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Abstract

The formation of acquired drug resistance is a major reason for the failure of anti-cancer

therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin

resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was

adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-

ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS,

as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOX-

ALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used

anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a

stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the

absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance

to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treat-

ments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is

thought to be predominantly repaired by nucleotide excision repair and nucleotide excision

repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-

N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for

oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin
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resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells

appear to be complex and not to directly depend on enhanced DNA repair capacity. Models

of oxaliplatin resistance are of particular relevance since research on platinum drugs has so

far predominantly focused on cisplatin and carboplatin.

Introduction

Despite continuous progress over past decades, the prognosis for cancer patients whose disease

cannot be controlled locally remains generally unsatisfactory. More than 90% of cancer-associ-

ated deaths occur in patients with metastatic disease and the five-year survival rates are below

20% for this group [1,2].

Effective systemic therapies are needed to improve treatment outcome. A major obstacle in

the development of such therapies is the occurrence of drug resistance. Cancer cell drug resis-

tance can be intrinsic, i.e. there is no initial therapy response in previously untreated patients,

or acquired, i.e. tumours initially respond to therapy but eventually become resistant resulting

in treatment failure [3]. Acquired resistance is a major problem in a wide range of cancer types

[3]. An improved understanding of the processes underlying resistance acquisition is needed

to develop improved therapies. Drug-adapted cancer cell lines are preclinical model systems

that are used to study resistance formation in cancer cells and that have been shown to reflect

clinical mechanisms of acquired resistance [4–9].

Neuroblastoma is the most frequent solid extracranial paediatric cancer entity. About half

of the patients are diagnosed with high-risk disease associated with overall survival rates below

50% despite myeloablative therapy and differentiation therapy using retinoids [10–12]. Resis-

tance acquisition is a major issue in high-risk neuroblastoma. About half of high-risk neuro-

blastoma patients will relapse after completion of initial therapy leaving them with survival

rates below 10% [11,12]. High-risk neuroblastoma disease can be further classified into

tumours with or without MYCN amplification that differ substantially in biology and therapy

response [10–15].

An initial study has suggested oxaliplatin to be active in neuroblastoma cell lines [16].

Although there is limited evidence on the clinical efficacy of oxaliplatin in neuroblastoma

patients, oxaliplatin has been shown to be associated with an acceptable safety profile and is

suggested to display activity in some studies [17–20]. Here, we introduce a novel sub-line of

the neuroblastoma cell line SK-N-AS with acquired resistance to oxaliplatin (SK-N-ASrOX-

ALI4000). SK-N-AS was established from a bone marrow metastasis of a 6 year old female

patient with non-MYCN-amplified neuroblastoma (www.atcc.org) [21].

Materials and methods

Cells

The non-MYCN-amplified neuroblastoma cell line SK-N-AS was obtained from ATCC

(Manassas, VA, US). The oxaliplatin-resistant SK-N-AS sub-line SK-N-ASrOXALI4000 adapted

to growth in the presence of oxaliplatin 4000 ng/mL was derived from the resistant cancer cell

line (RCCL) collection (www.kent.ac.uk/stms/cmp/RCCL/RCCLabout.html) and had been

established by previously described methods [22]. In addition, we used an SK-N-ASrOX-

ALI4000 sub-line that had been cultivated for at least 10 passages in the absence of oxaliplatin

SK-N-ASrOXALI4000, an oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS
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(SK-N-ASrOXALI4000(-)) as a control. The MYCN-amplified UKF-NB-3 neuroblastoma cell

line was established from bone marrow metastases of a stage IV neuroblastoma patient [23].

All cells were propagated in IMDM supplemented with 10% FBS, 100 IU/ml penicillin and

100 μg/ml streptomycin at 37˚C. Cells were routinely tested for mycoplasma contamination.

Authentication was performed by short tandem repeat (STR) profiling. DNA was isolated

using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany), and the STR analysis

was performed using the PowerPlex 16 System (Promega, Mannheim, Germany) according to

the manufacturers’ protocols.

