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Targeted sequencing reveals 
the somatic mutation landscape 
in a Swedish breast cancer cohort
Argyri Mathioudaki1*, Viktor Ljungström2, Malin Melin3, Maja Louise Arendt4,5, 
Jessika Nordin  5, Åsa Karlsson5, Eva Murén5, Pushpa Saksena6, Jennifer R. S. Meadows5, 
Voichita D. Marinescu5, Tobias Sjöblom  2 & Kerstin Lindblad‑Toh5,7*

Breast cancer (BC) is a genetically heterogeneous disease with high prevalence in Northern Europe. 
However, there has been no detailed investigation into the Scandinavian somatic landscape. Here, 
in a homogeneous Swedish cohort, we describe the somatic events underlying BC, leveraging a 
targeted next-generation sequencing approach. We designed a 20.5 Mb array targeting coding and 
regulatory regions of genes with a known role in BC (n = 765). The selected genes were either from 
human BC studies (n = 294) or from within canine mammary tumor associated regions (n = 471). A set 
of predominantly estrogen receptor positive tumors (ER +  85%) and their normal tissue counterparts 
(n = 61) were sequenced to ~ 140 × and 85 × mean target coverage, respectively. MuTect2 and VarScan2 
were employed to detect single nucleotide variants (SNVs) and copy number aberrations (CNAs), 
while MutSigCV (SNVs) and GISTIC (CNAs) algorithms estimated the significance of recurrent somatic 
events. The significantly mutated genes (q ≤ 0.01) were PIK3CA (28% of patients), TP53 (21%) and 
CDH1 (11%). However, histone modifying genes contained the largest number of variants (KMT2C and 
ARID1A, together 28%). Mutations in KMT2C were mutually exclusive with PI3KCA mutations (p ≤ 0. 
001) and half of these affect the formation of a functional PHD domain. The tumor suppressor CDK10 
was deleted in 80% of the cohort while the oncogene MDM4 was amplified. Mutational signature 
analyses pointed towards APOBEC deaminase activity (COSMIC signature 2) and DNA mismatch repair 
(COSMIC signature 6). We noticed two significantly distinct patterns related to patient age; TP53 being 
more mutated in the younger group (29% vs 9% of patients) and CDH23 mutations were absent from 
the older group. The increased somatic mutation prevalence in the histone modifying genes KMT2C 
and ARID1A distinguishes the Swedish cohort from previous studies. KMT2C regulates enhancer 
activation and assists tumor proliferation in a hormone-rich environment, possibly pointing to a role 
in ER + BC, especially in older cases. Finally, age of onset appears to affect the mutational landscape 
suggesting that a larger age-diverse population incorporating more molecular subtypes should be 
studied to elucidate the underlying mechanisms.

Breast cancer (BC), the most commonly diagnosed malignancy and a leading cause of death in women world-
wide, has among the highest reported incidence rates in Northern Europe1. Clinically, BC is classified based on 
the initial morphological assessment of the tumor (type, size, grade, lymph node status), and more recently, on 
the basis of the expression of receptors of estrogen (ER), progesterone (PR) and human epidermal growth factor 
2 (ERBB2/HER2). Receptor expression is part of a routine tumor assessment and provides a rough separation of 
BC into three subtypes (ER + , HER2 + and triple negatives), serving as a prognostic marker and assisting in the 
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selection of treatment2. Overall, 75% of BC tumors appear to be ER + but this observation alone is not sufficient 
to accurately predict the response to treatment and the disease progression3.

BC is a genetically complex and heterogeneous disease where explained heritability (family history, BRCA1/2 
mutations) accounts for only a small percentage (~ 20%) of the familial cases in the general population4,5, and 
cannot elucidate BC geographical distribution, molecular subtypes, and variability in treatment response. Stud-
ies on extensive cohorts, facilitated by the tools and methods of the genomics era, have revealed the genetic 
heterogeneity in breast cancers. Hereditary cases are in part explained by germline mutations in BRCA1 and 
BRCA2 6, and many markers have been identified that confer risk to BC7,8. Cancer genetic research has recently 
been focusing on the characterization of the driver somatic mutations and attempting to link driver mutations 
to clinical phenotypes, providing insights on therapeutic regime selection and treatment response. As a result of 
these efforts, numerous somatic events, including CNAs and high-frequency substitution and insertion/deletion 
(indels), have been revealed. Some of the most frequent somatic events include mutations (TP53, PIK3CA, CDH1, 
AKT1, GATA3, MAP2K7, MYC), duplications (ERBB2) and deletions (PTEN or MAP2K4). Mutation rates are 
correlated with BC tumor subtype, and vary across study designs and sample sizes9–12.

To date, cancer somatic landscapes have not been compared across countries or specifically described in dif-
ferent ethnic populations within Europe. Here, we present an effort to characterize the somatic landscape of a 
Scandinavian BC population, utilizing a targeted array designed based on both human and dog genetic studies. 
Specifically, we sequenced a Swedish BC cohort of homogeneous ancestry to identify potential differences to 
other ethnical groups and BC molecular subtypes. We report the significantly mutated genes (SMGs), recurrent 
CNAs and the mutational signatures and we highlight age-dependent differences in the tumors.

