-b transforming growth factor-beta
TLR Toll-like receptor
TNF-a tumor necrosis factor-alpha
WT wild type
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