Viability assay

Cell viability was tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) dye reduction assay after 120 h incubation modified as described previously [22].

Virus infection

1500 viable cells were incubated for 4 days in 96-well plates prior to infection with H1N1 strain

A/WSN/33 at the indicated multiplicities of infection (MOIs) as previously described previ-

ously [24]. After 48h of incubation at 37˚C / 5% CO2 cell viability was determined by MTT

assay.

24-chromosome fluorescence in situ hybridisation (FISH)

24-chromosome FISH was performed as described previously [25,26] using a protocol that

involved six spectrally distinct fluorochromes PlatinumBright: 405 (blue), 415 (light blue/

aqua), 495 (green), 547 (light red/orange), 590 (dark red), 647 (far red) plus the DAPI counter-

stain in a four-stage probing and re-probing strategy [25,26]. Kreatech Diagnostics synthesised

all probes for this protocol, including 18 centromeric targets and six unique sequence targets

for chromosomes 5, 13, 14, 19, 21 and 22 using their Universal Linkage Labelling System www.

kreatech.com/rest/products/repeat-freetm-poseidontm-fish-dna-probes/preimplantation-

genetic-screening/multistar-24-fish.html. Blastomere nuclei were fixed to glass slides using

standard protocols described previously [27]. Slides were washed in PBS (2 min) followed by

dehydration and air-drying using an ethanol series. Pepsin treatment followed (1 mg/ml pep-

sin in 0.01 M HCl, 20 min at 37˚C), then rinsing in distilled water and PBS, then a paraformal-

dehyde (1% in PBS) fixation at 4˚C for 10 min, then PBS and distilled water washes followed

by ethanol dehydration and air drying. Four probe combinations [25] dissolved in hybridisa-

tion mix (Kreatech) were pre-denatured at 72–73˚C for 10 min and pipetted on to the slide.

Co-denaturation of probe and target cells at 75˚C for 90 s (Thermobrite-StatSpin, Vysis/

Abbott) proceeded before hybridisation at 37˚C. The hybridisation period for the first three

rounds of hybridisation (centromeric probes) was 30 min, whereas for the final round was

overnight. Post-hybridisation washes were for 1 min 30 s in 0.7 × SSC, 0.3% Tween 20 at 72˚C

followed by a 2 min in 2× SSC at room temperature. Slides were mounted in Vectashield con-

taining 0.1 ng/μL of DAPI (Vector labs) before microscopy and image analysis. After analysis

and image capture, slides were washed in 2× SSC at room temperature to remove the coverslip

and then washed for 30 s in distilled water (72˚C) to remove the bound probe. An ethanol

series preceded air-drying before continuation to the next round of hybridisation. The proto-

col was the same for the second, third and final rounds with the following exceptions: The

overnight hybridisation time for the final round (previously mentioned), pepsin and parafor-

maldehyde treatment were only required for the first round; the post-hybridisation wash time

was reduced with every round from 90 s (first round of hybridisation) to 50–60 s (second

round) to 30 s (third and final rounds). Microscopy analysis was performed on an Olympus

SK-N-ASrOXALI4000, an oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS
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BX-61 epifluorescence microscope equipped with a cooled CCD camera (by Digital Scientific

—Hamamatsu Orca-ER C4742-80) using the appropriate filters. To enable analysis of the

fluorochromes for image acquisition two communicating filter wheels (Digital Scientific UK)

with the appropriate filters were used. The recommended filters by the probe manufacturers

can be found here: www.kreatech.com/rest/customer-service-support/technical-support/

fluorophores-and-filter-recommendation.html

A modified version of SmartCapture software (Digital Scientific UK) was used to capture

all images, and to display results from all four hybridisation rounds in the same image, Adobe

Photoshop was used.

Receptor tyrosine kinase phosphorylation array

The phosphorylation status of 49 receptor tyrosine kinases was determined using a commer-

cial kit (Proteome Profiler Human Phospho-RTK Array Kit, R&D Systems, Abingdon, UK)

following the manufacturer’s instructions. Spot sizes were examined visually and densitomet-

ric analysis was performed using ImageJ software (http://imagej.nih.gov/ij/).