Methods
Patient sample collection and processing.  This study utilized material from 65 BC patients undergo-
ing surgery at Uppsala University Hospital after obtaining signed informed consent from all patients in accord-
ance with ethical guidelines (Additional File 1: S. Table 1). The selection of cases was based on four criteria: i) 
tumor type being either lobular (LC) or ductal carcinoma (DC), ii) no neoadjuvant treatment, to avoid drug-
induced mutations, iii) sufficient tumor DNA (> 0.9 µg), and iv) sufficient normal tissue DNA (histopathologi-
cally available, > 0.1 µg). High molecular weight DNA was extracted from both the primary tumor and the adja-
cent normal breast tissue and was hybridized to the liquid custom array using an in-house optimized protocol13. 
A Gaussian finite mixture model fitted by EM algorithm was applied to the data through the R package mclust 
in R v. 3.5.014, where all R processes of the study were performed, to identify significant age of onset clustering 
within our cohort15.

Array design and NGS.  The design of the custom 20.5 Mb SeqCap EZ Choice XL enrichment array (Roche 
NimbleGen) focused on a specific set of targets encompassing 765 genes (Additional File 1: S.Table 2). The selec-
tion of genes was based on two lines of evidence i) genes with known or suspected role in human BC or in cancer 
pathways (n = 294) and ii) human genomic regions analogous to loci associated with canine mammary tumor 
(CMT) in a genome-wide association studies (GWAS) in Swedish non-spayed English Springer Spaniels16. The 
initial hg18 array design included the coding regions of these genes, 5′ UTRs, 3′UTRs, their potential promoter 
regions (within 2 kb of the transcription start sites) and splice sites (20 bp of intronic sequences adjacent to 
exons). Furthermore, regions of evolutionary conservation (SiPhylod score > 7 17) within 100 kb up- or down-
stream of those targets were also included. On the pathway level, the gene targets of the array represented genes 
in nearly all known pathways in cancer. On the gene level, the array captured genes (some partially) with an 
established role in cancer (n = 150) but also genes defined as putative cancer drivers (n = 167) by the Network of 
Cancer Genes v5.018. Pools were generated, each containing four barcoded individual libraries, and those with a 
concentration of less than 115 ng/µl (n = 60 normal samples) were amplified for four cycles (Thermo Fisher Sci-
entific primers), before hybridization with the liquid array. Successful hybridization was assessed with a qPCR 
target-enrichment control, which was followed by 100 bp paired-end read sequencing with Illumina HiSeq 2500 
(v3). Each sequencing lane consisted of pools where tumor material amount was double than the normal tissue 
amount.

Somatic variant calling and filtering pipeline.  The pipeline for the analysis of the data is summa-
rized in Additional File 2: SF1. The target coordinates were converted from hg18 to hg19 using the LiftOver 
tool (accessible in the UCSC browser19), and the raw reads for each sample were mapped to hg19 using the 
mem function of the BWA package 0.7.1220. In the preprocessing steps, we applied GATK v3.5.0 best practices 
including marking duplicate reads (Picard 1.9221), local read realignment and base quality score recalibration 
(BQSR22–24). Before performing the somatic variant calling, we calculated the amount of normal contamination 
in the tumor within a tumor/normal pair using ContEst25, and estimated the percentage of oxidative stress arti-
facts in our data (Picard 1.9221). Also, off target reads from all normal sequences were used to identify potential 
ancestry outliers (n = 1) using LASER26 (Additional File 3: SF2). In addition, to identify potential substructure 
within the cohort we performed identity by state (IBS) clustering on the basis of autosomal data derived from the 
normal tissues. First, we removed the high linkage disequilibrium (LD) regions identified in the European popu-
lation from our initial set of mutations27. Then the visualization of the clusters identified three outlier samples 
that were removed from further analysis (Additional File 3: SF3). After these steps, normal samples that passed 
the quality and ancestry control were grouped to form a panel of normals (PON) that represented the germline 
variation in the tumors when calling the somatic variants. All in all, after Illumina HiSeq 2500 v3, ancestry and 
quality control, 61 tumor-normal pairs (Additional File 1: S.Table 1) were retained in the study.
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Somatic point mutations were called with MuTect228 from GATK v3.6.0, while indel discovery was per-
formed using the heuristic algorithm of VarScan2 v2.4.229. Removal of oxidative artifacts was performed with a 
custom-made Python script30. The somatic variants were further filtered to remove i) germline contamination 
by subtracting variants found in PON (n > 2), ii) variants where the alternate allele was present or recorded as 
multievent in the normal counterpart, iii) germline risk variants from the dbSNP white-listed as per MuTect2 
instructions, iv) homologous mapping events v) tri-allelic sites, vi) low log-odds of an event in the tumor (t_lod) 
and vii) short tandem repeat contractions. The remaining somatic variants were inspected with the Integrative 
Genome Viewer (IGV) and their functional annotation was performed with Oncotator31.

