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A B S T R A C T

Overexpression of key genes is a basic strategy for overproducing target products via metabolic engineering.
Traditionally, identifying those key genes/pathways largely relies on the knowledge of biochemistry and
bioinformatics. In this study, a modeling tool named UP Finder was developed to facilitate the rapid identifi-
cation of gene overexpression strategies. It was based on the COBRA toolbox under MATLAB environment. All
the key gene/pathway targets are identified in one click after simply loading a Systems Biology Markup
Language model and specifying a metabolite as the targeted product. The outputs are also quantitatively ranked
to show the preference for determining overexpression strategies in pathway design. Analysis examples for
overproducing lycopene precursor in Escherichia coli and fatty acyl-ACP in the cyanobacterium Synechocystis sp.
PCC 6803 by the UP Finder showed high degree of agreement with the reported key genes in the literatures.

1. Introduction

Engineering microorganisms to overproduce interested products is
an important practice in metabolic engineering. In the successful ex-
amples, overexpressing key genes of metabolic pathways is a widely
used strategy for achieving overproduction (Ajikumar et al., 2010;
Alper et al., 2005). The purpose is to up-regulate the flux for substrate
synthesis or to intensify the shunt at key metabolic nodes toward an
improved flux to targeted metabolites. Since the overproduction of
natively synthesized metabolites is usually achieved by genetically
manipulating metabolic pathways, identifying the key pathways and
gene targets is a key step to determine gene overexpression strategies
for consequential manipulations. Traditionally, completion of such
tasks was largely relying on the experience of metabolic pathways and
enzymatic kinetics. However, with the increasing practices of metabolic
engineering in overproducing fuels, chemicals and natural products
(Stephanopoulos, 2012), empirical predictions have been hardly sa-
tisfying the analysis of sophisticated pathways, such as the multiple-
repeated pathways in fatty acid synthesis and the rarely explored sec-
ondary metabolite biosynthesis. Therefore, it is critical to establish a
standard procedure for identifying gene overexpression strategies.

The rapid advances of constraint-based models provide the possi-
bilities for quantitative evaluation of cellular metabolism (Bordbar
et al., 2015; Kauffman et al., 2003), allowing to develop the standard
method for rational pathway design. According to the annotated
genome information, the reconstructed constraint-based models could

represent the current knowledge of full metabolic reactions and their
associated genes for an organism. With those constraint-based models,
algorithms such as flux balance analysis (FBA) were developed to per-
form the in silico analysis of metabolic fluxes (Orth et al., 2010). Relying
on the principle of mathematical optimization and mass balance, me-
tabolic fluxes can be simulated within determined constraints. Such
efforts have advanced the development of modeling approaches such as
OptKnock (Burgard et al., 2003) that facilitates the procedures for
identifying gene targets and pathway design.

Unlike gene knockout based simulation, in silico identifying gene
overexpression targets has more uncertainties to be experimentally
verified because of the difficulties for exactly manipulating fluxes to
certain values. To overcome this challenge, methodologies have been
developed for simulating gene overexpression, such as OptForce
(Ranganathan et al., 2010) and FSEOF (Choi et al., 2010), as well as
their derivatives (Chowdhury et al., 2014; Park et al., 2012). By using
enforced flux and flux variability analysis, gene targets with desired up-
regulation were successfully simulated and experimentally verified.
However, those overexpressed gene targets were mostly identified to
coordinate with additional manipulations (e.g. knockouts or down-
regulation), whereby overexpressing some targets such as targets in
glycolysis may not always independently contribute to an over-
production. Therefore, it is important to know the contribution of each
candidate targets toward the theoretical maximum yield to fulfill the
growing needs on customized pathway design. In addition, most current
modeling methods still require specific programming skills that restricts
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the access for biologists and broad users. It is highly desirable to de-
velop the software platform that can bridge the technical gap between
computational modeling and bench works. In this paper, we present a
software package, UP Finder that facilitates the identification of gene
overexpression strategies for the metabolic engineering of targeted
overproduction. It highlighted the quantitative evaluation for each
overexpression candidate on yield contribution. The graphical user in-
terface of the UP Finder also provided easier access for broad users.
Two typical examples in metabolic engineering that lycopene precursor
and fatty acyl-ACP overproduction were used to evaluate feasibilities of
the UP Finder for analyzing biosynthesis pathways of natural products
and biofuels. The identified gene targets by the UP Finder showed high
degree of agreement with the reported key genes in the literatures.