Respirometry

Oxygen consumption of intact cells was determined using two chambered Oxygraph-2k high

resolution respirometer (Oroboros, Innsbruck, Austria) at 37˚C in response to modulators of

oxidative phosphorylation. Results were analysed using DatLab software (Oroboros, Inns-

bruck, Austria). Baseline respiratory activity was determined for 30 min. Then, 8 μg/mL oligo-

mycin (Sigma-Aldrich Company Ltd, Dorset, UK) was added for 10 min. Oligomycin inhibits

ATP synthase resulting in proton leak and, in turn, a leak of respiration. This was followed by

treatment with FCCP (Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) (Sigma-

Aldrich Company Ltd, Dorset, UK) 10 μM. FCCP interferes with the proton gradient by

uncoupling the electron transport chain from the oxidative phosphorylation system resulting

in maximal capacity of the respiratory chain.

Cell sensitivity to Ultraviolet C (UVC)-induced DNA damage

Effects of ultraviolet C (UVC)-irradiation on cell viability were determined by MTT assay

120h post irradiation with a UVG-11 compact UV lamp (UVP, Upland, CA) at a wave length

of 254 nm. Doses were calculated with a UVX digital radiometer (UVP, Upland, CA). In addi-

tion, a colony formation assay was performed. 10,000 cells were transferred into 60 mm dishes

and incubated for 11 days. Colonies were fixed, stained using crystal violet solution, and

counted.

Statistics

Results are expressed as mean ± S.D. of at least three experiments. In general, comparisons

between two groups were performed using Student’s t-test. Three or more groups were com-

pared by ANOVA followed by the Student-Newman-Keuls test. The fraction of diploid cells in

the project cell lines were compared by χ2 test with subsequent Bonferroni correction. P values

lower than 0.05 were considered to be significant.

Results

Cell line authentication by STR analysis

Prior to the start of the project, the identity of SK-N-AS and SK-N-ASrOXALI4000 was con-

firmed by STR analysis (S1 Table).

SK-N-ASrOXALI4000, an oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS
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Cytogenetic cell line characterisation

Representative images of the cytogenetic cell line characterisation by 24-chromosome fluores-

cence in situ hybridisation (FISH) are presented in Fig 1. Aneuploidy was observed in all the

cell lines. However, the level of aneuploidy overall was lower for the parental SK-N-AS cells

(50% diploidy) than for the oxaliplatin-resistant SK-N-AS sub-line SK-N-ASrOXALI4000 (34%

diploidy) and for SK-N-ASrOXALI4000 cells that had been cultivated for at least 10 passages in

the absence of oxaliplatin (SK-N-ASrOXALI4000(-), 38% diploidy) (S2 Table). Statistical analysis

revealed significant differences in the fraction of diploid cells between SK-N-AS and SK-N-

ASrOXALI4000 as well as between SK-N-AS and SK-N-ASrOXALI4000(-) cells, but not between

SK-N-ASrOXALI4000 and SK-N-ASrOXALI4000(-) cells. Chromosome numbers ranged from

23–160 for SK-N-AS and SK-N-ASrOXALI4000(-) cells and from 23–178 in SK-N-ASrOX-

ALI4000 cells. The increase in chromosome number was caused by increases in specific chro-

mosomes not whole metaphase duplication. Chromosomes 18 and X were more likely to

remain diploid (50–59% and 72–95% diploidy observed respectively) versus other chromo-

somes that showed higher levels of variation (S2 Table).