Identification of recurrently and significantly mutated genes.  Vcf files containing annotated 
somatic variants were converted to mutation annotation format (maf) files (Additional File 1: S.Table 3) and 
used as input for the maftools package32 in R, to summarize, analyze and visualize the mutation set. The recur-
rently mutated genes were identified using maftools based on the number of samples carrying mutations in 
their coding sequence (including UTRs). SMGs were retrieved by using the maf file as input for MutSigCV 
v.1.3.01 algorithm33, within the MATLAB (R2018α) environment34 based on estimating genes that were mutated 
more often than expected, considering background mutation rate (BMR) as implemented in the algorithm. To 
account for false discovery rate (FDR), a significance threshold (q < 0.01) was selected and genes exceeding this 
value were assigned as SMGs.We calculated the mutation exclusivity within the top three mutated genes with 
binomial tests in R (i.e. t-test and x2 tests for independence). To investigate the physical position of the mutations 
and their potential impact on the protein structure, we plotted them visually on the longest RefSeq transcript 
using maftools, in R. Variant allele fraction (VAF) was calculated as the percentage of reads observed at a spe-
cific variant divided by the overall coverage at the variant position and plotted to identify the clonal status of 
the top mutated genes. Putative driver genes were identified as the genes containing mutations with high VAF 
(VAF > 15%) in their coding sequence.

CNAs detection and recurrent copy events identification.  We used VarScan2 to identify somatic 
CNAs. By directly comparing the normalized sequence depth at positions with at least 20 × coverage, the tool 
returned the raw copy number calls. These were subjected to circular binary segmentation (CBS), to delineate 
segments by copy number and to categorize major regions with alterations. To merge similar adjacent events, a 
Perl script was used. Significantly amplified or deleted genomic regions were identified using the GISTIC soft-
ware (Genomic Identification of Significant Targets in Cancer35). All aberrations were annotated with a G-score 
(amplitude of the event) and the frequency of their occurrence. For each significant region that passed the sig-
nificance threshold (q-value < 0.02), we identified a “peak region” and a “wide peak” and also estimated whether 
the aberration was a focal or broad event. S. Table 4 lists the top recurrent aberrations found in our cohort and 
the genes present within their genomic coordinates. Visualization of the GISTIC results and CNAs enrichment 
analysis between phenotype groups was performed in R.

Mutational signatures and mutated pathways.  Taking into account all the possible mutated trinu-
cleotides in every position, we used the BS genome package36 to build a 96-trinucleotide matrix for each SNV37,38 
and then extracted the most probable mutational signatures. Using non-negative matrix factorization (NMF 
package in R), we contrasted the identified signatures against known and validated signatures37,39 and identified 
the best match as the one with the highest cosine similarity value. Additional File 4: SF4 shows the NMF results 
visualized in R. Furthermore, we identified which pathways as defined in TCGA​40 data are mutated in our cohort 
and computed the fraction of affected genes per pathway.

Ethics approval and consent to participate.  All work was performed in accordance with ethical guide-
lines and the study was approved by the Ethical Review Board in Uppsala (2007/116).

Results
We collected a total of 65 tumor-normal pairs from well-characterized patients with BC and performed targeted 
sequencing using a 20.5 Mb custom array. After quality control (QC) that included ancestry analysis and IBS 
clustering (SF2 & 3), a total of 61 cases of which 57 (92%) were DC and 4 (6%) were LC (Table 1), were retained 
for further analysis. In the retained set, 85% were ER-positive, 77% were PR-positive while 66% were both ER- 
and PR-positive. 63% were HER2 negative (Table 1) and two samples were identified as triple negative. When 
examining the distribution of the age of onset for our cohort, we observed that it had a bimodal aspect. In con-
sensus with this observation, a Gaussian finite mixture model fitted by the EM algorithm for mixture estimation 
showed that our cohort could be divided in two clusters based on age. Therefore, we divided the cohort into two 
separate age groups i) under 70 years old (n = 38, mean 57.5 yr) and ii) above 70 years old (n = 23, mean 83.1 yr) 
(Additional File 5: SF5).

The mean target coverage was 140× (range 50–290×) for the tumor samples and 85× (range 28–147×) in the 
normal samples. The data from the normal tissue was used to check the ancestry of the samples to ensure that 
the cohort was of a homogeneous European ancestry (Additional File 3: SF2 B) and also underwent IBS cluster-
ing to ensure that there was no cryptic substructure (Additional File 3: SF3). After ancestry and quality control, 
somatic events were called and used for downstream analysis. The somatic SNV set consisted of 3635 somatic 
point mutations (SPMs) and 2534 indels while the CNAs set included 225 amplifications and 3238 deletions.

The samples exhibited a relatively equal number of coding variants (median 9, mean 13, SD 20). We found 
an overall mutation rate of 2.7 mutations per Mb and a mean mutation rate of 0.50 mutations per Mb in coding 
regions. This was similar to the rate previously observed (0.61 in TCGA​41), (Additional File 5: SF6). The vast 
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majority (87%) of the 826 coding mutations (637 missense, 52 nonsense, 1 nonstop, 77 frameshift, 25 in-frame 
indels and 34 in splice sites) (Fig. 1C) had been previously observed in BC and other cancers.