2. Materials and methods

2.1. Models and FBA

The metabolic reconstructed model of Escherichia coli iJO1366 (Orth
et al., 2011) was used for analyzing gene overexpression strategies in
lycopene precursor overproduction. And the reconstructed model of
Synechocystis sp. PCC 6803 iJN678 (Nogales et al., 2012) was used for
the analysis of fatty acyl-ACP overproduction.

FBA was used for all model analysis. For wild-type model, the de-
faulted biomass formulation was used as the objective function for
maximizing cell growth. For theoretical maximum yield model, the
targeted product was used as the objective function for maximizing the
production of targeted product, such as farnesyl pyrophosphate and
fatty acyl-ACP discussed in Results.

All computation was performed on Mac OS × 10.6.8, 1.86 GHz
Inter Core 2 Duo Processor, 2 GB 1067 MHz DDR3 Memory. COBRA
toolbox v2.0.5 was added to the path of MATLAB_R2012b, including
SBML Toolbox_4.1.0 bundled in the package. libSBML_5.7.0 was in-
stalled to access the Systems Biology Makeup Language. Gurobi_5.1.0
was used as the LP solver.

2.2. Definition of parameters

The parameter fluxwt represents wild-type flux that is the flux so-
lution of the wild-type model, and fluxopt represents the optimum flux
that is the flux solution of the theoretical maximum yield model. The
up-regulation ratio (Ratio) is defined as the ratio of fluxopt to fluxwt of a
reaction (Ratio = fluxopt / fluxwt). And the Yield is simulated product
yield of the targeted product by using fluxopt of a reaction as the con-
straint, in which maximizing cell growth is the objective function.

2.3. Development of the UP Finder

UP Finder is an interfacial modeling tool based on the COBRA
toolbox in MATLAB, which is developed by the MATLAB Graphical User
Interface Development Environment (GUIDE). It is used to identify all
the key gene targets for overexpression that directly related to the
overproduction of a metabolite in a microorganism. The working pro-
cedure of the UP Finder is composed of following steps (Fig. 1):

(1) Identification of up-regulated fluxes. The main concept is to com-
pare the flux distributions between the wild-type and over-
producing metabolic networks by calculating theoretical maximum
yield of a targeted product. Thus, up-regulated fluxes and their
associated pathways (termed as up-regulated pathways in this
study) can be identified through this comparison.

(2) Re-verification of identified pathways. Since not all the identified
pathways from Step (1) are directly related to the overproduction, a
re-verification is necessary to filter the low-relevant targets. For
these identified pathways, their fluxes under overproducing net-
works were considered as the optimum fluxes (fluxopt) to achieve

theoretical maximum yield of the product. The simulated product
yields (Yield) constrained by each fluxopt for the wild-type network
were used to evaluate the best contribution of each up-regulated
pathway toward overproduction. Pathways with Yield > 0 are
considered as the key targets that directly lead to the over-
production.

(3) Rank of the output. The output of the UP Finder is the abbreviated
reaction names of the selected key pathways in Step (2). A termed
parameter, Ratio, which is the ratio of each fluxopt over their asso-
ciated wild-type fluxes (fluxwt) was used for ranking the output from
high to low. Because Ratio reflects the up-regulated level for each
reaction, the one with the highest Ratio value suggests the highest
preference when considering gene overexpression in engineering of
the targeted overproduction.

2.4. Implementation

Through the interface of the UP Finder, after loading a Systems
Biology Markup Language (SBML) model in the Organism item, all
metabolites included in this model will be shown in the Targeted product
item. Users can simply specify one metabolite as the target for over-
production. By choosing UPA in the Method option and running the
program, a list of reaction names presented with their associated genes,
reaction formulas, Yield and Ratio values will be returned as the output.
All computation is based on the COBRA toolbox and MATLAB, and all
optimization uses FBA for the solutions (Orth et al., 2010;
Schellenberger et al., 2011). Initializing the COBRA toolbox is neces-
sary in MATLAB before loading SBML models. The default uptake and
growth constraints of the reconstructed model are used for the analysis.
Users can also adjust the uptake and growth conditions to simulate
metabolisms with special requirements. In addition, the UP Finder in-
tegrates FBA optimization in the Method option, which allows the basic
function for computing growth rates under different conditions (Fig. 2).
The UP Finder is freely available from GitHub (https://github.com/
MEpathway/UP-Finder.git).