Chromosomal rearrangement within the metaphases was also common for all cell lines

investigated (S3 Table). Single colour chromosome painting of chromosomes 1, 3, 4, 5, 6, 7, 8,

13, 14, 17, 18, 22 and X showed signals on multiple chromosomes in 66–100% of metaphases

analysed. Chromosomes 10, 11, 12, 15 and 21 displayed signal on a single chromosome for

SK-N-AS (70–94%), but signals on multiple chromosomes for SK-N-ASrOXALI4000 and

SK-N-ASrOXALI4000(-) cells (44–100%) (S3 Table). Fig 1 shows an example of whole chromo-

some painting from this study. In this example, SK-N-AS cells display two signals for the chro-

mosomes 2, 8, and 12 showing that they are diploid for these chromosomes (Fig 1A–1C). In

contrast, more than two signals (Fig 1D–1I) as well as partially labelled chromosomes (Fig 1E

and 1I) can be seen in SK-N-ASrOXALI4000 and SK-N-ASrOXALI4000(-) cells.

Fig 1. Representative fluorescence in situ hybridisation (FISH) images of chromosomes 2 (A, D and

G), 12 (B, E and H) and 8 (C, F and I) in SK-N-AS (A-C), SK-N-ASrOALI4000(-) (D-F), and SK-N-

ASrOXALI4000 (G-I) neuroblastoma cells. Scale bar represents 10μm.

doi:10.1371/journal.pone.0172140.g001

SK-N-ASrOXALI4000, an oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS
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Cross-resistance profiles of SK-N-AS and its sub-lines

Next, we determined the drug resistance profiles of SK-N-AS, SK-N-ASrOXALI4000, and

SK-N-ASrOXALI4000(-) to a range of anti-cancer agents. This included the frequently used plat-

inum drugs oxaliplatin, cisplatin, and carboplatin. In addition, we examined the effects of two

additional anti-cancer drugs that target DNA integrity. Doxorubicin is an anthracycline that

targets DNA integrity through DNA intercalation and topoisomerase II inhibition [28,29].

Gemcitabine is a nucleoside analogue that is intracellularly activated through phosphorylation

[30]. Gemcitabine triphosphate is incorporated by DNA polymerase into the DNA resulting in

chain termination after addition of one more nucleotide triphosphate (masked chain termina-

tion). In addition, gemcitabine diphosphate covalently binds to and inhibits ribonucleotide

reductase resulting in the reduction of cellular nucleotide triphosphate pools and inhibition of

deoxycytidylate deaminase that inactivates gemcitabine monophosphate. These events

increase gemcitabine phosphorylation and incorporation into DNA (gemcitabine self-potenti-

ation) [30].

The oxaliplatin IC50 of SK-N-ASrOXALI4000 cells was increased by 834-fold compared to

SK-N-AS cells, the IC90 was increased by 774-fold (Fig 2). SK-N-ASrOXALI4000(-) cells (that had

been cultivated for 10 weeks in the absence of oxaliplatin) displayed slightly decreased IC50 and

IC90 values compared to SK-N-ASrOXALI4000 cells but remained highly oxaliplatin-resistant

(IC50 SK-N-ASrOXALI4000(-)/ IC50 SK-N-AS = 487; IC90 SK-N-ASrOXALI4000(-)/ IC90 SK-N-

AS = 509) indicating a stable oxaliplatin resistance phenotype that does not depend on the con-

tinuous presence of oxaliplatin (Fig 2). SK-N-ASrOXALI4000 and SK-N-ASrOXALI4000(-) cells

displayed similar cross-resistance to cisplatin and carboplatin. The resistance factors for cis-

platin and carboplatin were lower than for oxaliplatin (S4 Table).

In contrast to the cross-resistance profiles against platinum drugs, SK-N-ASrOXALI4000

and SK-N-ASrOXALI4000(-) cells displayed no cross-resistance to doxorubicin and gemcitabine

(Fig 2, S4 Table). Notably, SK-N-ASrOXALI4000 and SK-N-ASrOXALI4000(-) cells were more

sensitive to doxorubicin than SK-N-AS cells.

Differentiation therapy using retinoic acids is a common constituent of treatment protocols

for high-risk neuroblastoma patients [11,12]. SK-N-AS cells were previously reported to be

insensitive to all-trans retinoic acid (ATRA)-induced differentiation [31]. In concordance, nei-

ther SK-N-AS cells nor SK-N-ASrOXALI4000 or SK-N-ASrOXALI4000(-) cells were sensitive to

ATRA in concentration of up to 5μM after treatment for up to five days.