SMGs, driver mutations and mutation co‑occurrence in the Swedish cohort.  To reveal which 
genes were frequently mutated in the Swedish BC cohort, we examined the set of coding somatic SNVs and 
indels per gene, calculating their mutation rates. The most frequently mutated genes were PIK3CA (28%), 
KMT2C (23%) and TP53 (21%) (Fig. 1A) followed by three genes coding for large proteins (MUC16, MUC17, 
TTN at 13–21%) cadherin genes (CDH23, CDH1, ~ 11%) and MAP3K1 (10%). Next, we used MutSigCV to 
determine which genes were mutated above the BMR which identified PIK3CA, TP53 and CDH1 (marked with 
* in Fig. 1A, q-value < 0.01). Upon closer investigation of the SMGs, PIK3CA and TP53 contained many missense 
mutations while CDH1 had more splice site mutations. Notably, KMT2C (MLL3) while mutated in 23% of the 
samples was not identified as an SMG, but it contained many frameshift and splice site mutations, suggesting 
involvement in BC.

In order to identify putative driver mutations, mutations with a low VAF needed to be removed. Thus, we per-
formed VAF filtering (VAF > 15% were kept, Fig. 1B), based on the hypothesis that the driver mutations exhibit a 
higher VAF. After filtering and following the same methodology, the retained coding mutations (n = 456) revealed 
a different ranking of the genes based on their mutation rate (Additional File 6: SF7A); MUC16 and MUC17 were 
down-ranked whereas KMT2C was up-ranked; TP53 contained more mutations than KMT2C above the VAF 
cutoff and was the second most frequently mutated gene. Looking closely at the VAF clusters within the genes, we 
report that CDH1, TP53 and PIK3CA had the highest VAF (36–39%) followed by MAP3K1, and KMT2C (Addi-
tional File 6: SF7B). The MutSigCV algorithm was utilized in this filtered somatic SNVs set and still retrieved 
PIK3CA, TP53, CDH1 as SMGs (q-value < 0.01) and possible drivers (marked with * in Additional File 6: SF7A).

We next investigated if the array content stemming from canine association studies provided new informa-
tion for the human study by examining the mutations in it. Overall, CMT genes contained coding mutations in 
4% of the samples and the main CMT region contained among others CDH23 on chr10, mutated in 11% of the 

Table 1.   Descriptive statistics of Swedish patients and tumor sets. ER estrogen receptor, PR progesterone 
receptor, HER2 human epidermal growth factor 2.

Characteristics Patient % (count)

PATIENTS

Age

Mean age (years)

67.4

Range (years)

43–96

Group

 < 70 years 62% (38)

 > 70 years 38% (23)

Ancestry

European 100% (61)

Site

Primary 100%(61)

Treatment

No neoadjuvant 100%/61)

TUMORS

Hormone-receptor

ER +  85% (52)

PR +  77% (47)

HER2 +  11%(7)

ER + /PR +  66% (40)

ER-/PR-/HER2- 3% (2)

Histopathology

Lobular 7% (4)

Ductal 92% (56)

Ductal-in situ 13% (8)

Tumor fraction

 < 50% 18% (11)

51–60% 30% (18)

61–70% 22% (14)

71–85% 30% (18)
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patients. The overlap of genes from the earlier CMT study with the genes from human studies, increased over 
time with the development and analysis of many somatic exomes and whole genomes42.

We observed that there were no samples containing mutations in all of the top three genes PIK3CA, KMT2C 
and TP53 at the same time, prompting us to examine whether there was non-independence between mutations 
in these genes. We noted that in the PIK3CA-mutated samples there is an observed co-occurrence with KMT2C 
mutations in two samples. However, that still represents a significant underrepresentation of the double-mutants, 
compared to the expectation if mutations are found independently (x2 test p value = 1.3 × 10–3). In addition, there 
was no consistent proof that PIK3CA or KMT2C was mutated earlier than the other, as the VAF of the mutations 
was almost the same in the small number of samples with overlapping mutations. A similar observation was 
made for the TP53 mutations in the PIK3CA-mutated samples where four samples contained mutations in both 
genes (x2 test p-value = 6.9 × 10–5). We hypothesize that the mutations emerged in the same cancer progression 
stage since they shared the same VAF values. KMT2C mutations also showed a significant exclusivity with TP53 

Figure 1.   Onco-plot of somatic SNVs in the Swedish breast cancer cohort. (A) Brick plot of somatic mutations 
in frequently and significantly mutated genes (SMGs). Each horizontal lane describes a single gene and the 
vertical lines represent different samples while different colors indicate the type of mutations (described in 1C). 
Age and hormone receptor status in the Swedish BC cohort are schematically described with patients ordered 
by age (under 70 years old shown in red, or above 70 years old shown in gray) and the receptor expression (ER, 
PR, HER2) is also shown (blue is positive expression, grey is negative). SMGs (PIK3CA, TP53 and CDH1) are 
marked with *. KMT2C contains mutations in 23% of the cohort. PIK3CA and KMT2C-mutated individuals 
are evenly distributed between the two age groups and 85% of TP53-mutated individuals were found in the 
younger group. In addition, CDH23 mutations were found exclusively in the younger age group. (B) Boxplot 
of the mutation variant allele fraction (VAF) per gene before (grey) and after VAF filtration 15% (light pink). 
The amount and clustering of variants is shown with red dots depicting the filtered set and the black dots the 
unfiltered set. The SMGs contain clusters of mutations with high VAF. (C) Breakdown of the different type of 
somatic SNVs and InDels. Missense mutations were most commonly observed (green, n = 637), followed by 
frameshift InDels (blue), and nonsense mutations (red). Notably, CDH1 contained more splice site mutations 
(orange).
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mutations (x2 test p-value = 4.1 × 10–5), co-occurring in three samples, while the lower KMT2C VAFs suggested 
that KMT2C was mutated after TP53.

