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Abstract: One of the biggest challenges associated with vibration energy harvesters is their limited
bandwidth, which reduces their effectiveness when utilized for Internet of Things applications.
This paper presents a novel method of increasing the bandwidth of a cantilever beam by using
an embedded transverse out-of-plane movable mass, which continuously changes the resonant
frequency due to mass change and non-linear dynamic impact forces. The concept was investigated
through experimentation of a movable mass, in the form of a solid sphere, that was embedded within
a stationary proof mass with hollow cylindrical chambers. As the cantilever oscillated, it caused
the movable mass to move out-of-plane, thus effectively altering the overall effective mass of the
system during operation. This concept combined high bandwidth non-linear dynamics from the
movable mass with the high power linear dynamics from the stationary proof mass. This paper
experimentally investigated the frequency and power effects of acceleration, the amount of movable
mass, the density of the mass, and the size of the movable mass. The results demonstrated that the
bandwidth can be significantly increased from 1.5 Hz to >40 Hz with a transverse movable mass,
while maintaining high power output. Dense movable masses are better for high acceleration, low
frequency applications, whereas lower density masses are better for low acceleration applications.

Keywords: bandwidth; energy harvester; piezoelectric material; cantilever; MEMS

1. Introduction

With the increase in the demand for the Internet of Things, cyber-physical systems,
and smart buildings, there continues to be a high interest in vibration energy harvesting
to create self-sustaining systems through the harvesting and conversion of mechanical
energy from the ambient environment into usable electrical energy. Most vibration energy
harvesters consist of a cantilever beam as a mechanical system that oscillates due to an
applied vibration from the environment. The different kinetic energy converting mecha-
nisms include piezoelectrics, electromagnetics, electrostatics, or triboelectrics. The energy
converting mechanisms are different for each of these, but all these methods rely on a
similar mechanical oscillating system. Typically, these cantilevers are linear systems with
high Q-factors or narrow bandwidths of <2 Hz (~1% of resonant frequency) operating at
low frequencies of <250 Hz [1–6]. The narrow bandwidths allow them to have high power
density, but it limits their use in real-life applications, as even a 1% change in resonant
frequency will significantly reduce the amount of power harvested. Large changes in
resonant frequency can occur due to small changes in the vibration source or even due to
manufacturing non-uniformities of the cantilever. Therefore, wider bandwidth devices are
necessary for practical applications.

Since bandwidth is one of the major challenges associated with vibration energy har-
vesting, it was extensively investigated. Previous attempts to solve this issue have included
developing non-linear cantilevers and spring designs based on duffing resonators [7–10],
impact driven mechanical stoppers [11–13], additional magnetic forces [14–16], bistable
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non-linear devices [17–19], and the designing of an array of devices with varying frequen-
cies [4]. However, these methods have numerous disadvantages, such as hysteresis effects,
which depend on frequency sweep testing protocol, low power density, as decreasing the
Q-factor reduces the peak power harvested, a larger footprint, thus decreasing the overall
power density, complex manufacturing, especially at the micro-scale, and the need for
external power, which reduces the overall efficiency of the system. Impact-based systems
causing non-linear dynamics were also recently investigated and have demonstrated an
increase in bandwidth [20,21], but the methods investigated to date consist of impact
methods that are not scalable down to the micro-scale needed for IoT applications.

Recently, there were numerous attempts to increase the bandwidth by using a lateral
sliding mass, which changes the center of gravity of the proof mass during oscillation, resulting
in a continuously changing resonant frequency in a process referred to as dynamic tuning [22].
This dynamic tuning has the effect of widening the bandwidth. Previous attempts to create
a sliding mass include using rolling cylinders [23–26], sloshing liquids [22,27–30], and a
combination of the two [31]. These wide bandwidth methods involve altering the resonant
frequency during oscillation by changing the effective location of the proof mass. The various
methods demonstrated limited success as they rely on a large change in the center of gravity
to significantly increase the bandwidth. The large lateral displacements required to widen the
bandwidth are potentially feasible in macro-scale devices, but scaling down to the micro-scale
would limit lateral displacement of the movable mass. In addition, these devices increase the
bandwidth when compared to a traditional linear (stationary proof mass) system, but altering
the center of gravity has only a minor effect on the overall effective mass, which limits the
bandwidth enhancement capabilities.

