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A key factor in designing randomized clinical trials is the sample size required to achieve a particular level of power to de-

tect the benefit of a treatment. Sample size calculations depend upon the expected benefits of a treatment (effect size), the

accuracy of measurement of the primary outcome, and the level of power specified by the investigators. In this study, we

show that radiomic models, which leverage complex brain MRI patterns and machine learning, can be utilized in clinical

trials with protocols that incorporate baseline MR imaging to significantly increase statistical power to detect treatment

effects. Akin to the historical control paradigm, we propose to utilize a radiomic prediction model to generate a pseudo-

control sample for each individual in the trial of interest. Because the variability of expected outcome across patients can

mask our ability to detect treatment effects, we can increase the power to detect a treatment effect in a clinical trial by

reducing that variability through using radiomic predictors as surrogates. We illustrate this method with simulations based

on data from two cohorts in different neurologic diseases, Alzheimer’s disease and glioblastoma multiforme. We present

sample size requirements across a range of effect sizes using conventional analysis and models that include a radiomic pre-

dictor. For our Alzheimer’s disease cohort, at an effect size of 0.35, total sample size requirements for 80% power declined

from 246 to 212 for the endpoint cognitive decline. For our glioblastoma multiforme cohort, at an effect size of 1.65 with

the endpoint survival time, total sample size requirements declined from 128 to 74. This methodology can decrease the

required sample sizes by as much as 50%, depending on the strength of the radiomic predictor. The power of this method

grows with increased accuracy of radiomic prediction, and furthermore, this method is most helpful when treatment effect

sizes are small. Neuroimaging biomarkers are a powerful and increasingly common suite of tools that are, in many cases,

highly predictive of disease outcomes. Here, we explore the possibility of using MRI-based radiomic biomarkers for the

purpose of improving statistical power in clinical trials in the contexts of brain cancer and prodromal Alzheimer’s disease.

These methods can be applied to a broad range of neurologic diseases using a broad range of predictors of outcome to

make clinical trials more efficient.
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Introduction
The power of a clinical trial is the probability of detect-

ing a statistically significant difference between treatment

groups under a set of assumptions. Power increases as

the magnitude of the true difference in outcomes between

treatment groups increases, as the accuracy of measure-

ment for the outcome measure increases, and as sample

size increases.1 When a treatment effect exists, failure to

detect a statistically significant difference between treat-

ment groups can occur as the result of a myriad of rea-

sons, including small treatment effect, poor measurement
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of the primary outcome, inadequate sample size (under-

powered studies) or treatment effect heterogeneity.2–5

Failure is more likely in studies of relatively rare neuro-

logic diseases including glioblastoma multiforme (GBM)

because enrolling large samples is difficult, but failure

also occurs in more common diseases with substantial

biological heterogeneity and unstable outcome measures,

such as Alzheimer’s disease.6–8

Despite many long and expensive trials, no disease

modifying drug for Alzheimer’s disease has been

approved.9 Phase III trials for GBM have been more suc-

cessful, but treatment efficacy has been modest, with an

improvement in median survival of only 7 months (8–

15 months) for patients in the treatment arms in 44 dif-

ferent trials.10,11 Similar explanations have been proposed

for the failure of trials of these two diseases, including

biological heterogeneity, selection of ineffective treatments

based on incomplete understanding of disease biology,

starting treatment too late in disease development, incor-

rect drug doses and unreliability of the primary outcome

measurements.12,13 All of these explanations may contrib-

ute to a reduction in the magnitude of the treatment ef-

fect. If the expected treatment benefit is overestimated,

the study will be underpowered.

Traditionally, trials rely on empirical data from previ-

ously conducted studies (often phase II trials, if available)

to estimate sample size requirements to achieve a particu-

lar level of power (i.e. 80%, 90%). These traditional

methods for estimating sample size requirements rely on

group mean data and calculating sample size require-

ments based on population average treatment effects.

When historical control data are used, statisticians use

methods such as pooling or Bayesian modelling, which

also rely on group-level analyses.14,15 Newer high-dimen-

sional predictors such as neuroimaging or genomic data

offer the opportunity to include individualized predic-

tions. This allows for a more precise evaluation of the

treatment effect for each person through comparison of

their observed outcome with their predicted outcome, ra-

ther than relying on a group-level effect that determines

average outcome. Because of this more precise evaluation,

the residual variance decreases and thus the power to de-

tect this treatment effect increases.