Recurrent deletion of CDK10 and recurrent amplification of MDM4.  To identify CNAs, we used 
VarScan2 and circular binary segmentation. We identified 85,586 CNAs (mean 1,380 per sample) and found that 
deletions were more frequent than amplifications (nDEL = 48,783; nAMP = 36,803). We used GISTIC to investigate 
recurrent CNAs and found 21 significantly amplified and 46 significantly deleted regions (n = 67, 99% confi-
dence, S.Table 5). Visualization of the copy number aberrations with highest G-score (Fig. 2) showed amplifi-
cations on chromosomes 4, 10 and 11 and deletions on chromosomes 4, 10 and 17. The focal CNAs contained 
several cancer relevant genes, such as the known breast cancer genes EGF, CDKN2A and BAG1 and some were 
less established including ZAR1 and BMS1 (S. Table 5). The most recurrent deletion (16q24.3, found in 80% of 
cases), harbored the known BC tumor suppressor CDK10. At the same time, the most prevalent amplification 
(1q32.1) affecting 80% of cases), encompassed more than 100 genes including the BC oncogene MDM443. Apart 
from chromosomes 1 and 16, amplifications or deletions were also observed on other chromosomes but these 
events were not observed in a large proportion of the samples (36–44%). Notably, the genes that contained the 
most SNVs (PIK3CA, KMT2C, TP53 and CDH1) were not subject to copy number changes. However, when 
we examined all somatic events together (SNVs, indels, and CNAs), two genes on chromosome 6 were more 
frequently affected: ZNF318 (Zinc Finger protein 318) and ABCC10 (ATP binding Subfamily C member 10), 
(Additional File 6: SF8). From previous studies, ZNF318 is the best non-histone substrate to HDAC844 that also 
preferentially deacetylates ARI1D1A, and interacts with ERRa in vitro45. In addition, ZNF318 was previously 

Figure 2.   Recurrent copy number aberrations in the Swedish breast cancer cohort. Regions of recurrent 
copy number amplifications (red) and deletions (blue) in the targeted array were identified with GISTIC 3.0 
(q-value < 0.2). Cytobands, across all the chromosomes, containing the top 20 recurrently altered regions are 
annotated and marked with pink vertical lines.
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implicated in breast cancer with two positions: G1274R and N632S46. ABBC10, a transmembrane transporter 
protein is mostly expressed in ER + /HER2 + cancers47 and is implicated to docetaxel response48 while its down-
regulation was found to facilitate therapy response to paclitaxel, in ovarian cancer49. We also examined the status 
of known oncogenes and tumor suppressors for BC in our cohort and we observed that the tumor suppressors 
CDH1, PTEN, BRCA2 and CDKN2A had SNVs, with CDH1 being the most mutated, showing splice and non-
sense mutations and frameshift mutations in six samples. When considering the oncogenes, PIK3CA was not 
found to have copy number changes, but PIK3C2B, also a member of the phosphoinositide 3-kinase  (PIK3) 
family and was fully targeted by the array, was amplified in 81% of cases. Interestingly, PIK3C2B did not contain 
coding mutations as PIK3CA did, but harbored only intronic mutations. The amount and different type of muta-
tions show the importance of the PI3K pathway and the multiple ways its disruption affects BC initiation and 
progression. Also, we observed amplifications of MYC in 65%, CCND1 in 52% and ERBB2 in 47% of the samples. 
Notably EGFR and KIT showed a single mutation in one case each (data not shown).

Location of mutations in the top genes within the Swedish cohort.  To examine the potential role 
of the somatic SNVs in PIK3CA, TP53, KMT2C and CDH1, we examined their position in the encoded protein 
(Fig. 3). For PIK3CA, mutational hotspots have been reported in the helical (exon 9, E542K and E545K) and in 
the catalytic domain (exon 20, H1047R50).These variants lead the activation of the PI3K/AKT/mTOR pathway 
that promotes malignant formation and proliferation51. Here, we observed only the catalytic domain hotspot 
H1047R (Fig. 3A) that is characteristic of BC and associated with ER and node status52. TP53 is a tumor suppres-
sor gene that shows fewer somatic mutations in BC compared to other cancer types and with the majority of the 
BC mutations (75%) being germline missense substitutions42. Also, functional TP53 mutations usually occur in 
the P53 domain and less in the P53 tetramer part of the protein. In our cohort, we report mutations with high 
VAF distributed across that domain (Fig. 3B). From the known BC hotspots, we replicated a mutated amino acid 
position C220 and mutations on codons R273 and R280 that exhibit oncogenic properties53. KMT2C (MLL3; 
Fig. 3D) is a lysine methyltransferase part of the COMPASS family mainly creating H3K4me1 on enhancers54,55.
The gene is located in a region on chromosome 7 that is often deleted in myeloid leukemia56 and proposed to 
act as a tumor suppressor. Correct recruitment of the KMT2C protein to its target genes is based on a functional 
extended PHD domain, where we did not find mutations. However, several observed upstream mutations (n = 4) 
would truncate KMT2C prior to the PHD domain. Also, we observed a missense hotspot at N729D (n = 1), a 
domain with unknown function. CDH1, a classical type I cadherin, has been identified as a BC tumor suppressor 
and when downregulated it facilitates a more aggressive cancer progression57. All five observed mutations were 
truncating; two splice variants and the remaining within cadherin, CA-like and cadherin-C domains (Fig. 3C).