This paper investigated the experimental validation of a novel movable mass energy
harvesting system aimed at widening the bandwidth. Instead of a lateral moving mass,
this paper investigated a vertical or transverse movable mass component. The transverse
movable mass concept combined: (i) a continuous alteration of the effective proof mass to
change the resonant frequency during operation, and (ii) the non-linear dynamics based
on the impact of the movable mass on the cantilever substrate, in order to increase the
bandwidth without a significant decrease in power. This is the first time a vertical movable
mass was embedded into the proof mass of an energy harvesting system. The development
of a transverse movable mass has the potential to significantly alter the effective mass of
the system, resulting in the continuous altering of the resonant frequency during operation.
The transverse movable mass is potentially a preferred option over a lateral sliding mass
because it provides a larger change in the overall mass of the system, which correlates to
an increase in bandwidth. This method also has the potential to be applied to both macro-
and micro-scale devices, as embedded powders in silicon cantilevers were previously
developed [32], which could act as a movable mass for MEMS cantilevers. This paper uses
a piezoelectric cantilever as the energy harvesting system, but the method of widening
the bandwidth can be applied to any cantilever device. This paper investigated the power
and bandwidth effects of a transverse movable mass cantilever-system by performing
experimental testing associated with varying the acceleration, the amount of movable
mass, the size of the movable mass, and varying the material density of the movable
mass. The movable mass method under investigation was expected to be utilized for
applications requiring large acceleration and low frequency, such as aerospace, automotive,
or pacemaker applications [33,34]

2. Materials and Methods
2.1. Concept

The simplistic equation for determining the resonant frequency of a rectangular
cantilever with stationary proof mass is given by the equation [35]:

f =

(
1

2π

√
E

4m

)√
wt3

L3 (1)
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where E is the elastic modulus of the beam, m is the mass, and w, t, and L are the width,
thickness, and length of the beam, respectively. The resonant frequency can be altered by
changing the physical dimensions of the cantilever, the elastic modulus, or the mass. Chang-
ing the elastic modulus of the beam was previously attempted as a tuning method [36],
but it is difficult to implement in practical applications. Changing the dimensions of the
beam during operation is not feasible. Therefore, changing the effective mass to alter the
resonant frequency is the most feasible option. A vertical moving mass will not change the
center of gravity, but instead works by altering the overall effective mass during operation
as the movable mass can be in free fall, which effectively eliminates its contribution to
the overall mass at that specific time. Therefore, the cantilever will effectively have two
resonant frequencies: (1) when the movable mass is on the surface contributing to the
effective mass, and (2) when the movable mass is in free fall, this will result in two separate
resonant frequencies. If the weight percent (wt.%) of the movable mass is large, then
the two frequencies will have a wide range. If the system has multiple movable masses,
then it will have multiple resonant frequencies, thus resulting in a wide bandwidth effect.
Numerically, the change in resonant frequency from the movable mass is given by the
following equation:

f′

f
=

(
1

2π

√
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)√
wt3
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where m’ is the mass of the stationary proof mass and m is total mass of the stationary
proof mass plus the movable mass. If all other properties except the mass remain constant,
the normalized increase in resonant frequency, by altering the effective proof mass while
the movable mass is in free fall, can be simplified to:

f′

f
=

√
1

m′√
1
m

(3)

where f’ represents the frequency when the movable mass is in free fall and f represents
the frequency when both masses are stationary. Thus, a 50% reduction in mass during free
fall would result in, approximately, a 1.4× increase in the resonant frequency. Therefore,
having higher wt.% of movable mass will further increase the frequency range, resulting in
a wider bandwidth. Having multiple moving masses would then create multiple resonant
frequencies, which would effectively increase the bandwidth, and more movable mass
would generate an increased change in resonant frequency, thus resulting in a larger
bandwidth. However, for the movable mass to contribute to the change in frequency, the
acceleration force needs to be large enough to propel the movable mass from the surface.

The concept of creating a vertical movable mass was briefly described in our confer-
ence paper [37]. The experimental setup for validating the concept included a stationary
proof mass with single or multiple chamber(s)/cavities that could be partially filled with
a solid movable mass. The chamber was designed to promote vertical movement and
prevent lateral movement of the solid mass. As the cantilever beam oscillates with a large
tip displacement, the movable mass will be propelled off the cantilever substrate and thus
be in free fall. While the movable mass is in free fall, the effective mass of the system is
significantly reduced depending on the wt.% of the movable mass. Therefore, during oper-
ation, the cantilever is continuously altering its resonant frequency and, thus, effectively
widening the bandwidth. Figure 1 demonstrates the concept by having a solid movable
sphere mass within a stationary proof mass. While at rest (Figure 1a) the overall mass of
the system consists of: (i) a stationary proof mass chamber, and (ii) the mass of the solid
sphere. The mass of the cantilever is considered negligible. The second mode of operation
is when the cantilever displacement is large, causing the movable mass to displace as
shown in Figure 1b. In this mode the effective mass only consists of the stationary mass,
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as the solid movable mass is in free fall. This concept also involves an impact mode (not
shown in Figure 1), which creates the non-linear dynamic effect. The impact is caused
from the solid movable mass falling, due to gravity, and impacting the cantilever substrate.
The effect of the impact on the resonant frequency will depend on the force of the impact,
which is determined by the vertical displacement of the movable mass, the density of the
mass, and the stiffness of the substrate. This concept was designed for low frequency, high
acceleration applications, as the concept requires a large displacement of the cantilever
to generate enough force to move the solid mass. The energy harvesting operation uses
a piezoelectric cantilever that generates stress and strain during oscillation, which then
converts mechanical energy into electrical energy.
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Figure 1. Schematic of the concept for transverse vertical movable mass demonstrating the various
modes of operation: (a) demonstrates when the cantilever is at rest and the overall proof mass consists
of the stationary proof mass and the movable mass, and (b) demonstrates when the cantilever has a
large enough displacement to propel the movable mass off the substrate so the effective proof mass is
represented only by the stationary proof mass.