In this study, we introduce the concept of using indi-

vidualized evaluation of treatment effects with neuroi-

maging biomarkers and provide a framework for

practically incorporating this approach into future clinic-

al trials of neurologic disease when baseline imaging is

available. We show that machine learning tools can pro-

vide individualized predictions for patients with

Alzheimer’s disease and GBM, which in turn can be

used to inform sample size calculations with individual-

ized estimates of clinical outcome in a trial. This meth-

odology can substantially improve statistical power for

detecting treatment effects, or alternatively, reduce the

sample size needed to achieve the same power in a clin-

ical trial.

Materials and methods
Our method relies on access to two sets of data: (i) a

current clinical trial designed to study an outcome of

interest and (ii) a previously observed cohort of similar

subjects treated according to the current standard of care

with data on the outcome of interest. We narrow our

focus in this work to radiomic predictors and associated

studies, so we assume that imaging data have been gath-

ered at study enrolment for both sets of trials. In both of

our disease applications, imaging data are regularly

obtained through standard course of care, either for ex-

clusion of other pathologies or for diagnosis itself. The

techniques proposed here are also directly applicable to

other -omic modelling scenarios, and generally, to any

predictive marker of standard of care outcome.

We aim to show that previously developed and vali-

dated radiomic prediction models, which summarize

imaging patterns that predict future clinical outcomes of

interest, can in some cases result in improved statistical

power for detecting treatment effect (Fig. 1). These out-

comes of interest can be endpoints such as response to

treatment, patient survival, or progression-free survival.

The model, which is built based on a historical cohort,

can then be used in conjunction with data collected from

the current trial to generate individualized values of the

radiomic score for each of the current participants. These

individualized scores represent predicted values for the

outcomes of the treated individuals in the current trial

had they instead been assigned to the control group. The

incorporation of these predicted values as a covariate in

the final analysis of the current trial lends power to the

detection of the effect of a treatment by modelling the in-

ter-subject variability in the outcome in terms of baseline

heterogeneity represented in the baseline imaging.

In practice, this could be done by using a model devel-

oped for a previously validated radiomic predictor, apply-

ing it to data from a current trial of interest, and then

incorporating the newly derived values of that radiomic

predictor as a covariate in the study analysis. This would

reduce uncertainty in the estimate of the overall treatment

effect and therefore increase statistical power to detect a

treatment effect.

To investigate the advantage of this approach, we

implemented our models in two scenarios motivated by

two different disease areas (GBM and Alzheimer’s dis-

ease). To better approximate real-life clinical trial per-

formance, we use radiomic and outcome data from two

observational studies to generate hypothetical study data,

where the first focuses on the continuous outcomes of

cognitive decline in prodromal Alzheimer’s disease and

the second on the survival after diagnosis with GBM.

With these studies, we performed plasmode simulations,

where we randomly split our observational data into a

theoretical historical cohort and a theoretical trial cohort.

We then simulate effects in a randomly selected subset,

corresponding to one arm, of the trial cohort. We then
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compare the statistical power of our proposed approach

with the classical modelling approach that does not in-

clude radiomic prediction-based modelling.

We also performed simulations with fully synthetic

data, where the populations were generated to be homo-

geneous except for random error and treatment status.

Code for both the synthetic data simulations and plas-

mode simulations are available on our GitHub (https://

github.com/carolynlou/hcct).

Data

For our analyses, we relied only on observational data.

These data were obtained from ADNI and the University

of Pennsylvania for our Alzheimer’s disease and GBM

studies, respectively.9,16 There was no missingness in ei-

ther of the two datasets, and no patients dropped out be-

fore baseline imaging data could be collected. Our studies

of performance in a clinical trial setting were based on

plasmode simulations, where we artificially generated

hypothetical trial data from our observational data.

In our first case study, we focussed on therapeutic trials

for prevention of Alzheimer’s disease, in which the pri-

mary outcome is typically longitudinal cognitive change.