Mutational signatures and mutated pathways in Swedish BC.  To identify the mutational processes 
responsible for the somatic mutations we observed in the Swedish cohort, we applied an NMF methodology to 
extract mutational signatures from our SNV set (Fig. 4). The first signature was most identical with the APOBEC 
cytidine deaminase signature, known as COSMIC signature 2 (C > T, cosine similarity = 0.85); the second was 
nearly identical to signature 5 (substitutions at ApTpN, cosine similarity = 0.83); and the third was signature 6 
(shorter than 3 bp indels at mon/polynucleotide repeats) whose etiology stems from a defective DNA mismatch 
repair. We also investigated whether the samples with mutations in the top three genes exhibited different sig-
natures. The PIK3CA-mutated group mainly had COSMIC signature 12 (of unknown etiology), the KMT2C-
mutated group COSMIC signature 20 (defective DNA mismatch repair), while the TP53-group mainly had the 
COSMIC signature 15 (defective DNA mismatch repair) and the COSMIC signature 7 (UV exposure).

Differences in the age groups.  Looking at the two age groups (nyoung = 38; nold = 23) more closely, we 
observed a higher median mutation rate in the younger group (mutyoung = 536, medianyoung = 9.5 vs mutold = 234 
median old = 8.0 red, Fig. 1A). PIK3CA, KMT2C and TP53 are the top mutated genes in both age groups. In 
the younger group, TP53 was mutated in 29% of the patients while only in 9% of the older patients. PIK3CA 
and KMT2C mutations had almost equal frequencies in the younger and older groups (PIK3CA: 26% vs 30%, 
KMT2C: 21% vs 26%, SF10). The third SMG, CDH1, was mutated in both age groups but was more frequently 
mutated in the older (17%) versus the younger patients (5%, SF10). Notably, CDH23 mutations were completely 
absent from the older set while it was mutated in 18% of the patients below 70 years of age. CNAs were seen in 
both age groups equally (Additional File 1: S.Table 4), but a region on 19p13.11 was deleted more often in the 
younger group (p-value = 0.026), which influenced 169 genes around the targeted gene CCDC124.

Based on these observed differences between the two age groups, we investigated if different mutational 
hotspots were detected more frequently in the younger or older groups. On PIK3CA’s longest transcript, both 
groups carried the well-known hotspot mutation on H1047R and had the same distribution of mutations in the 
other protein domains. For KMT2C, both groups showed mutations in an intra-domain region with no known 
function, while the older samples had more mutations that lead to a truncated protein just before the PHD 
domain. TP53 was mutated mostly in the younger samples while CDH1 was mutated in the older and lobular 
cancer samples causing a truncated CDH1 protein (Additional File 7: SF9).