3. Results

3.1. Example 1. Lycopene precursor overproduction in E. coli
(iJO1366.xml)

As an important isoprenoid, lycopene overproduction is a textbook
example in metabolic engineering. In E. coli, overproducing farnesyl

Fig. 1. The working procedure of the UP Finder. Mutant model, the overproducing me-
tabolic network, the model with flux distribution under the theoretical maximum yield
conditions (flux distribution for reaching theoretical maximum yield of a metabolite);
fluxwt, wild-type flux, which is the flux distribution of the wild-type conditions; fluxopt,
optimum flux, which is the flux distribution of the theoretical maximum yield conditions;
Ratio, up-regulation ratio, which is the ratio of the optimum flux to the wild-type flux of a
reaction; Yield, simulated yield of the targeted product by using the optimum flux of a
reaction as the constraint.
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pyrophosphate (FPP) is critical for increasing the product yield of ly-
copene because FPP is the native precursor in lycopene biosynthesis
(Alper et al., 2005). Herein, we presented the analysis of FPP (frdp[c])
as the Targeted product for overproduction in the UP Finder (Fig. 2). By
loading the constraint-based model of E. coli iJO1366 in the Organism
item, the output presented key pathway/gene targets for over-
expression toward FPP overproduction in E. coli. As shown in Fig. 3, ten
metabolic reactions (9 genes involved) were identified as the key
pathways for FPP overproduction. The identified reactions were or-
dered by their associated Ratio values, which can be used as a quanti-
tative evaluation for the overexpression preference. According to this
ranked preference for gene overexpression, it was observed that the
higher preferred gene targets showed the closer metabolic distance to
the targeted product (FPP), which represented the higher relevance to
the related overproduction. Compared with the reported key genes for
FPP/lycopene overproduction in the literatures (Wang et al., 2009),
results from the UP Finder identified all 9 key genes in isoprenoid
biosynthesis that directly related to FPP overproduction, showing 100%
identity. Also, comparing to the key genes identified by FSEOF (Choi
et al., 2010), those gene targets in central carbon metabolic metabolism
were not included in the results of UP Finder (Table 1).

3.2. Example 2. Fatty acyl-ACP pool overproduction in the cyanobacterium
Synechocystis sp. PCC 6803 (iJN678.xml)

Directly converting CO2 into biofuels is regarded as a promising
strategy for producing carbon-neutral renewable energy (Atsumi et al.,
2009). Fatty acyl-ACP is the important precursor for the biosynthesis of

fatty-acid based biofuel molecules, such as free fatty acids, fatty alco-
hols and alkanes (Liu et al., 2011). Herein, gene overexpression targets
were analyzed for overproducing fatty acyl-ACP in the cyanobacterium
Synechocystis sp. PCC 6803. As the dominant component of fatty acyl-

Fig. 2. The interface of the UP Finder. The interface contains 5
major functional units, including the Organism, Condition/Growth,
Targeted product, Method and Output. Condition is the exchange
reactions of SBML models with their constraints, and Growth in-
dicates the specific biomass objective function (e.g. autotrophic or
heterotrophic growth for Synechocystis sp. PCC 6803). Method
contains two computational methods: UPA (up-regulated pathway
analysis) and FBA (flux balance analysis).

Fig. 3. Analysis results from the UP Finder for far-
nesyl pyrophosphate (FPP) overproduction in E. coli.
Identified gene targets are also shown in the meta-
bolic pathway of FPP biosynthesis presented with
gene overexpression preference toward FPP over-
production. GAP, glyceraldehyde-3-phosphate; DXP,
1-deoxy-D-xylulose 5-phosphate; MEP, 2-C-methyl-
D-erythritol 4-phosphate; CDP-ME, 4-dipho-
sphocytidyl-2-C-methyl-D-erythritol; CDP-MEP, 4-
diphosphocytidyl-2C-methyl-D-erythritol-2-phos-
phate; MEC, 2C-methyl-D-erythritol-2,4-cyclodipho-
sphate; HMBPP, (E)−4-hydroxy-3-methylbut-2-enyl-
diphosphate; IPP, isopentenyl diphosphate; DMAPP,
dimethylallyl diphosphate; GPP, geranyl pyropho-
sphate; FPP, farnesyl pyrophosphate. dxs, 1-deoxy-D-
xylulose-5-phosphate synthase; dxr, 1-deoxy-D-xylu-
lose reductoisomerase; ispD, 2-C-methyl-D-erythritol
4-phosphate cytidylyltransferase; ispE, 4-(cytidine 5′-
diphospho)−2-C-methyl-D-erythritol kinase; ispF, 2-

C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; ispG, 2C-methyl-D-erythritol 2,4 cyclodiphosphate dehydratase; ispH, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase;
idi, isopentenyl-diphosphate D-isomerase; ispA, geranyltranstransferase (farnesyl diphosphate synthase); crtE, GGPP synthase, crtB, phytoene synthase; crtI, phytoene desaturase. See
Supplementary Table S1–S2 for the abbreviations of reaction and metabolite names shown in the UP Finder results.