The system involves non-linear dynamics due to both the impact as well as the
continuous change in the effective mass of the system. In addition, if multiple movable
masses are in a chamber, then there is an influence from the impact forces between the
movable masses as well as when they impact the substrate. When the movable mass is
stationary or at rest, the effective mass of the system will be significantly higher than when
the movable mass is in free fall (depending on the density and wt.% of the movable mass).
With the addition of the movable mass component, the resonant frequency of the system at
rest will be significantly lower than the resonant frequency while the movable mass is in
free fall (dependent on the wt.% of movable mass). Thus, the system will begin to oscillate
at a lower frequency, which will cause the movable mass to move out of plane. Since
the time for the movable mass to fall and the time for the cantilever to complete a cycle
are different, the system will be going in and out of resonant frequency, and additional
frequencies generated from the impact of mass will cause the system to be non-linear.
Modelling the complete dynamics of the entire system are beyond the focus of this paper,
which focuses instead on the experimental validation of the concept.

2.2. Cantilever Structure

In this paper, a commercial piezoelectric energy harvester (Volture V25W, Mide),
with dimensions of 4.6 × 3.8 × 0.06 cm (l, w, and t), was used as the cantilever struc-
ture to validate the concept at the macro-scale. The stationary proof mass, which was
1.5 × 3.8 × 2.5 cm (l, w, and t) in size, was custom designed and 3D printed (Ultimaker
S5) using PLA. The lightweight PLA was used to reduce the mass of the stationary proof
mass to ensure that the wt.% of the movable mass was high. The dimensions of the
proof mass and cantilever are scaled up versions of typical microsystem energy harvester
devices [1,15,38]. The 3D printed proof mass consisted of three 11 mm diameter hollow
chambers along the width of the cantilever, designed to restrict the 10 mm diameter spheres
from rolling in the lateral direction. These chambers had a height of 20 mm and a base
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thickness of 5 mm to allow the movable mass to impact the proof mass instead of directly
impacting the cantilever, which could lead to mechanical failure. The chambers were
symmetrically aligned on the cantilever. A lid was 3D printed to prevent the movable mass
from exiting the chamber. The overall mass of the 3D printed stationary proof mass was
~10 g. Figure 2 is a schematic and image of the cantilever with the custom proof mass. The
proof mass was attached to the cantilever using double-sided adhesive tape.
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Figure 2. Image of the cantilever system: (a) schematic of the piezoelectric cantilever and custom designed proof mass with
three chambers for the movable mass (the top lid is not shown), and (b) image of the cantilever with proof mass and cap
with accelerometer mounted on vibration shaker. Scale bar is 1 cm.

The movable mass in our investigation consisted of solid spheres that were 10 mm in
diameter, 5 mm diameter balls were also investigated to determine the effect of varying
ball dimensions. The balls, which had a density of 14.95 g cm −3, were made from tungsten
carbide (labelled W in the paper; MSE Supplies), the main type of material investigated
because of its large density since, theoretically, the bandwidth should be dependent on
the wt.% of the movable mass. According to Equation (3), the higher percentage of
movable mass should generate a wider range of resonant frequencies between the stationary
resonant frequency and the free fall resonant frequency, which should correlate to a larger
increase in bandwidth. Other materials, including stainless steel 316L (SS, 8 g cm−3;
GoodFellow), Aluminum oxide (Al2O3, 3.9 g cm−3), and Teflon (PTFE, 2.2 g cm−3; United
States Plastic), were investigated to determine the effects of changing the wt.% of the
movable mass by changing the density of the balls. The outer surfaces of the balls were
polished to reduce friction between the balls and the surface of the proof mass.