The mutational signatures were relatively similar between the age groups, with APOBEC deaminase signature 
being the main signature in both. Nevertheless, the contribution to this signature was caused by different genes 
in the two age groups. In detail, MAP3K1 and CDH23 were the genes contributing to the APOBEC signal in 
the samples under 70 years old, while in the older group above 70 years old, mostly KMT2C mutated samples 
exhibited the APOBEC signature (Additional File 8: SF11).
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Figure 3.   Somatic nucleotide level mutations in PIK3CA, TP53, KMT2C and CDH1. Illustrations of the somatic mutation 
distribution at the protein level. Gene level information was lifted over based on the longest transcript for each of the 
frequently mutated genes to capture the longest space. The x-axis shows the amino acid position and the y-axis the number 
of mutations observed in our cohort. Transcript and protein names are included (A) In PIK3CA (NM_006218, mr 27.8%, 
NP_006209.2), H1047R, a well-known BC hotspot, is replicated in the Swedish cohort. (B) In TP53 (NM_000546, mr 21.3%, 
NP_000537.3), no hotspots were identified in the cohort but a large proportion of the mutations were in the P53 domain. 
(C) Lollipop plot of CDH1 (NM_004360, mr 9.9%, NP_004351.1) in which three mutations were found around the cadherin 
domain. (D) In KMT2C (NM_170606, mr 22.9%, NP_733751.2), the PHD domain is not affected but mutations upstream of 
the domain may lead to a truncated protein without this domain.
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Discussion
Sweden has the second highest prevalence of BC in Europe1, but the somatic spectrum of BC mutations in Swed-
ish patients has not yet been described. Here, we report the somatic mutational profile of ER + (85%) BC in a 
homogeneous Swedish cohort. The cohort consisted of mostly ER + (85%) DC tumors while the more aggressive 
HER2 + or triple negative subtypes were not equally represented by the sample selection. The inclusion of patients 
that haven’t received neoadjuvant chemotherapy may have contributed to the lack of these molecular subtypes, 
given that patients in these groups generally undergo neoadjuvant therapy prior to surgical resection of the 
tumor. Our cohort contained rather older patients than other studies and showed a bimodal distribution of the 
onset age (median age = 70 year), setting it apart from previous larger studies (median age = 60 year 9,10,40). This 
distribution inspired a form of two distinct age groups (young: under 70 year, old: above 70 year), that were both 
relatively old (mean young = 57.6, mean old = 83.1) and exhibited similar phenotypic characteristics and amount of 
mutations (mutyoung = 536, median young 9.5 vs mutold = 234, medianold = 8.0). We speculate that this may be due 
to the lack of the young onset cases, that usually have a higher tumor grade, involve the more aggressive tumors 
compared to the older cases58 and undergo neoadjuvant therapy that is not commonly given in postmenopausal 
women59. DNA from the tumors and their matched normal fractions was hybridized with a liquid 20.5 Mb array, 
containing more than 760 genes, and deeply sequenced (mean target coverage 85 × normals, 140 × tumors). The 
target genes were identified from previous BC studies, both in human and dog. In comparison with other whole 
exome and whole genome studies9,10,60 our capture is definitely smaller, as it is less than an exome, but in some 
incidences the number of our targeted genes is larger10. Also, our array contained genes that were absent from 
clinical panels61 e.g. KMT2C, that was mutated in 23% of our cohort. When normalized for capture size, our 
array detected SNVs at roughly the same density (median mutSWE 0.51) as previously published studies (median 
mutTCGA: 0.68 62), (SF5) and the observed differences can be explained by the array and sample size. All in all, 
the targeted array was large enough to appropriately fingerprint the cancer genome and provide good quality 
data to describe the somatic landscape in Sweden.

Despite the small cohort size and the representation of one molecular subtype, our cohort replicates the 
previously described somatic landscape of breast cancer9,10,60, as we report PIK3CA, TP53 and CDH1 as SMGs 
(Fig. 1). Interestingly, although CDH1 is usually associated with lobular carcinomas63, we found it mutated in 
10% of the cohort and classified as a SMG but only 50% of the samples with mutations in the genes were in fact 
lobular carcinomas, with the rest being DC. We report mutations in genes coding for large proteins including 
MUC16, MUC17 and TTN. While mutations in these genes were reported before54 their role in cancer is not 

Figure 4.   Mutational Signatures in the Swedish BC cohort. (A) The relative contribution of each sample to 
the three mutational signatures found in the Swedish cohort. The COSMIC signature 2 (green) is the APOBEC 
deaminase signature usually identified in BC. The COSMIC signature 5 (orange) is not clearly associated with a 
defined process but is found in many cancers. The COSMIC signature 6 (purple) is associated with a defective 
DNA mismatch repair. (B) The substitution motifs that define the three mutational signatures.
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clear. Notably, in our cohort a gene reported as less frequently mutated in breast cancer, KMT2C (MLL3), showed 
the second highest mutation count. KMT2C mutations have been predominantly found in ER + tumors, same 
as our study10. In contrast, AHNAK9 and SYNE1 that have been reported to be frequently mutated10 were not 
observed in our top genes; although AHNAK was targeted it was mutated in only 4% of the samples while SYNE1 
(downstream of targeted ESR1) was not fully captured by the array. We also noted that KMT2C mutations were 
exclusively detected in conjunction with high VAF mutations in the proto-oncogene PIK3CA, suggesting the PI3K 
perturbation might be more important in our BC cohort. PI3K alterations are more common and are followed by 
all the other processes such as p53 blocking or enhancers activation from lysine methyltransferases. Apart from 
KMT2C that is a histone modifier protein, ARID1A is also involved in chromatin remodeling as an important 
part of that SWI/SNF complex (otherwise known as SWI/SNF-Related, Matrix-Associated, Actin-Dependent 
Regulator Of Chromatin). Together, these two genes are mutated in 27% of the samples, a percentage similar to 
that of PIK3CA (28%), pointing to the importance of chromatin regulators in the somatic landscape of BC. The 
smaller target size used in this study means that, VAF calculation for the mutations within the top mutated genes 
is not as accurate as when whole genome sequencing data is used. Nevertheless, the clonality tendencies in this 
dataset point to CDH1, TP53 and PIK3CA as putative drivers but further analysis will be required.