Influenza A viruses are under investigation as oncolytic viruses [32–36]. To determine the

permissiveness of the investigated cell lines to influenza A virus infection, they were infected

with the H1N1 strain A/WSN/33 at different multiplicities of infection (MOIs). Cell viability

was determined at 48h post infection by MTT assay. Influenza A virus infection did not result

in a significant reduction of SK-N-AS cell viability at the investigated MOIs up to 3 (Fig 3). In

contrast, influenza A virus infection significantly reduced SK-N-ASrOXALI4000 cell viability at

MOIs ranging 1 and 3 and SK-N-ASrOXALI4000(-) viability at MOI 3. Notably, MYCN-ampli-

fied UKF-NB-3 cells were found to be substantially more sensitive to influenza A virus-

induced anti-cancer effects than MYCN-non-amplified SK-N-AS cells (Fig 3).

Receptor tyrosine kinase phosphorylation

49 receptor tyrosine kinases were analysed for their phosphorylation status (indicating kinase

activation) in the project cell lines using a commercial kit (Proteome Profiler Human Phos-

pho-RTK Array Kit, Abingdon, UK). Phosphorylation status was determined visually and den-

sitometrically using ImageJ software. Receptor tyrosine kinases were scored as phosphorylated

when spots were visible and the fold change spot density/ density control membrane was

SK-N-ASrOXALI4000, an oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS
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Fig 2. Effects of cytotoxic drugs on the viability of SK-N-AS cells, SK-N-AS cells with acquired

resistance to oxaliplatin (SK-N-ASrOXALI4000), or SK-N-ASrOXALI4000 cells that had been cultivated

for 10 weeks in the absence of oxaliplatin (SK-N-ASrOXALI4000(-)). Drug concentrations that reduce cell

viability by 50% (IC50) or 90% (IC90) were determined by MTT assay after 120h of incubation. * P < 0.05

relative to control; # mean ± S.D. (presented when no bar is visible on the chosen scale).

doi:10.1371/journal.pone.0172140.g002

SK-N-ASrOXALI4000, an oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS
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greater than 2.5. Eight receptor tyrosine kinases were phosphorylated in at least one cell line:

EGFR, INSR, IGF1R, PDGFRB, AXL, EPHA10, DDR2, and RYK (Fig 4A, S1 Fig). DDR2 and

EPHA10 phosphorylation was found > 2-fold reduced in SK-N-ASrOXALI4000 cells vs.

SK-N-AS cells but not in SK-N-ASrOXALI4000(-) cells vs. SK-N-AS cells suggesting that this

may be a consequence of the presence of oxaliplatin. PDGFRB and IGF1R displayed increased

phosphorylation in SK-N-ASrOXALI4000(-) cells vs. SK-N-AS cells but not in SK-N-ASrOX-

ALI4000 cells vs. SK-N-AS cells. INSR phosphorylation was > 2-fold enhanced in both SK-N-

ASrOXALI4000 cells and SK-N-ASrOXALI4000(-) cells compared to SK-N-AS cells (Fig 4B).

EGFR, AXL, and RYK displayed similar phosphorylation levels in all three cell lines as indi-

cated by fold changes of smaller than 2 (Fig 4B).

Cellular oxygen consumption

Respirometry experiments indicated that SK-N-AS and SK-N-ASrOXALI4000 cells display

functional oxidative phosphorylation and mitochondria. Oligomycin reduced oxygen con-

sumption and FCCP enhanced oxygen consumption (Fig 5). Hence, these cell lines do not

appear to display a Warburg metabolism. Since there were no significant differences between

the two cell lines, resistance formation to oxaliplatin does not appear to be associated with

changes in the cancer cell metabolism in this model.