2.3. Experimental Methodology

The cantilever device with proof mass was mounted on a vibration shaker (ET 126,
Labworks) via a custom-made mounting chuck with an accelerometer to provide acceler-
ation feedback control. The system from Labworks has an integrated accelerometer and
vibration control software. The cantilever was connected to an oscilloscope (Tektronix
4-channel 100 MHz with 5 GS/s sampling rate) with a variable load resistor to provide
impedance matching for power measurements. Power was calculated based on the Vrms
and impedance. The optimal power was determined by matching the electrical impedance
with the impedance of the piezoelectric cantilever. Discrete manual frequency sweeps were
performed in 0.5 Hz steps. A sweep up and down test was performed to determine if
sweeping had any impact. In addition, random frequency values were tested and compared
to the sweep data to determine if sweeping had any impact on the power and bandwidth.
Once the force of the cantilever was large enough to cause vertical displacement of the
balls within the chambers, the oscilloscope readings became non-linear due to the impact
force, meaning the voltage and power amplitude varied with time and were no longer
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a simple sinusoidal waveform. The average Vrms value, over the course of 1 min at a
specific frequency, was measured during the non-linear dynamic range. The frequency
range of the impact from the movable mass is called non-linear bandwidth (NLBW), as
it is essentially bandwidth at which the movable mass operates, resulting in non-linear
dynamics from the impact. The start and end frequency of the movable mass, which is the
frequency range at which the impact from the movable mass was observed quantitatively
through data from the oscilloscope, as voltage output was no longer sinusoidal, but instead
consisted of multiple frequency outputs as demonstrated in Figure 3b. The frequency range
of the movable mass could also be determined through hearing the impact of the ball. The
NLBW was essentially the frequency range at which the movable mass had significant
displacement, causing the mass to be propelled off the surface and impact the substrate.
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Figure 3. Experimental raw data at 1 g acceleration for (a) the control device with stationary proof
mass and no movable mass, and (b) a device with one movable W ball and an off resonance applied
frequency; (c,d) are the FFT of the raw data, where (c) is the FFT of the linear control device, and
(d) is the FFT of a non-linear device with multiple frequencies.

Experimental testing used W 10 mm diameter balls, unless specified, while 5 mm
diameter balls were used to determine the effects of different movable mass dimensions.
An investigation of the effect of the number of balls used, or the total amount of movable
mass, consisted of comparing power vs. frequency measurements for a device with three
balls (one in each chamber) and a device with a single ball in the middle chamber. The
effects of acceleration on the bandwidth and power magnitude were determined using
accelerations of 0.1, 0.5, 1, and 1.5 g. To determine the effects of changing the wt.% of
movable mass, different materials were investigated with varying accelerations as shown
in Table 1. The wt.% of the movable mass was calculated as the amount of movable mass
divided by the total mass, which included the mass of the balls and the stationary proof
mass. The amount of movable mass varied from 22.5% to 70.2%. To determine the effect of
the size of the balls, we compared systems with one 10 mm W sphere vs. eight 5 mm W
spheres, as they had nearly the same movable mass component of 7.87 g and 7.84 g, with a
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moveable mass percentage of 44% and 43.9%, respectively, as shown in Table 1, which was
considered equivalent.

Table 1. Various scenarios of movable mass and amount of movable mass used in each test.

Material Mass of One Ball (Grams) Quantity of Balls Movable Mass (Grams) Movable Mass (%)

Tungsten Carbide (W) 7.87 3 23.61 70.2
Tungsten Carbide (W) 7.87 1 7.87 44.0

Tungsten Carbide
5 mm ball 0.98 8 7.84 43.9

SS 316L (SS) 4.168 3 12.50 55.6
Al2O3 1.76 3 5.28 34.6
PTFE 0.97 3 2.91 22.5
PTFE 0.97 6 5.82 36.8

3. Results and Discussion

The initial validation of the concept was investigated experimentally by comparing the
output voltage as a function of time for two devices operating at 1 g acceleration. The first
device was the control, which consisted of the cantilever beam and a stationary 3D printed
proof mass without any movable balls in the chambers. The second device consisted of
a cantilever beam, stationary proof mass, and one W ball in the middle chamber. In both
cases, the vibration source was applied at the resonant frequency of the cantilever with
proof mass. The control proof-mass was lighter, having a resonant frequency of ~53 Hz,
whereas, when we added the extra mass of the movable ball, the resonant frequency was
~25 Hz.

