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ABSTRACT Bacteriophage Siskin is a member of the �-like siphovirus phage cluster
that infects Salmonella enterica serovar Typhimurium strain LT2. Here, we report the
complete 58,476-bp sequence of the Siskin genome, provide confirmation of its
genomic termini, and describe a potentially new class of holins and endolysins
found in the lysis cassette.

Salmonella enterica serovar Typhimurium is a foodborne pathogen that causes
millions of infections annually (1, 2). The bacteriophage Siskin could be used

therapeutically or during food processing to combat this pathogen.
Siskin was isolated in 2016 from wastewater collected in Austin, TX, using S.

Typhimurium strain LT2. Host bacteria were cultured on tryptic soy broth or agar (Difco)
at 37°C with aeration, and phage were propagated using the soft agar overlay method
(3). Phage genomic DNA was prepared using a modified Promega Wizard DNA cleanup
kit protocol (4). Pooled indexed DNA libraries were prepared using the Illumina TruSeq
Nano LT kit, and a sequence was obtained using the MiSeq V2 500-cycle reagent kit,
following manufacturer’s instructions, producing 539,431 reads for the index con-
taining the phage genome. Reads were quality controlled in FastQC (https://www
.bioinformatics.babraham.ac.uk/projects/fastqc/), trimmed with FASTX-Toolkit 0.11.6
(http://hannonlab.cshl.edu/fastx_toolkit/download.html), and assembled by SPAdes
3.5.0 (5) into a raw contig at 265.4-fold coverage. Protein-coding genes were predicted
using GLIMMER 3.0 (6) and MetaGeneAnnotator 1.0 (7). tRNA genes were predicted
with ARAGORN 2.36 (8). Protein functions were predicted primarily by sequence
homology using BLASTp 2.2.28 (9), and the conserved domain was searched using
InterProScan 5.15-54.0 (10). Rho-independent termination sites were identified via
TransTerm (http://transterm.cbcb.umd.edu/). Transmembrane domain and topology
were predicted by TMHMM 2.0 (11, 12). All analyses were conducted at default settings
through the CPT Galaxy (13) and WebApollo (14) platforms (https://cpt.tamu.edu/).

Out of 74 predicted total proteins of Siskin, 68 are similar to those of phage �

(GenBank accession no. KM458633) by BLASTp, with an E value of �0.001 (15, 16),
indicating that Siskin is a member of the �-like phage cluster (17). Phage Siskin has
92.48% nucleotide similarity to phage Utah (18) (GenBank accession no. KY014601), as
determined by progressiveMauve 2.4.0 (19). Like phages � (15, 16) and Utah (18), Siskin
was predicted to package its DNA by a site-specific cos mechanism with 5= extended
overhangs. With primers (5=-GGGCGGCTGAGAAAGAATTA-3= and 5=-CAACCGGGTAAAA
CCGTAA-3=) facing off the ends of the assembled raw contig, PCR using the ligated
genomic DNA was conducted, and the resulting product was Sanger sequenced. The
obtained sequence was compared to the direct Sanger resequencing of the phage
termini (20), using primer 5=-GGGCGGCTGAGAAAGAATTA-3= off one end and 5=- CAA
CCGGGTAAAACCGTAA-3= off the other end. The Sanger sequencing comparison results
confirmed that the 5= end of the Siskin chromosome is at a position identical to the
5=-overhang sequence determined for phages � and Utah. Based on the presence of
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identical terminal sequences (GGTGCGCAGAGC), the Siskin chromosome is predicted to
have 12-bp 5= overhangs with the sequence 5=-GGTGCGCAGAGC-3=, and the phage
genome was opened at this point. The complete genome of 58,476 bp has a coding
density of 93.91% and a G�C content of 56.55%.

The putative holin of Siskin is predicted to have an N-terminal transmembrane
domain with N-out, C-in topology, and the putative endolysin is predicted to have two
C-terminal transmembrane domains with N-in, C-in topology. These are novel findings
and, if experimentally confirmed, reveal a new class of holins (class IV) and a new class
of phage endolysins.

Data availability. The genome sequence of phage Siskin was deposited under

GenBank accession no. MH631453. The associated BioProject, SRA, and BioSample
accession numbers are PRJNA222858, SRR8788536, and SAMN11260697, respectively.
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