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ABSTRACT The intestinal microbiome is closely related to host health, and metatran-
scriptomic analysis can be used to assess the functional activity of microbiomes by quanti-
fying microbial gene expression levels, helping elucidate the interactions between the
microbiome and the environment. However, the functional changes in the microbiome
along the host intestinal tract remain unknown, and previous analytical methods have lim-
itations, such as potentially overlooking unknown genes due to dependence on existing
databases. The objective of this study is to develop a computational pipeline combined
with next-generation sequencing for spatial covariation analysis of the functional activity
of microbiomes at multiple intestinal sites (biogeographic locations) within the same indi-
vidual. This method reconstructs a reference metagenomic sequence across multiple in-
testinal sites and integrates the metagenome and metatranscriptome, allowing the gene
expression levels of the microbiome, including unknown bacterial genes, to be com-
pared among multiple sites. When this method was applied to metatranscriptomic analy-
sis in the intestinal tract of common marmosets, a New World monkey, the reconstructed
metagenome covered most of the expressed genes and revealed that the differences in
microbial gene expression among the cecum, transverse colon, and feces were more
dynamic and sensitive to environmental shifts than the abundances of the genes. In addi-
tion, metatranscriptomic profiling at three intestinal sites of the same individual enabled
covariation analysis incorporating spatial relevance, accurately predicting the function of a
total of 10,856 unknown genes. Our findings demonstrate that our proposed analytical
method captures functional changes in microbiomes at the gene resolution level.

IMPORTANCE We developed an analysis method that integrates metagenomes and meta-
transcriptomes from multiple intestinal sites to elucidate how microbial function varies along
the intestinal tract. This method enables spatial covariation analysis of the functional activity
of microbiomes and accurate identification of gene expression changes among intestinal
sites, including changes in the expression of unknown bacterial genes. Moreover, we applied
this method to the investigation of the common marmoset intestine, which is anatomically
and pharmacologically similar to that of humans. Our findings indicate the expression pat-
tern of the microbiome varies in response to changes in the internal environment along the
intestinal tract, and this microbial change may affect the intestinal environment.
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The intestinal tract regulates highly complex physiological processes while interacting
with a dense and diverse microbial population. The large intestine, in particular, has

a high-density microbiome, which is important in host-microbiome interactions (1). Most studies
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use fecal samples based on the assumption that feces reflect the condition of the microbiome
inside the intestinal tract (2–5). Because the function of the intestinal tract varies from site to site
and there are differences in the physicochemical environment, such as in nutrient, oxygen, and
pH levels, the microbiome may differ in its response to changes in the environment (6, 7).
Indeed, due to these environmental shifts, some studies have reported that the composition of
the microbiome varies depending on the intestinal site (biogeographic locations) in model ani-
mals (8–12). However, it is still unclear howmicrobial function varies along the intestinal tract, as
these studies have shown only differences in the microbial members in the intestinal tract, and
metatranscriptomic analysis has not yet been conducted.

Moreover, to study the interrelationship between humans and microbiomes, an animal
model that is highly anatomically and pharmacologically similar to humans is more appro-
priate. The common marmoset is a small New World primate that is considered a useful
model in preclinical studies due to its common physiological and anatomical characteristics
with those of humans (13). In addition, the common marmoset is the only nonhuman pri-
mate in which germfree conditions have been successfully produced, and it has the poten-
tial to expand the scope of intestinal microbiome studies (14).

In the past few decades, many sequence-based analyses have attempted to elucidate the
relationships between microbiomes and environments such as the ocean, soil, and digestive
tract. These studies have traditionally focused on profiling membership through amplicon
sequencing of the 16S rRNA gene. Recently, whole-metagenomic sequencing methods, which
enable comprehensive capture of microbial genomes to reconstruct database-independent
metagenome sequences and reveal potential microbial genes and community taxonomic
abundance profiles, have been more widely used due to advances in sequencing throughput
and analytical methods. For instance, in a large-scale metagenomic analysis spanning human
body parts—the oral cavity, skin, feces, and vagina—154,723 microbial genomes were recon-
structed, 77% of which were unknown genomes not found in public repositories (2).
Additionally, a study on the cow rumen microbiome reported 913 microbial genomes, and
these reconstructed genomes improved the metagenomic read classification 7-fold (15). Other
studies have shown microbial genes detected in reconstructed metagenomic sequences play
an important role in the pathology of rheumatoid arthritis (3). Although these metagenomic
studies have providedmany insights into a wide variety of microbiomes by finding new bacte-
rial genomes and potential genes and have emphasized the importance of reconstructing
bacterial genomes, these approaches only show the presence of microbiome members and
their genes and cannot indicate whether they are active members of the microbiome or how
the bacteria actually interact with the environment. As a way to solve these problems, meta-
transcriptomic analysis of transcripts within a microbiome can be used to obtain deeper
insight into how bacterial communities respond to environmental conditions. A study that
included both metatranscriptomic and metagenomic analyses in patients with inflammatory
bowel disease (IBD) highlighted the metabolic pathways characteristic of the disease and
revealed whether metagenomically abundant bacteria were inactive or dormant in the intes-
tine (4). In a human fecal microbiome study with both metagenomic and metatranscriptomic
analyses, the metatranscriptome was found to be more dynamic than the metagenome, and
there was a discrepancy between bacterial abundance and transcriptional activity (5). As such,
finding microbial gene expression signatures can be crucial to understanding the mechanisms
underlying microbe-environment interactions.