Regarding the CNA findings, targeted sequencing is not the optimal way to identify large events but the 
genomic breadth of our array was enough to see the tendencies of focal events. CDK10, a known tumor sup-
pressor in BC was significantly deleted and MDM4, an oncogene in BC, was amplified; both in a large fraction of 
the samples. Also, the CNA analysis pinpointed an interesting region on chromosome 6 in the Swedish cohort. 
The genes in that amplified segment are ABBC10, a transmembrane transporter with implication on anti-cancer 
agent transfer and ZNF318, coding for the best substrate for deacetylation enzymes (HDAC8). This finding gives 
room for many hypotheses to be built. For example, while ZNF318 was not recurrently mutated in our dataset, it 
was part of the amplifications observed and could suggest a new disease mechanism and drug target where the 
amplification of ZNF318 affects the deacetylation of ARID1A. It would be interesting to explore whether a non-
accessible ARID1A through ZNF318 amplification, might be the trigger of an increased KMT2C transcription, 
where errors will lead to accumulation of truncating mutations.

Apart from the expected results that we replicated, there were some discrepancies compared to COSMIC and 
other studies. The absence of some genes with previously documented role in BC such as ESR1 may be due to 
the stringent filtration of variants. ESR1 was fully targeted but it contained 12 intronic variants which were not 
included in the SMG estimation. Also, the specific target design explains why some genes were not included e.g. 
TBX3 and APC9 part of the transcription regulation pathway and WNT signaling pathway. Notably MYC and 
ERBB2 were among the targeted genes but did not contain many SNVs. However, they were subject to frequent 
copy number alterations in our cohort (amplified in 65% and 47%, respectively).

To date, the pathways most commonly implicated in ER + breast cancers are AKT signaling (including 
PIK3CA), DNA damage and apoptosis (including TP53) and transcription regulation (containing GATA3, 
TBX3). Based on the percentage of mutations in the genes involved, we report that chromatin function (KMT2C 
23%, ARID1A 5%) are more affected than the transcription regulation (PIK3CA 28%, KMT2C 23%, TP53 21%, 
MAP3K1 10%, GATA3 4%) and might be more important in the subset of tumors we analyzed. We also con-
trasted our observations to the enrichment of mutations within the TCGA oncogenic signaling pathways. There, 
we observed that RTK-RAS (17 out of 87 genes, in 25 samples) and the TP53 pathway (2 out of 6 genes, in 14 
samples) appeared to be the most commonly affected in our cohort, followed by PI3K and TGF-beta pathways 
(data not shown).

We also noted that the mutated positions in the top genes have been observed before with a mutated cata-
lytic domain in PIK3CA and a lot of known missense mutations with carcinogenic properties in TP53 and the 
novel mutations were not recurrent, just found in one or two samples. For KMT2C, we noted a large fraction 
of truncating mutations many of which were between the 5′ and 3′ protein domains and could be expected to 
lead to a shorter protein which would be lacking the PHD domain that is found to be the one regulating which 
enhancers will be monomethylated (Fig. 3C). As a key regulator of ERα activity, disrupted KMT2C contributes 
to hormone driven breast cancer proliferation64 that might be more obvious in ER + BC.

Investigation of the underlying mutational processes in these tumors identified three different mutational 
signatures in our cohort. COSMIC signature 2 is attributed to AID/APOBEC deaminase activity and is linked 
with breast cancer germline mutations, while COSMIC signature 6 is associated with a defective DNA mismatch 
repair mechanism. This could possibly explain why we see mutations in genes of DNA repair pathway and chro-
matin regulation such as KMT2C and AR1DIA. The COSMIC signature 5 does not have a known etiology but is 
shows strand bias for T > C substitutions as is seen in multiple cancer types.

The bimodal age distribution of the Swedish breast cancer cohort allowed us to look at both middle-aged and 
old breast cancer patients. In previous reports, all ER + cancers appear with more SNVs, but in this study we saw 
that specifically the women below 70 accumulate more SNVs. Also, mutations in cadherins CDH1 and CDH23 
were different among the two groups. CDH1 mutations were more common in the old group giving them the 
characteristic of late onset, alongside with the known CDH1 link with the lobular carcinoma phenotype. CDH23 
mutations were completely missing from the older set possibly revealing a new role for this cadherin gene in 
ER + BC. Notably, CDH23 was the gene from the canine mammary GWA study that had the largest number of 
intronic variants. In addition, we did not notice any correlation between the variation observed in the normal 
fraction of the tumors (germline) and the set of true somatic mutations, most probably due to the rather old 
patients examined here. Further follow up of our results, incorporating the non-coding mutations as well will 
be valuable for a more complete characterization of this Swedish breast cancer cohort.
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Conclusions
Our study, the first BC tumor/normal sequencing study in Sweden, consisted of a younger and an older sub-
group. The results, despite the small size, replicated a similar mutational rate and key genes found for BC genes 
in previous studies. Our study also revealed that the histone modification gene KMT2C was frequently mutated 
in many samples especially in the older group. Many KMT2C mutated samples had a truncated PHD-domain, 
suggesting that more functional work should be performed to fully understand the consequences of a non-
functional KMT2C protein. In addition, age affected the mutational landscape of the ER + tumors with possible 
clinical implications. Taken together, this study describes the fingerprint of the somatic breast cancer landscape 
in Sweden and its findings point towards several potential mechanisms underlying the observed differences.

Data availability
Annotated, unfiltered, mutation and CNV data, along with R code related to this study, are available upon 
reasonable request.
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