Figure 3a is a section of the raw data from the oscilloscope while operating near the
resonant frequency of the control device with no movable component. The movable mass
was restricted from moving in the lateral direction due to the size of the chamber, and thus
allowed the ball to only move in the vertical transverse direction. The results of the control
system with no movable mass demonstrated a typical linear device with a sinusoidal
output. The FFT of these results demonstrated a single resonant frequency at 53 Hz, as
shown in Figure 3c. The experimental raw data for the device with movable mass is shown
in Figure 3b. The results demonstrate that the movable mass generated an output voltage
consisting of multiple frequencies, with a peak resonant frequency of approximately 25 Hz.
The reduction in resonant frequency was due to the increased overall proof mass. The large
voltage peaks consisted of linear frequencies when the movable mass was in contact with
the cantilever and when the system was in free fall. Visual confirmation of the ball moving
was seen through the chamber and the ball displacement was approximately 1 cm in height.
The FFT of the movable mass device is demonstrated in Figure 3d, which shows multiple
frequencies, including a peak at 53 Hz. The 53 Hz peak is demonstrated in both Figure 3c,d,
as this represents the resonant frequency of the cantilever with the stationary 3D printed
mass. Figure 3d also has a large peak at 25 Hz, which is the resonant frequency of the
cantilever with the additional W mass while at rest on the surface. Numerical analysis
using Equation (1) estimates the resonant frequency of the two masses to be 26 Hz and
the free fall state resonant frequency to be 52 Hz, which is in good agreement with the
experimental results. The difference was likely to be a result of a slight difference in the
elastic modulus of the cantilever. The FFT data demonstrated multiple frequencies in the
10–75 Hz range, even though the excitation frequency was at 25 Hz, which was due to the
non-linear impact of balls and the changing resonant frequency of the cantilever. There
were also higher frequency peaks at around 175–225 Hz, which was due to the impact of the
ball hitting the chamber. The results validate that there was a wider range of frequencies
occurring in the system with the movable mass. The addition of these multiple frequencies
should have the effect of increasing the bandwidth, as significant voltage output can be
measured through a wide range of frequencies compared to the linear control system in
Figure 3c, which only has a single frequency output.
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Next, we varied the number of balls in each chamber to determine if the wt.% of
movable mass had a significant impact on bandwidth. The power, as a function of applied
frequency, was measured for the (i) control (no movable mass), (ii) one middle 10 mm
diameter W ball, and (iii) three W balls (one in each chamber), which were experimentally
investigated at 1 g acceleration. The power was measured by connecting the output voltage
of the cantilever to a variable load resistor to match the impedance for maximum power.
The results are demonstrated in Figure 4. The control system had a typical linear dynamic
response, with a sharp peak and full width half maximum (FWHM) of 1.5 Hz, and a
peak power of 6.43 mW at 53 Hz. The movable mass device (a single W ball), with a 44%
movable mass, had a wider bandwidth with a peak frequency shifted to the left (lower
frequency) due to the additional mass in the system. The average power was calculated for
each frequency over a 1 min duration, and the standard deviation was represented by error
bars. The single ball system had a much wider bandwidth compared to the control, which
had no movable mass component, and a FWHM (~30.5 Hz compared to 1.5 Hz) and no
distinguishable peak, but the average power measured was 1.4 mW. The results of adding
a single ball with a 44 wt.% movable mass significantly increased the bandwidth, but
decreased the power. The three-ball system, with a 70.2 wt.% movable mass, demonstrated
a high bandwidth and a high peak power of 3.8 mW at 15 Hz. The area under the curve,
which represents the power over a range of frequencies (mW-Hz), was increased by 117%
and 252% for the one-ball and three-ball system, respectively, compared to the control.
The three-ball system had a NLBW range of 34 Hz, which demonstrated average power
values of >0.7 mW during that frequency range, with the exception of one point around
10 Hz. This validated the concept that a vertical movable mass can widen the bandwidth
and increase power generation. The peak power of the movable mass system was reduced
compared to the control, but the bandwidth was significantly increased. Increasing the
percent of the movable mass further increased the peak power, while still maintaining a
high bandwidth as the power over a frequency range was significantly increased. Balls
placed on the outside chambers caused high frequency twisting modes to decrease their
resonant frequency as well, but the research was interested in low frequency first mode
operation to increase the power density.
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Figure 4. Experimental data of power as a function of frequency for 10 mm W balls at 1 g acceleration
for systems with zero (control), one, and three movable balls. The error bars represent the standard
deviation of the power measurements during the 1 min testing duration. The dashed lines represent
the start and stop frequencies for the movable mass representing the NLBW.
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The non-linear energy harvester’s bandwidth and power measurements are commonly
dependent on the frequency sweep characteristics of the applied excitation where there is a
hysteresis effect; thus the operation of the device is dependent on the testing parameters of
sweeping the frequency either up or down [39–41]. However, this is not practical as most
applications have randomly changing discreet frequencies instead of a continuous sweep.
To investigate if the frequency sweep direction had an impact on the power or bandwidth,
the frequency was swept in both directions at a rate of 0.05 Hz/s from 5–50 Hz at 0.5 g with
a three-ball system of W. The results (Figure 5) demonstrated no significant difference in
amplitude or bandwidth due to sweeping the frequency. The results were further validated
by randomly selecting frequencies and measuring their output power, which demonstrated
that, within the standard deviation, the results were the same. Therefore, this method has
potential impact in real-life applications as the power and bandwidth can be accurately
predicted regardless of testing parameters. Comparing the results of the three-ball system
in Figure 4 (1 g) and Figure 5 (0.5 g) the general shape of the output power vs. frequency
was the same, but the 1 g acceleration had higher power, as expected, and higher bandwidth
due to the increased impact force. Increasing the acceleration to 1 g and 1.5 g obtained
similar results, demonstrating no significant hysteresis effect.
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Figure 5. Comparison of sweep up and sweep down frequency testing on the system with three W
balls of 10 mm at 0.5 g. Error bars are equal to one standard deviation.