Fig 3. Effects of H1N1 influenza A virus infection on cell viability. Non-MYCN-amplified SK-N-AS

neuroblastoma cells, SK-N-AS cells with acquired resistance to oxaliplatin (SK-N-ASrOXALI4000), SK-N-

ASrOXALI4000 cells that were passaged for 10 passages in absence of oxaliplatin (SK-N-ASrOXALI4000(-)), or

MYCN-amplified UKF-NB-3 neuroblastoma cells were infected with H1N1 influenza strain A/WSN/33 virus at

different multiplicities of infection (MOIs) and cell viability was determined 48h post infection relative to non-

treated control. The dotted line indicates the viability of non-infected control cells. * P < 0.05 relative to non-

infected control cells.

doi:10.1371/journal.pone.0172140.g003

SK-N-ASrOXALI4000, an oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS
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Fig 4. Phosphorylation status of 49 receptor tyrosine kinases. Receptor tyrosine kinase phosphorylation was determined by

a commercial kit (Proteome Profiler Human Phospho-RTK Array Kit, R&D Systems, Abingdon, UK) with subsequent

densitometric analysis using ImageJ software (http://imagej.nih.gov/ij/). A) Receptor tyrosine kinase phosphorylation status

expressed as fold change spot density relative to a control membrane area. Images of the membranes are presented in S1 Fig.

B) Differential phosphorylation of receptor tyrosine kinases that were found phosphorylated in at least one cell line (as indicated

by a fold change spot density relative to a control membrane area >2) in SK-N-ASrOXALI4000 or SK-N-ASrOXALI4000(-) cells

relative to SK-N-AS.

doi:10.1371/journal.pone.0172140.g004
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Cell sensitivity to ultraviolet C (UVC)-induced DNA damage

Nucleotide excision repair is assumed to be critically involved in the repair of platinum drug-

induced DNA damage and the nucleotide excision repair capacity has been suggested to deter-

mine cellular sensitivity to platinum drugs [37]. UVC also induces photoproducts that are

exclusively repaired by nucleotide excision repair [38]. Hence, we compared the UVC

response of SK-N-AS and SK-N-ASrOXALI4000 cells. Notably, SK-N-ASrOXALI4000 cells dem-

onstrated an increased UVC sensitivity compared to SK-N-AS at higher radiation doses as

indicated by MTT assay (Fig 6A). Similar results to those obtained for SK-N-ASrOXALI4000

cells were received for SK-N-ASrOXALI4000 cells (S2 Fig). This finding was confirmed by col-

ony formation assay (Fig 6B). These results do not suggest a contribution of increased nucleo-

tide excision repair as being relevant to the oxaliplatin resistance mechanism in SK-N-

ASrOXALI4000 cells.

Discussion

Here, we introduce SK-N-ASrOXALI4000, a sub-line of the non-MYCN-amplified neuroblas-

toma cell line SK-N-AS with acquired resistance to oxaliplatin. SK-N-ASrOXALI4000 cells dis-

played pronounced oxaliplatin resistance compared to parental SK-N-AS cells. Some studies

have reported that the formation of resistance to anti-cancer drugs may be the consequence of

a reversible enrichment of a pre-existing fraction of resistant cancer cells [39–41]. However,

SK-N-ASrOXALI4000 cells displayed a stable resistance phenotype that was maintained after a

cultivation period of 10 passages in the absence of oxaliplatin.

Cytogenetic cell line characterisation demonstrated that SK-N-ASrOXALI4000 cells acquired

additional chromosomal aberrations in addition to those observed in SK-N-AS cells as indi-

cated by increased levels of aneuploidy and chromosomal rearrangements. This may not be

unexpected given that platinum drugs including oxaliplatin are thought to exert their anti-can-

cer effects predominantly via causing DNA damage [42,43].

Previously, it was shown that a Warburg metabolism, i.e. the use of glycolysis for ATP pro-

duction instead of mitochondrial oxidative phosphorylation in the presence of sufficient oxy-

gen levels (aerobic glycolysis), may protect cancer cells from toxicity induced by platinum

drugs including oxaliplatin [44,45]. However, respirometry experiments indicated similarly

Fig 5. Oxygen consumption by SK-N-AS and SK-N-ASrOXALI4000 cells. Oxygen consumption was

determined in intact cells in the absence of treatment (baseline), in response to oligomycin (8 μg/mL), an

inhibitor of ATP synthase that causes a leak of protons resulting in inhibition of respiration (leak), and in

response to FCCP (10 μM) that uncouples the electron transport chain resulting in maximum oxidative

phosphorylation.

doi:10.1371/journal.pone.0172140.g005
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intact oxidative phosphorylation in both SK-N-AS and SK-N-ASrOXALI4000 cells indicating

no there was no metabolic shift towards a Warburg phenotype in oxaliplatin resistance.