Here, we simplified this outcome and quantified cognitive

change as the difference between memory score measured

2 years from baseline and memory score measured at base-

line. We used a predictive model, called the SPARE-AD

score, which has been previously derived from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI, adni.-

loni.usc.edu) on 283 subjects with mild cognitive

impairment (MCI) who underwent serial MRIs at

1.5 T.9,17 The ADNI was launched in 2003 as a public–

private partnership, led by Principal Investigator Michael

W. Weiner, MD. For up-to-date information, see www.

adni-info.org.

SPARE-AD is derived from patterns of regional brain

atrophy (volume loss) captured by atlas warping methods

and high-dimensional pattern classification using support

vector machines (SVM) aiming to differentiate cognitively

normal and Alzheimer’s disease subjects.17–19 We used

cognitive decline as our outcome here, as measured by 2-

year change from baseline values of the ADNI composite

memory score ADNI-Mem.20 Average 2-year change

from baseline for ADNI-Mem in the current study was

�0.17 (standard deviation 0.49). The average age of the

participants was 74.8 years (SD ¼ 7.32), and 99 (35%)

of participants were female. A more detailed description

of demographics and clinical characteristics of patients

has been published previously.18 We note that both the

outcome and the disease status of the subjects studied

here differ from the outcome and disease statuses that

were used to build SPARE-AD. As a complementary ana-

lysis, we also examined conversion from MCI to

Alzheimer’s disease as an outcome, employing time-to-

event analysis methods, where we again used the SPARE-

AD score as a radiomic predictor of interest.

Approximately 60% of observations were censored.

As a second case study, we focussed on trials for GBM

therapies in which the primary outcome is overall sur-

vival time after diagnosis. We analysed previously col-

lected, anonymized data from 134 patients who were

Figure 1 Method visualization and description. (A) Workflow for implementing the proposed method in a new clinical trial. B

(continuous) and C (survival outcome): Schematic diagram for individualized predictions that are generated for each person in the current

trial, where the solid red lines indicate observed outcome for the participants of the current trial and the dashed blue lines indicate predicted

outcome for those participants had they not been treated. (B) illustrates the method for continuous outcomes, where the left side

represents the outcomes of those randomized to the control arm and the right side represents the outcomes of treated participants. The

predicted outcome values (dashed blue lines) for the control units had they not been treated would be exactly what they are observed to be

(solid red lines), while the predicted outcome values (dashed blue lines) for the treated units had they not been treated are different from the

observed outcome (solid red lines). (C) illustrates the analogous mechanism for survival outcomes, where the predicted survival times for

the control units (dashed blue lines) are the same as the observed survival times (solid red lines), whereas the predicted survival for the

treated individuals are lower than the observed survival times. Our method capitalizes on these differences to augment statistical power.
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treated for newly diagnosed GBM at the Hospital of the

University of Pennsylvania between 2006 and 2013. The

median survival in this sample was 12 months, and sur-

vival data were assessed for all subjects with no loss to

follow-up. The average age of patients in this study was

62.1 years (SD ¼ 12.1), and 53 patients (40%) were fe-

male. Detailed demographics and a clinical description of

these subjects have been previously published.16 All peo-

ple with access to the data were on an institutional IRB.

For this second case study, we investigated the use of

cross-validated predictions of survival time based on

radiomic analyses of pre- and post-contrast T1-weighted,

T2-weighted and T2-fluid attenuated inversion recovery,

diffusion, and perfusion MRI acquired pre-operatively at

diagnosis. This GBM predictive model utilized an SVM

model to differentiate short, medium and long survival.16

Statistical analysis

All hypothesis testing was conducted assuming a 5%

type I error rate and using two-sided alternatives. In lieu

of data from a clinical trial, to explore the utility of our

method, we employed plasmode simulation studies, in

which all of our analyses were performed with datasets

derived from ADNI and our GBM cohort, but we artifi-

cially generated treatment status and treatment effect. We

also explored the method with synthetic data simulations,

in which we artificially generated a theoretical radiomic

predictor, a binary treatment indicator, and an outcome.