Metatranscriptomic analysis utilizes two main approaches to quantify bacterial tran-
scripts, each with its own drawbacks. The first is the read-based approach used in pipe-
lines such as HUMAnN2 (16) and SAMSA2 (17), which assess the activity of each protein
family and pathway by aligning reads derived from metatranscriptomic library prepara-
tions with protein databases such as RefSeq (18) and pathway databases such as KEGG
(19) and MetaCyc (20), respectively. This method is simple and often used but may
miss many previously unknown genes that are not annotated in the databases.

The second approach involves metatranscriptomic analysis based on de novo assembly of
metagenomic data. Gene expression is quantified by aligning RNA reads with the predicted
genes for contigs obtained by assembling corresponding metagenomic DNA reads, which
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requires simultaneous sampling of the metagenome and metatranscriptome from the same
sample. This approach is powerful enough to discover and focus on unknown genes and was,
therefore, adopted in the present study. When applied to the analysis of the microbiome in
multiple environments, the challenge with this approach is to identify the same gene across
samples, because the assembled genomic sequence varies from base to base depending on
the sample.

In the present study, we aimed to clarify the changes in microbial abundance and gene
expression caused by environmental gradients among the cecum, transverse colon, and
feces. To accurately perform this investigation, it is necessary to overcome the discrepancy
between the microbes existing in the environment and those registered in databases such
as the COG and KEGG Orthology (KO) databases (19, 21). We developed an integrated meta-
genomic and metatranscriptomic method for analyzing the functional changes in micro-
biomes across multiple intestinal sites and predicting the functions of unknown genes and
then applied this method to the investigation of the common marmoset intestine. Our
method not only reconstructed the metagenome more accurately than conventional meth-
ods but also overcame the bottleneck of identifying the corresponding same gene among
multiple samples. By applying this approach, we predicted the functions of 10,856 unknown
genes by spatial covariation analysis.

RESULTS
Overview of the proposed analytical method that integrates the metagenome and

metatranscriptome to analyze the functional activity of microbiomes among intestinal
sites. After assembly and scaffolding of the metagenomic reads, the proposed analytical
method adopted a strategy to reconstruct the common reference metagenomes in multiple
sites, including those of unknown bacteria, by merging the scaffolded contigs among sam-
ples; accordingly, the expression levels of all bacterial genes could be quantified by integrat-
ing this reconstructed reference metagenome with metatranscriptomic data. An overview of
the proposed analytical method is illustrated in Fig. 1. Using this method, we compared the
microbial gene expression levels among three sites—the cecum, transverse colon, and feces.
These sites were selected as locations equivalent to the proximal, middle, and distal posi-
tions of the colon, where most bacteria are located (22). In addition, we compared the corre-
sponding microbial compositions among humans, mice, rats and marmosets to evaluate the
suitability of the common marmoset as a preclinical animal model for microbiome studies.

Metagenome reconstruction improves assembly contiguity, transcript mapping rate,
and identification of the same genes among sites. Reference metagenomes with total
lengths of 306 Mb and 395 Mb, consisting of 32,244 and 39,905 scaffolds, respectively, were
reconstructed by merging metagenomes from three intestinal sites for individuals 1 and 2,
respectively. We compared the scaffold lengths before and after merging scaffolds from
three sites by a generalized N-statistic score, which is an extension of N50. Scores from N10
to N100 were plotted at 10 intervals, as shown in Fig. 2A. The score for the genome assem-
bly of each intestinal site fell well below that of the merged one. This implied that merging
improved the assembly contiguity, indicating the assembled scaffolds from the three sites
complemented each other to reconstruct a longer genome (Fig. S1; Text S1). Next, 246,980
and 320,613 genes were detected in the reconstructed metagenomes for individuals 1 and 2,
respectively. Of the genes detected in individuals 1 and 2, 63,331 and 88,575 (26% and 28%)
genes were not present in the COG database, and 112,790 and 152,845 (46% and 48%) genes
were not present in the KEGG database (Fig. 2B; Table S1). Thus, a large number of novel
genes not included in the public database were detected in the reconstructed metagenomes.