The power and bandwidth are dependent on the acceleration that is applied, and it
was believed that the vertical movable mass method required high acceleration because
low acceleration would not have a large enough tip displacement to propel the mass
within the chamber, thereby limiting the non-linear dynamic effects. To investigate this,
various accelerations from 0.1, 0.5, 1, and 1.5 g were experimentally tested with the three-
ball system using W balls. The results are presented in Figure 6. At 0.1 g, the system
behaved like a linear system with a slight increase in the FWHM of 1.73 Hz as compared
to the control’s 1.2 Hz. As the acceleration increased, there was a shift in the peak power
amplitude towards a lower frequency. This occurred because the higher acceleration
resulted in higher force, which increased the tip displacement and caused the movable
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mass to propel off the surface at lower frequencies. This, in turn, increased the NLBW as
the frequency range of the movable mass was increased, thus generating a larger non-linear
region due to the impact force. Once the mass started moving, the peak power increased
along with the bandwidth. At 1.5 g, the peak power occurred at 6 Hz because the high
acceleration and low frequency produced a large enough force to propel the movable mass
off of the substrate. This resulted in a peak power of 10.52 mW. Higher acceleration also
caused the bandwidth to increase as the area under the curve increased from 1.73, 13.99,
53.91, and 147.23 mW-Hz for 0.1, 0.5, 1, and 1.5 g, respectively. The area under curve
represents the total amount of power that is harvested over a range of frequencies. The
experimental results demonstrated that this method is efficient for low frequency, high
acceleration applications.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 6. Log scale power as a function of frequency for varying acceleration with three W balls. 

Various density balls, as highlighted in Table 1, were used to determine the effects 
varying the wt.% of movable mass had on the bandwidth and power. Three 10 mm 
diameter balls, one in each chamber, were used in the experiment with varying 
accelerations from 0.1, 0.5, and 1 g. The results are shown in Figure 7. At a low acceleration 
of 0.1 g (Figure 7a), all of the materials used for the balls (W, SS, Al2O3, and PTFE) had an 
output that more closely represented a linear system. As the density of the balls increased, 
there was a peak power shift towards lower frequencies, which was expected since the 
overall weight of the proof mass increased. The peak power was dependent on the density 
of the balls and the overall mass of the system, as expected, demonstrating an increase in 
the power with an increase in the percentage of movable mass. However, the FWHM 
value decreased as the amount of movable mass increased, with values of 2.61, 3.01, 3.7, 
and 5.2 Hz for W, SS, Al2O3, and PTFE, respectively, compared to the control’s FWHM of 
1.2 Hz. The PTFE balls had a wider bandwidth at a low acceleration because they required 
less force to propel as compared to the denser masses, such as W, which required more 
force. Therefore, low-density movable masses provided wider bandwidths than dense 
materials at low acceleration because the higher density balls did not easily propel off the 
substrate, resulting in limited impact force. 

10 100

0.01

0.1

1

10

Po
w

er
 (m

W
)

Frequency (Hz)

 1.5 g
 1 g
 0.5 g
 0.1 g

Figure 6. Log scale power as a function of frequency for varying acceleration with three W balls.

Various density balls, as highlighted in Table 1, were used to determine the effects
varying the wt.% of movable mass had on the bandwidth and power. Three 10 mm diameter
balls, one in each chamber, were used in the experiment with varying accelerations from 0.1,
0.5, and 1 g. The results are shown in Figure 7. At a low acceleration of 0.1 g (Figure 7a), all
of the materials used for the balls (W, SS, Al2O3, and PTFE) had an output that more closely
represented a linear system. As the density of the balls increased, there was a peak power
shift towards lower frequencies, which was expected since the overall weight of the proof
mass increased. The peak power was dependent on the density of the balls and the overall
mass of the system, as expected, demonstrating an increase in the power with an increase
in the percentage of movable mass. However, the FWHM value decreased as the amount
of movable mass increased, with values of 2.61, 3.01, 3.7, and 5.2 Hz for W, SS, Al2O3, and
PTFE, respectively, compared to the control’s FWHM of 1.2 Hz. The PTFE balls had a wider
bandwidth at a low acceleration because they required less force to propel as compared to
the denser masses, such as W, which required more force. Therefore, low-density movable
masses provided wider bandwidths than dense materials at low acceleration because the
higher density balls did not easily propel off the substrate, resulting in limited impact force.
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Figure 7. Experimental results of varying ball materials (densities) with varying accelerations:
(a) 0.1 g, (b) 0.5 g, and (c) 1 g. Each test consisted of three balls of 10 mm diameter of W (tungsten),
SS (stainless steel 316L), Al2O3 (aluminum oxide), or PTFE (Teflon).