Alzheimer’s disease study

For our Alzheimer’s disease plasmode simulation study,

we used a continuous outcome and analysed our data

with linear regression. To compare our method to a

more classical analysis, we fit the following two models,

where Equation (1) represents our method and Equation

(2) represents a classical analysis:

Yi ¼ aþ bXi þ cAi þ ei (1)

Yi ¼ aþ cAi þ ei (2)

Here, Yi represents cognitive decline, defined as the differ-

ence between ADNI-Mem score observed at 2 years after

baseline and ADNI-Mem score observed at baseline. Xi

represents the radiomic predictor, Ai represents the treat-

ment indicator, and �i represents random error. The

parameters a and b are estimated from the data while c
is added in artificially, as described below. We note that

these models are equivalent to ANOVA-CHANGE mod-

els as described in O’Connell et al.21

To conduct the simulation, we randomly split our data

into two equal portions, one representing the source of a

treated population and one representing the source of a

control population. We then generated a sample treated

arm and a sample control arm that we used for down-

stream analysis by sampling with replacement from the

respective source samples. For the first group, indexed by

i ¼ 1; . . . ; n
2, we set our treatment indicator Ai ¼ 0 and

record the observed outcome Yi, as well as the value of

the radiomic predictor Xi at baseline. For the second

group, indexed by i ¼ n
2þ 1; . . . ; n, we introduced a

treatment effect c, set our treatment indicator Ai ¼ 1, and

again record outcome Yi and baseline radiomic predictor

measurement Xi.

We repeated this process 1000 times, recording the P-

value corresponding to the test for treatment effect each

time. We calculated type I error rate and power as the

percentage of times the treatment effect was significant at

the a ¼ 0:05 level, where c is set to 0 to assess type I

error and a non-zero value to assess power. In order to

quantify the sample size benefits from using this method,

we repeated the above procedure for a range of sample

sizes n and recorded the smallest n for which power

reached 80%. We explored this for a range of hypothet-

ical effect sizes, which was defined as c divided by the

standard deviation of the outcome Yi.

We also performed a similar analysis with a time-to-

event outcome, studying the time to conversion from

MCI to Alzheimer’s disease measured in months. We

analysed this outcome with the following accelerated fail-

ure time models, assuming a log-logistic distribution:

Yi ¼ logðTiÞ ¼ aþ bXi þ cAi þ rei (1)

Yi ¼ logðTiÞ ¼ aþ cAi þ rei (2)

Here, Xi represents the radiomic predictor, and Ai repre-

sents the binary treatment indicator. We introduce a

multiplicative treatment effect on observed survival or

censoring time in the treatment group and refer to this

multiplier as the effect size. In order to mimic a 3-year

clinical trial, we introduce end-of-study censoring at

36 months. We conducted the simulation study as

described previously, assessing sample size benefits as the

minimum number of participants for the study.

Glioblastoma multiforme study

For our GBM plasmode simulation, we used survival out-

comes and we assessed differences between treatment

groups with and without adjustment for the radiomic

prediction by assuming an accelerated failure time model.

Specifically, we fit the following models:

Yi ¼ logðTiÞ ¼ aþ bXi þ cAi þ rei (1)

Yi ¼ logðTiÞ ¼ aþ cAi þ rei (2)

Here, Yi is logðTiÞ, where Ti represents the time to event,

Xi represents the radiomic predictor, Ai represents the

treatment indicator, and �i represents random error. In

this study, we modelled Ti using a log-logistic accelerated

failure time model. We introduce a treatment effect and

conduct the simulation study for this setting as described

previously.
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Synthetic data simulation study

We start by discussing the continuous outcome case. We

simulated data according to the following parametric

form: Yi ¼ 2þ 4Xi þ cAi þ �i, where Xi � N 0; 0:25ð Þ
denotes a continuous predictor, Ai is a binary treatment

indicator simulated at random with P Ai ¼ 1ð Þ ¼ 0:5, and

�i � N 0; 1ð Þ is a random error term for i ¼ 1; . . . ; n. We

then introduced a treatment effect of c for these subjects

and assessed the significance of the treatment effect with

a Wald test via linear regression. We repeated this pro-

cess 1000 times, recording the P-value corresponding to

the test for treatment effect each time. We calculated

Type I error and power as the percentage of iterations in

which the treatment effect was significant at the a ¼ 0:05

level, where we set c to 0 to assess type I error and a

non-zero value to assess power. In order to quantify the

sample size benefits from using this method, we repeated

the above procedure for a range of sample sizes n, corre-

sponding to the total trial size, and recorded the smallest

n for which power reaches 80%. We explored this for a

range of hypothetical effect sizes, which we defined here

as c divided by the standard deviation of the outcome.