Table 1
Comparison of identified gene targets for overproducing lycopene precursor (farnesyl
pyrophosphate, FPP) in E. coli.

Reported key genes
(Wang et al., 2009)

Identified key genes
by UP Finder

Identified key genes by
FSEOF (Choi et al., 2010)

dxs dxs dxs
dxr dxr dxr
ispD ispD ispD
ispE ispE ispE
ispF ispF ispF
ispG ispG ispG
ispH ispH ispH
idi idi idi
ispA ispA ispA

pgi
pfkAB
fbaA
tpiA
gltA
acnAB
icdA
sucAB
sucCD
sdhABCD
fumAB
mdh
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ACP, palmitoyl-ACP (C16:0 ACP, palmACP[c]) was chosen as the Target
product in the UP Finder. Fig. 4 shows the output results. A total of 30
metabolic reactions, involving 6 genes (accABCD, fabD, fabF, fabG, fabZ,
fabI) were identified as the key pathways/genes for palmitoyl-ACP
overproduction. 28 out of the 30 reactions are catalyzed by fatty acid
synthases in Synechocystis sp. PCC 6803, in which 4 key genes (fabF,
fabG, fabZ, fabI) are involved. The reactions were ordered by their as-
sociated Ratio values, and the different Ratio values of the 30 identified
up-regulated pathways represent different up-regulation levels to
achieve the same Yield (theoretical maximum yield). Thus, the higher
Ratio values indicated the higher demands of metabolic flux for up-
regulation toward palmitoyl-ACP overproduction. On the other hand,
the completed fatty acid synthesis pathways of the constraint-based
model enabled the detailing of fluxes for each single reaction in mul-
tiple-repeated fatty acid biosynthesis. It was found that the reactions
with same Ratio values reflected the similar level of metabolic flux for
going through, which might be used as a quantitative standard for
identifying metabolic modules in complex metabolic pathways.

Similar to the finding of Example 1, it was also found that the higher
preferred gene targets presented closer metabolic distance to palmitoyl-

ACP. Compared with reported key genes regarding to fatty acyl-ACP
overproduction in the literatures (Liu et al., 2011), results identified by
the UP Finder show 100% identity.

4. Discussion

In this study, a modeling software package named UP Finder was
developed based on the COBRA toolbox in MATLAB. It facilitated the
rapid identification of gene overexpression strategies for the metabolic
engineering of targeted overproduction. Gene overexpression targets
can be rationally determined by a quantitative evaluation procedure.
Development of this interfacial software package was designed to
provide the “one-click” convenience, and to facilitate the access for
potential users without specific biochemistry and programming back-
grounds. By taking advantage of standardized format of SBML models,
UP Finder provided broad access for analyzing various targeted pro-
ducts in different microorganisms. Unlike OptForce and FSEOF, UP
Finder specifically identified gene targets that were highly related to
overproduction rather than all potential important targets. The UPA
method used in the UP Finder investigated product yields for each

Fig. 4. Analysis results from the UP Finder for fatty
acyl-ACP (palmitoyl-ACP) overproduction in
Synechocystis sp. PCC 6803. Identified gene targets
are also shown in the metabolic pathway of fatty
acyl-ACP biosynthesis presented with gene over-
expression preference toward fatty acyl-ACP over-
production. RB15BP, ribulose 1,5-bisphosphate;
3PG, 3-phosphoglycerate; α-KG, α-ketoglutarate;
Mal-CoA, Malonyl-CoA; Mal-ACP, Malonyl-ACP. See
Supplementary Table S1–S2 for the abbreviations of
reaction and metabolite names shown in the UP
Finder results.
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single potential up-regulated pathway by constraining their fluxes with
fluxopt, which evaluated their contribution toward theoretical maximum
yield and enabled to pinpoint the results as yield/overproduction re-
lated. Although some key upstream pathways, such as glycolysis play
an important role in improving target product yields when combining
with downstream pathway enhancements, the sole overexpression of
these genes might not directly contribute to the overproduction.