Of the 49 receptor kinases examined, five kinases were found to be differentially phosphor-

ylated between the parental SK-N-AS cell line and its oxaliplatin-resistant sub-line. DDR2 and

EPHA10 phosphorylation were found to be reduced in SK-N-ASrOXALI4000 cells vs. SK-N-AS

cells but not in SK-N-ASrOXALI4000(-) cells vs. SK-N-AS cells. This suggests that these changes

may be a consequence of the continuous presence of oxaliplatin during cell cultivation in

SK-N-ASrOXALI4000 cells, rather than a sustainable resistance mechanism. Little is known

about a role of DDR2 or EPHA10 in the cellular response to platinum drugs. DDR2 is an extra-

cellular matrix receptor that may contribute to oncogenic processes, in particular through

Fig 6. Effects of ultraviolet C (UVC) radiation on the viability of SK-N-AS and SK-N-ASrOXALI4000 cells. A) Dose-dependent effects of UVC on

SK-N-AS and SK-N-ASrOXALI4000 cells as indicated by MTT assay five days post exposure. B) Representative images and quantification of colony

formation by SK-N-AS and SK-N-ASrOXALI4000 cells, as determined 11 days post exposure to UVC (32 J/m2) relative to non-irradiated control.

doi:10.1371/journal.pone.0172140.g006
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interaction with collagen [46]. EPHA10 is recognised as potential therapeutic target in breast

cancer [47], but its functional role remains to be characterised.

PDGFRB and IGF1R displayed increased phosphorylation in SK-N-ASrOXALI4000(-) cells

vs. SK-N-AS cells but not in SK-N-ASrOXALI4000 cells vs. SK-N-AS cells. Although PDGFRB

and IGF1R are well known anti-cancer drug targets previously shown to be involved in plati-

num drug resistance [48,49], it remains unclear how increased phosphorylation, which was

exclusively observed in oxaliplatin-resistant cells that had been cultivated in the absence of

oxaliplatin, may specifically contribute to oxaliplatin resistance in SK-N-ASrOXALI4000 cells.

Interestingly, cisplatin has been described to reduce PDGFRB expression in neuroblastoma

cells [50]. Hence, the difference between the PDGFRB levels in SK-N-ASrOXALI4000 and

SK-N-ASrOXALI4000(-) cells may be again the consequence of the presence of oxaliplatin dur-

ing the culturing of SK-N-ASrOXALI4000 cells.

INSR phosphorylation was consistently increased in both SK-N-ASrOXALI4000 cells and

SK-N-ASrOXALI4000(-) cells compared to SK-N-AS cells. This may suggest a role of INSR in

the context of acquired oxaliplatin resistance. However, INSR signalling has so far been associ-

ated with adverse events that have limited the clinical success of anti-cancer strategies targeting

IGF1R [51]. Therefore, the relevance of INSR phosphorylation remains unclear in the context

of acquired oxaliplatin resistance in our model.

Oxaliplatin belongs to the class of platinum-based anti-cancer drugs that target DNA integ-

rity through direct chemical interaction with DNA resulting in DNA strand breaks. In addi-

tion to oxaliplatin, cisplatin and carboplatin are platinum-based drugs that are frequently used

in cancer patients. Based on the analysis of drug-DNA adducts, the mechanisms of action of

cisplatin and carboplatin appear to be very similar while oxaliplatin differs in its mode of

action from these two compounds [42,43]. Moreover, oxaliplatin may offer a more favourable

toxicity profile compared to the other frequently used platinum-based anti-cancer agents, cis-

platin and carboplatin, and the cross-resistance profiles between oxaliplatin and cisplatin/ car-

boplatin may be incomplete [42,43,52–55]. In this context, SK-N-ASrOXALI4000 cells

displayed substantial cross-resistance to cisplatin and carboplatin although the oxaliplatin

resistance was much more pronounced.