For the time-to-event outcome case, we followed a

similar procedure. Here, the outcome Yi was simulated

according to a Weibull distribution such that

Yi ¼ log Tið Þ ¼ 0:5þ 0:25Xi þ 4�i, where Ti represents

the time to event, Xi � Nð0; 1Þ denotes a continuous

predictor, and �i is a random error term following an ex-

treme value distribution with scale parameter of 4

for i ¼ 1; . . . ; n, with total trial size n. Then, we intro-

duced a treatment effect of c with probability

P Ai ¼ 1ð Þ ¼ 0:5. We then used an accelerated failure time

model to regress Y against A, testing for the treatment ef-

fect with a Wald test. We introduced end-of-study censor-

ing at 36 months to mimic a 3-year clinical trial. We

assessed power, Type I error, and sample size benefits as

in the continuous outcome case.

Data availability

The Alzheimer’s disease data used for this study are pub-

licly available and were obtained from the ADNI data-

base (http://adni.loni.ucla.edu/). Data collected for this

study were approved under institutional review board

protocol #825722 sponsored by the National Institutes of

Health. The GBM data have been uploaded to TCIA,

and should be available to the public shortly. For the

purposes of the review process, the data are available as

Supplementary File 1. Data for this study were collected

under institutional review board-approved protocol

#706564 sponsored by the National Institutes of Health.

Results
For both continuous and time-to-event outcomes, the

proposed method consistently reduced the minimum

required sample size n for a given level of power in clin-

ical trial analyses (Fig. 2). In the Alzheimer’s disease

plasmode simulations, where the outcome of interest is

cognitive decline, with an effect size of 0.35, the total

required sample size was 246 for the conventional ana-

lysis and 212 with the proposed historical control ana-

lysis. As the effect size increased, sample size

requirements decreased for both approaches but

decreased more rapidly for the conventional approach.

In the GBM plasmode simulations, where the outcome

of interest was survival time, at an effect size of 1.65,

the total required sample size was 128 with the conven-

tional analysis and 74 with the proposed historical con-

trol analysis.

Reductions in sample size requirements were greater for

smaller effect sizes, so the benefit of historical controls

declined as effect size increased. Type I error remained

controlled throughout all experiments conducted. In the

Alzheimer’s disease study with a continuous outcome,

our proposed method resulted in a 14–16% decrease in

the minimum required sample size. In the GBM study,

our method reduced the required sample size by as much

as 48%. Our simulations with fully synthetic data sup-

ported these findings.

Table 1 summarizes the effect of using our method on

sample size across a range of power levels and effect

sizes.

We also explored our method with synthetic data simu-

lations (Fig. 3). Results for these simulations were simi-

lar to those from the plasmode simulation studies. With

the synthetic data simulations, we noticed even greater

sample size gains with the use of our proposed method-

ology. In settings with continuous outcomes, at the small-

est effect size that we studied of 0.4, the total required

sample size was 380 when using the conventional ana-

lysis and 230 when properly incorporating information

from historical controls. As in the plasmode studies, this

reduction became less pronounced as the effect size

increased. This is partly due to a more rapid decrease in

required sample size under the conventional approach

than for the proposed method. In the time-to-event out-

come simulations, at the smallest effect size studied of

1.1, the total required sample size was 540 with the con-

ventional analysis and 310 with the proposed historical

control analysis.

Discussion
We have shown that individualized machine-learning-

based imaging biomarkers can be useful tools in clinical

trial analysis when the necessary information is available,

offering decreased sample size requirements for a given

effect size. The novelty of this method arises from the in-

corporation of individualized predictions based on power-

ful predictive algorithms which lend power to the

detection of an average treatment effect due to targeting
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Figure 2 Plasmode simulation results. Results from simulated studies under two scenarios. With the addition of historical controls,

the minimum required sample size for 80% power is markedly lower than using classical two-sample clinical trial analysis. These figures show

minimum sample size (vertical axes) required to achieve 80% power for a range of effect sizes (horizontal axes) based on observed outcome and

radiomic predictions. (A) shows the results from simulations for continuous outcome measures of cognition in our Alzheimer’s cohort from