As the acceleration increased, the cantilevers with denser masses demonstrated an
increase in bandwidth and all of the systems had a larger NLBW, as shown in Figure 7b,c,
because the acceleration produced a large enough force to propel the movable mass. For
example, at 0.5 g, the W balls had a high intensity peak (1.22 mW) at a low frequency and a
FWHM of 9.29 Hz. However, it started to develop a broader peak at higher frequencies,
thus increasing the bandwidth of usable energy. Usable energy, as defined by the authors,
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is power >0.7 mW, which was determined based on the typical power requirements for
wireless sensor networks, wherein 0.7 mW is adequate for most IoT applications. However,
at 0.5 g, the SS balls lacked a high-intensity, narrow peak, instead consisting of a broad peak
with an average power of 0.38 mW and a bandwidth of 15.4 Hz. The Al2O3, on the other
hand, had a broad peak at lower frequencies and started to develop a high-intensity peak at
the resonant frequency of the stationary system. This resulted in an average power of 0.25
mW and a bandwidth of 14.52 Hz. The PTFE movable mass system had a high-intensity
peak at the resonant frequency of the stationary proof mass, with a peak power of 0.85
mW and a FWHM of 6.81 Hz, but it also consisted of a wider peak at lower frequencies
due to the non-linear movable masses. The reason for the high peak exhibited by PTFE
was attributed to two issues: (1) the low density of the balls caused a lower impact as
compared to W, so the non-linear effects were less, and (2) the less-dense balls had a
larger displacement within the chamber, thus the time required for the balls to impact the
substrate was longer, resulting in a larger linear dynamic region for a longer amount of
time. For example, if the PTFE balls had a 1.5 cm vertical displacement within the chamber
the free fall, the time it would take for the balls to fall would be ~55 ms, whereas the
time for the cantilever to complete one cycle is ~19 ms, thus the cantilever would be in
linear mode for nearly three oscillation cycles before the impact. The W ball system had a
large narrow peak at low acceleration due to the cantilever’s limited amount of force and
displacement, which resulted in the low displacement of the balls and a low impact force.
As acceleration increased, the balls had a larger displacement, resulting in a larger NLBW
region. The denser balls had a larger impact force when they were propelled. Therefore,
the low-density movable masses resulted in a more linear system, but at high acceleration,
the system had both linear and nonlinear components.

The power, as a function of the frequency results, of applying a 1 g acceleration
(Figure 7c) demonstrated a similar trend as the results in Figure 7b. The Al2O3 ball ap-
peared to be shifting in the same manner as the PTFE samples to form a peak at the linear
resonant frequency. At 1 g, however, a significant narrow peak was still absent, but increas-
ing the acceleration is likely to cause a rise in the peak at the stationary resonant frequency.
Both PTFE and Al2O3 had two distinguished modes: (i) a wide plateau mode at lower
frequencies of 20–45 Hz approximately (non-linear region), and (ii) a higher intensity peak
region (linear). This resulted in the two systems having both a narrow high-power density
section (the linear component) and a lower power density wider bandwidth section (the
non-linear component). The total power over the usable frequency range resulted in an
area under curve value of 28.07 and 28.8 mW-Hz for Al2O3 and PTFE, respectively. SS and
W also increased the bandwidth and power, with the SS balls having an average power
of 0.7 MW and a FWHM of 29.9 Hz. The W balls had a large peak power of 3.79 mW and
a wider NLBW region, with an overall area under the curve of 54.07 mW-Hz. Therefore,
we determined that a higher wt.% movable mass provided a wider bandwidth and higher
power at increased acceleration. Applying a higher acceleration to the W ball system
would likely cause the output to shift, similar to the outputs of PTFE and Al2O3, but we
maintained the acceleration limit at 1 g as most practical applications operate at <1 g
acceleration.