The quantitative evaluation that combining Ratio and Yield para-
meters improved the relevance of identified pathways for directly
leading to the overproduction. In the UP Finder, gene overexpression
targets were first identified as up-regulated pathways (the reaction with
Ratio > 0) through a flux comparison between the theoretical max-
imum yield model and the wild-type model. By using fluxopt as a con-
straint, the contribution of each single identified up-regulated pathway
on targeted overproduction was quantitatively evaluated based on the
yield simulation. The restriction of Yield > 0 was used to exclude the
reactions that are indirectly related to the overproduction, such as the
pathways in central carbon metabolism. Thus, the UP Finder provided a
quantitative procedure for identifying the key pathways toward over-
production. In addition, it was found in the examples that pathways
with higher Ratio values showed closer metabolic distance to the tar-
geted product. Since the greater Ratio value (up-regulation level) in-
dicates the higher demands of metabolic flux for up-regulation to ap-
proach the theoretical maximum yield, overexpression of the particular
gene would contribute more to the overproduction of targeted products.
Therefore, results from the UP Finder not only presented all the key
pathway/gene targets related to the overproduction, but the ranking of
the outputs with their associated Ratio values also reflected the pre-
ference for considering overexpression strategies in pathway design.

On the other hand, the Ratio parameter can be used for identifying
functional metabolic modules. In the analysis examples, it was found
that pathways with similar level of Ratio values presented the adjacent
locations with regard to metabolic functions. For example, in Example 1
(Fig. 3), identified key pathways can be divided into 3 metabolic
modules by their Ratio levels, including the initial MEP pathway
synthesis module (dxs), the isoprenoid unit synthesis module (dxr, ispD,
ispE, ispF, ispG, ispH), and the FPP synthesis module (idi, ispA). In Ex-
ample 2 (Fig. 4), pathways with similar chain length of fatty acid
synthesis also showed the similar levels on their Ratio values. In meta-
bolic engineering of secondary metabolites and complex metabolic
pathways, the imbalance of metabolic flux is a critical limiting factor for
reaching high product yields. To coordinate the metabolic imbalance,
engineering of module-based metabolic optimization has been regarded
as a promising strategy for optimizing product yields (Ajikumar et al.,
2010; Xu et al., 2013; Yadav et al., 2012; Zhao et al., 2013). Therefore,
by taking advantage of the Ratio parameter, outputs of the UP Finder
could also provide a quantitative basis for identifying functional meta-
bolic modules in developing module-based optimization strategies.

In this version of the UP Finder, not all metabolites listed in the
reconstructed model will have valid results. It is usually good for ana-
lyzing terminal metabolites, such as secondary metabolites. For meta-
bolites with considerable degradation pathways, it may not have valid
results because the up-regulated flux would be further consumed by the
degradation without accumulation. Since the evaluation process only
works for single pathway, the UP Finder does not provide the best
combination of overexpression yet in this version. To achieve accurate
prediction and high identity with experimental verification, a high
quality of metabolic network reconstruction is necessary. Some current
SBML models such as E. coli (iJO1366.xml), and Synechocystis sp. PCC
6803 (iJN678.xml) have been tested with valid outputs in this UP
Finder. Analysis examples demonstrated that the UP Finder is feasible
to analyze gene overexpression targets for overproducing secondary
metabolites and complex metabolic pathways, such as fatty acid bio-
synthesis. Given the decreasing cost of DNA synthesis, fast strain de-
velopment for overproducing targeted products is becoming possible
based on the large-scale DNA synthesis. Therefore, a user-friendly

interfacial modeling tool that provides rapid pathway design would
play an important role in the era of synthetic biology (Gibson, 2014;
Kosuri and Church, 2014; Wang et al., 2011).

5. Conclusions

In this study, a modeling tool named UP Finder was developed
based on the COBRA toolbox. It facilitated the rapid identification of
gene overexpression strategies to assist pathway design in metabolic
engineering of targeted overproduction. Gene targets with highly re-
lated to overproduction were determined by a quantitative evaluation
procedure. The graphical user interface of the UP Finder provided ea-
sier access for analyzing various targeted products in different micro-
organisms. Analysis examples for overproducing lycopene precursor
and fatty acyl-ACP by the UP Finder showed high degree of agreement
with the reported key genes in the literatures.
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