ADNI, analysed using a linear regression model with and without incorporation of the radiomic predictor (left). (B) shows the results from

simulations for survival in our glioblastoma cohort, comprised of 134 patients who were treated for newly diagnosed GBM at the Hospital of the

University of Pennsylvania between 2006 and 2013 and analysed with an accelerated failure time model with and without incorporation of the

radiomic predictor. Note that the proposed method that leverages historical controls to build radiomic predictions (red) requires lower samples

sizes than the classical approach (blue). Minimum required sample size was calculated as the smallest sample size that achieved 80% power as

calculated by the percentage of Monte Carlo simulations with a non-zero treatment effect that were significant at the a ¼ 0.05 level.

Table 1 Minimum required sample size for different powers and effect sizes

Cohort-outcome Power Effect size Minimum sample size

With historical controls Without historical

controls

ADNI-continuous 0.8 0.40 174 200

0.46 146 170

0.61 74 88

0.9 0.40 228 263

0.46 172 204

0.61 97 112

ADNI-survival 0.8 1.7 242 287

1.8 206 254

1.9 180 219

0.9 1.7 — —

1.8 271 332

1.9 238 292

GBM-survival 0.8 1.8 56 98

1.9 44 82

2 38 70

0.9 1.8 74 130

1.9 60 108

2 50 90

In this table, we provide the minimum required sample size for both 80% and 90% power across a range of effect sizes in both our ADNI cohort and our cohort of patients with

glioblastoma multiforme (GBM). For our ADNI dataset, because the radiomic predictor of interest is known to be an accurate predictor of MCI to Alzheimer’s disease conver-

sion time, we also explored the utility of incorporating this method into a survival analysis.

Imaging biomarkers augment statistical power BRAIN COMMUNICATIONS 2021: Page 7 of 10 | 7



of the individuals in a given clinical trial. As robust neu-

roimaging biomarkers derived via machine learning mod-

els become more available, the historical datasets that

can be analysed with those models grow in size. These

changes are expected to strengthen the radiomic predic-

tion models like the ones used in this study.

Our incorporation of the radiomic predictor relies on

the existence of previously developed radiomic predictors,

which for the purposes of this paper, we theorize as hav-

ing been trained on a historical cohort. Because the radio-

mic predictor has been previously trained on a historical

cohort, the models that we fit to analyse a current trial in-

herently incorporate information from historical controls.

When we do not include the radiomic predictor into the

clinical trial analysis, we do not incorporate information

from historical controls. We generate values of the radio-

mic predictor for the current sample using the model that

was developed with a previous cohort. For our simula-

tions, we assume that the current trial is being run on an

experimental drug and the goal is to show superiority.21

Patients enrolled in a clinical trial or a cohort study may

not be representative of patients in a population of inter-

est. Differences between these populations are the result of

the explicit inclusion/exclusion criteria of a clinical trial as

well as the indirect differences between patients who are

willing to volunteer for a clinical trial and those who are

not.22 Event rates can also be higher in a cohort study

than in a clinical trial, potentially due to these same

biases. However, randomization of the current trial partici-

pants ensures that even if the historical control population

is different from the trial population in important ways we

would not realize inflated type I error. The differences

may however impact the predictive performance of the

radiomic predictor for the outcome of interest, which

could thus impact statistical power of the proposed meth-

odology and attenuate the sample size benefits.

In the event that a primary analysis of an endpoint does

not yield statistically significant results, this technique

could potentially be used in a sensitivity analysis to aid in-

terpretation. Performance of a secondary analysis looking

to draw conclusions about the efficacy of a treatment

could result in increases of type 1 error and thus spurious

decisions, but incorporation of this technique into an ex-

ploratory analysis aimed at characterizing the impact of

baseline heterogeneity on inference could illuminate im-

portant phenomena that would otherwise be missed.