Interestingly, SK-N-ASrOXALI4000 cells did not show cross-resistance to doxorubicin and

gemcitabine that induce DNA damage by alternative mechanisms [28–30]. While the gemcita-

bine sensitivity was similar in SK-N-AS and SK-N-ASrOXALI4000 cells, SK-N-ASrOXALI4000

cells were more sensitive to doxorubicin compared to SK-N-AS. The reasons for this increased

doxorubicin sensitivity remain unclear. Not much is known about the doxorubicin sensitivity

of platinum drug-adapted cancer cell line. However, cell line adaptation to platinum drugs

does not seem to be generally associated with increased doxorubicin sensitivity. A cisplatin-

resistant sub-line of the neuroblastoma cell line UKF-NB-3 displayed cross-resistance to doxo-

rubicin [56]. Among six cisplatin-adapted urothelial cancer cell lines, only one showed > 2-

fold increased sensitivity to doxorubicin compared to the respective parental cell line, while

the other five cell lines were similar sensitive to doxorubicin like the corresponding parental

cell lines [57].

SK-N-ASrOXALI4000 cells also displayed higher sensitivity to UVC irradiation than

SK-N-AS cells, although both UVC- and oxaliplatin-induced DNA damage are thought to be

predominantly repaired by nucleotide excision repair [38,58]. In this context, the nucleotide

excision repair capacity was suggested to determine cellular sensitivity to platinum drugs [37].

However, these findings may not be too surprising, given the well documented complexity of

the mechanisms that may underlie platinum drug resistance [58,59]. This involves mecha-

nisms that prevent platinum drug binding to DNA (pre-target resistance), mechanisms that
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inhibit cell death signalling downstream of DNA damage (post-target resistance), and/ or

mechanisms that do not have obvious links with the mechanism of action of platinum drugs

(off-target resistance) instead of, or in addition to, mechanisms that directly relate to platinum

drug-induced DNA damage [58,59].

Oncolytic viruses including influenza viruses are under preclinical investigation as anti-

cancer agents [32–36,60]. Virus-induced oncolytic effects have been described to be primar-

ily caused by virus replication associated with cancer cell lysis and cell death induction

[32,35,36,60]. Talimogene laherparepvec (T-VEC), an engineered herpes simplex virus-1,

was recently approved for the therapy of melanoma in the US and Europe. Interestingly,

SK-N-ASrOXALI4000 cells displayed increased sensitivity to influenza virus infection com-

pared to SK-N-AS cells. The reasons for this remain unclear. The activation of different

oncogenes has been described to promote virus replication in cancer cells [32,60], although

it is not clear whether this may be the mechanism in SK-N-ASrOXALI4000 cells. Neverthe-

less, this finding indicates that resistance acquisition to anti-cancer drugs may be associated

with a change in susceptibility to oncolytic viruses and that oncolytic viruses may represent

treatment options for cancer diseases after therapy failure even if the primary tumour was

not susceptible.

In conclusion, we introduce a novel oxaliplatin-resistant neuroblastoma cell line, SK-N-

ASrOXALI4000. The oxaliplatin resistance mechanisms appear to be complex and not be

directly associated to enhanced DNA repair capacity. Follow-up studies using methods includ-

ing transcriptomics and genomics analyses will be needed to elucidate the resistance mecha-

nisms in more detail. Models of oxaliplatin resistance are of particular relevance since research

on platinum drugs has so far vastly been focused on cisplatin (62,748 hits in PubMed, www.

ncbi.nlm.nih.gov/pubmed) and carboplatin (14,705 hits in PubMed), which are believed to

share the same mechanism of action [42,43], in comparison to oxaliplatin (8360 hits in

PubMed, data retrieved on 30th November 2016).
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