Figure 8 demonstrates the bandwidth effects of the varying materials from 0.1 g to 1 g.
The results of the 0.1 g bandwidth investigation (Figure 8a) were measured by the FWHM
(as these devices behaved more like a linear system) and the NLBW, as the devices still had
some movable mass components. For low acceleration, the FWHM values were similar
to the NLBW range, with the NLBW being slightly reduced in all cases. However, the
difference between the FWHM and NLBW increased as the density of the balls increased,
which made sense since the denser balls had a larger impact force on the cantilever. In all
cases, the bandwidths were significantly larger than the control with no movable mass,
thus validating the concept. The bandwidth also increased as the density of the balls or
total movable mass decreased because the lower density balls had larger displacements
at the lower acceleration force, whereas the low acceleration force was unable to propel
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the higher density balls from the surface. However, as the acceleration was increased to
1 g (Figure 8b), the NLBW approached a steady state, with all materials having similar
bandwidth of 34–36 Hz. The FWHM values did not apply to the non-linear systems as they
have large peaks and wide band regions, thus the term usable bandwidth was employed
to represent bandwidths with a power of >0.7 mW. The usable bandwidth increased as the
amount of movable mass increased. As the 1.5 g W balls demonstrated an NLBW of 43 Hz,
therefore demonstrating that the saturated NLBW was dependent on the acceleration
applied, it was determined that the NLBW could be further increased by increasing the
acceleration.
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Figure 8. Bandwidth comparison of varying ball materials at (a) 0.1 g and (b) 1 g, demonstrating the
FWHM bandwidth and the NLBW (range of frequency of movable masses).

The effect of the physical dimensions of the movable masses on power and bandwidth
were investigated by comparing devices with (i) one 10 mm diameter W sphere with mass
of 7.87 g and (ii) eight 5 mm W spheres with mass of 7.84 g. The density of the balls was
the same and only the diameter changed (5 mm vs. 10 mm). By increasing the number
of 5 mm diameter balls, the two devices had approximately the same wt.% of movable
mass, differing only by 0.1%. The effects with varying acceleration from 0.1, 0.5, and 1 g are
demonstrated in Figure 9. In all three accelerations, the larger diameter movable mass had
higher power harvesting capabilities, but the bandwidth of the two devices was the same
for an applied acceleration. For 0.1 g, the devices acted like a linear system with peaks of
0.122 and 0.09 mW and a FWHM of 3.56 and 3.85 Hz, compared to the control’s 1.2 Hz
FWHM. At 0.5 g, the devices had more non-linear dynamic properties and had peak power
values of 0.43 mW and 0.17 mW, with a bandwidth of 16.24 and 17.3 Hz for the 10 mm and
5 mm balls, respectively. At 1 g, the peak power increased to 1.40 mW and 0.51 mW and
the bandwidth increased to 38.1 Hz and 41.2 Hz. For each acceleration, there was a slight
increase in bandwidth for the smaller balls, but it was not statistically different. However,
the power difference between the various accelerations was significant. Therefore, the size
of the movable mass did significantly impact the amount of power harvested, but it did
not significantly affect the bandwidth. The bandwidth was, thus, dependent on the percent
of movable mass as well as the applied acceleration.
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Figure 9. Demonstrating the effect of varying the size of the movable mass, while keeping movable
mass percentage the same, by using one 10 mm W ball and eight 5 mm W balls and varying the
acceleration from (a) 0.1 g, (b) 0.5 g, and (c) 1 g.

4. Conclusions

In conclusion, we successfully validated a novel concept of widening the bandwidth
of a cantilever device by creating an embedded vertical or transverse movable mass system.
The results demonstrated that the bandwidth and power effects were dependent on the
acceleration and the amount, size, and density of the movable mass. The size of the
movable mass directly affected the amount of power that could be harvested, but it did not
have a significant effect on bandwidth. However, the density of the movable mass, which
affected the overall wt.%, significantly affected both the power and bandwidth, with lower
density masses preferred for low acceleration applications.

In the end, all of the abovementioned parameters influenced the bandwidth and
amount of power, and further investigation is required to optimize the parameters for a



Sensors 2021, 21, 5517 15 of 17

specific application. By modifying these parameters, the end user may fine tune the band-
width and power specifications to match the specifications of the application. The concept
of a vertical movable mass system demonstrated a significant increase in bandwidth for
high acceleration, low frequency applications. However, the concept can be implemented in
low acceleration applications by using less dense movable masses. The power magnitude
was dependent on the size, density, and overall percentage of the movable mass compo-
nent. The dynamics of the system consisted of both linear and non-linear components,
which requires further investigation in the future to enhance device performance. The
vertical movable mass method described in this paper has potential use in both macro- and
micro-scale cantilevers, but the concept requires further investigation at the micro-scale
level to demonstrate validity.

This novel method provides researchers with an alternative means of widening the
bandwidth without significantly decreasing power, and it has potential to be scaled down
to the micro-scale to power IoT applications. The concept was experimentally validated
using a piezoelectric energy harvesting cantilever, but the concept could also be applied to
other energy harvesting systems, such as electromagnetics and electrostatics as well as other
cantilever applications that require a wide bandwidth. This method is unique as it provides
increased bandwidth, while also providing high peak power, demonstrating it can poten-
tially provide both high power and high bandwidth. However, the results are dependent
on various parameters and would need to be optimized to the specific application.

5. Patents

An invention titled “Enhanced Frequency Bandwidth of Cantilever Beam using Trans-
verse Movable Mass,” was filed through the USPTO.
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