We note that unexplained biological heterogeneity

among the cohorts under study may have attenuated the

power gains that were observed. To assess the potential

gains of using this method in cases where the degree of

biological heterogeneity explained was modifiable, we

conducted simulation studies with data generated so as to

Figure 3 Synthetic data simulation results. Results from simulated studies with synthetic data generated to be homogenous across all

cohorts except for random error and treatment status. These figures show the minimum sample size required to achieve 80% power for a

range of effect sizes, where minimum sample size was calculated as the smallest sample size for which at least 80% of Monte Carlo simulations

with a non-zero treatment effect were significant at the a ¼ 0.05 level. (A) shows the results for simulations with a continuous outcome,

analysed using linear regression with and without incorporation of the radiomic predictor, and (B) shows the results for simulations with a

survival outcome, analysed using an accelerated failure time model with and without incorporation of the radiomic predictor. In both cases,

the proposed method that leverages historical controls in the form of radiomic predictions (red) requires lower sample sizes than the

classical approach (blue).
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be homogenous except for random error and treatment

status (Fig. 3). In that setting, power gains and subse-

quent sample size reductions were much more dramatic.

Here, we used two previously developed biomarkers,

one of which was trained to classify an outcome different

from the target of the clinical trial analysis, and the other

of which was trained to classify the same outcome as the

clinical trial analysis. While both predictors offered gains

in sample size reduction, the predictor built specifically

for the outcome of interest in the clinical trial performed

better and offered more substantial gains. We expect that

the gains in power will likely be larger when the model

is trained to predict the primary outcome of the clinical

trial, though this needs to be empirically tested across a

range of applications.

This approach is not limited to radiomic predictors. It

can be applied to a broad array of factors associated

with the outcomes of interest in a clinical trial, such as

clinical variables, blood or cerebrospinal fluid-based bio-

markers, or genomic markers. The choice between use of

biomarker-only prediction models as opposed to clinical

and biomarker prediction models can be decided on a

case-by-case basis, depending on the hypothesis of interest

in a given study. In general, the more robust the associa-

tions among the predictors and the outcome of interest,

the greater the anticipated gains in power or reduction in

sample size required for a specified level of power.

The approach proposed in this paper has some limita-

tions. First, the use of radiomic predictions can be hin-

dered by the cost of collecting imaging data.23 Though

many modern clinical trials of neurologic disease now in-

corporate baseline MR imaging into their protocol,24–30

especially in those of Alzheimer’s disease and GBM,

which we use as examples in this manuscript, imaging

remains expensive and potentially extraneous for the

study of certain diseases. This method is only helpful

when baseline imaging is available, and in the absence of

baseline imaging for participants of a new study, incorp-

oration of radiomic predictors through prior scans from

unknown length of time prior to the new study may

result in attenuated benefits of statistical power and im-

perfect characterization of disease load. This can also

impact the accuracy of the sample size calculation in that

incorporation of data that does not reflect true baseline

heterogeneity at the beginning of a new study can

increase uncertainty in the analysis.

Furthermore, reductions in sample size requirement de-

pend upon the strength of the prediction model. In this

study, both radiomic predictors considered were built

based on SVMs, but other machine learning techniques

such as deep convolutional neural networks may provide

more predictive power.31 In addition, gains in power for

the primary outcome will be associated with gains in

power for secondary outcomes only to the extent that

predictions from the prediction model are associated with

the secondary outcomes. This will likely be determined

by the degree of correlation between the primary

outcomes and a set of secondary outcomes. In principle,

within a single trial, separate prediction models could be

developed for two or more co-primary endpoints.

Incorporation of this method into randomized trials with

more complex designs, such as one incorporating stratifi-

cation by confounders or a one-arm trial, requires further

statistical research.

Finally, if a radiomic predictor is trained on data

sampled from a different population than that which is

studied in the current trial, the improvements in statistical

power may be less pronounced. However, due to the ran-

domization in the study, the type I error rate is expected

to be maintained and internal validation or calibration of

the predictive model is possible using data from the con-

trol arm of a clinical trial.

The key conclusion arising from our study is that ma-

chine-learning-based predictive models can be used to ef-

fectively improve the statistical power of clinical trials by

leveraging the wealth of information available in neuroi-

maging data to generate personalized predictions of out-

come. Radiomic predictors are seldom incorporated into

clinical trial analyses, but we have demonstrated that

when the necessary information is available, they can be

a powerful tool, especially when evaluating therapies for

rare diseases such as GBM or heterogenous diseases with

long and slow progressions that require many years of

patient follow-up such as Alzheimer’s disease.
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