To quantify the gene expression levels, we first mapped the mRNA reads to all complete
bacterial, archaeal, and viral genomes in the RefSeq database (18). Only 21% to 52% of the
mRNA reads could be assigned to the known genomes (Fig. 2C). This result confirmed that
information to understand microbiome activity was limited if relying solely on genomes reg-
istered in public databases. We therefore mapped the mRNA reads to the reference metage-
nomes reconstructed in this study. The mapping rate to the reconstructed metagenomes
increased to 82% to 92% (Fig. 2C). The reconstructed metagenomes covered most of the
expressed genes (Table S2) and allowed us to map 2 to 4 times more reads in comparison
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to the public databases. These results underscore the importance of database-independent
analytical methods, especially in metatranscriptomic analysis, to quantify microbial gene
expression levels.

In addition, we verified that the gene annotations were retained before and after merging
by examining the percentage of genes common to the three sites that matched the corre-
sponding genes in the reconstructed metagenome. We found that 96.9% and 96.6% of the
genes common to the three sites were identical to those in the merged metagenome in indi-
viduals 1 and 2, respectively (allowing for a 3-base mismatch; Text S1; Table S3). The reference
metagenome reconstructed by merging thus achieved high accuracy in identifying the same
genes among three intestinal sites.

Functional annotation of unknown genes with metatranscriptomic profiles. To
address unknown genes that were not annotated by the databases, we generated a gene
catalogue from the reconstructed metagenomic sequences by grouping the genes into clus-
ters and performing a covariation analysis. Of the unknown genes detected in two individuals,
50,509 expressed genes were grouped into 24,725 gene clusters based on protein sequence
similarity (Table 7 posted https://doi.org/10.5281/zenodo.6787048). In addition, we performed
a covariation analysis that estimated the functions of the unknown gene clusters (23), incorpo-
rating bivariate spatial relevance (24) between multiple intestinal sites. We first evaluated the
rationale of this spatial covariation analysis in which pairs of genes with similar expression pro-
files were associated with a common metabolic process (Text S1; Table 8 posted at https://doi
.org/10.5281/zenodo.6787048). As a result of benchmarking the covariation analysis using the
gene expression level at the whole-community and per-cell levels, the areas under the curves
(AUCs) of false positive rate (FPR) versus sensitivity along the L statistic value were 0.830 and

FIG 1 Overview of the proposed analytical method. This method integrates the metagenome and metatranscriptome to compare the
functional activity of microbiomes among intestinal sites as follows. Samples for the metagenomic and the metatranscriptomic analyses are
taken simultaneously. (A) Assembly with DNA reads generates contigs and scaffolds at each site. (B) The common reference metagenomes
are reconstructed by merging scaffolds across all sites. Gene-coding regions are predicted in the reconstructed metagenome. (T. colon
represents the transverse colon). (C) DNA reads are mapped to the reconstructed metagenome to calculate relative abundance. (D) mRNA
reads are aligned to the reconstructed metagenome, and mapped reads are quantified for each gene. (E) Gene expression levels are
calculated for the whole community. Gene expression levels per cell are calculated by normalizing to gene abundance.
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0.729, respectively (Fig. 3A), indicating this covariation analysis method is sufficiently effective.
The covariation analysis was then applied to the unknown gene clusters with a threshold
0.885 of the L statistic value that ensured an FPR less than 0.05 and a sensitivity greater than
0.66 (Fig. 3B and C; Text S1) for the whole community. The results (Fig. 3D; Table 9 posted at
https://doi.org/10.5281/zenodo.6787048) showed the functions of 10,856 unknown genes
were predicted and that many of the unknown genes could be involved in xenobiotic bio-
degradation, energy metabolism, nucleotide metabolism, signal transduction, and the diges-
tive system, which also suggests that current database-dependent analytical methods may
underestimate these functions in our data. Thus, covariation analysis incorporating bivariate
spatial relevance, combined with metatranscriptomic analysis, provided an accurate func-
tional interpretation of unknown genes in the reconstructed metagenome.

Spatial variance in microbial gene expression at the whole-community and
individual-cell levels. The functional activity of the microbiome in the cecum, trans-
verse colon, and feces was assessed using both the whole-community and per-cell
gene expression levels (Fig. S2). The whole-community gene expression level indicates
the functional profile of the entire microbiome but is affected by the abundance of
bacteria; on the other hand, the gene expression level per cell indicates the gene activ-
ity for each bacterium, even for minority bacteria.

We identified the biochemical functions whose expression levels varied significantly
among the intestinal sites. The top 50 KOs with the highest expression differences between ei-
ther pair of sites at the whole-community level are listed in Fig. 4, along with gene expres-
sion levels per cell and gene abundance. The KOs K02041 (phosphonate transport system
ATP-binding protein), K18910 (d-psicose/d-tagatose/L-ribulose 3-epimerase), and K08717
(urea transporter) were differentially expressed between the cecum and transverse colon
(Fig. 4A). The differentially expressed KOs between the cecum and feces were 45 of the top
50 KOs, including K08260 (adenosylcobinamide hydrolase), K03486 (GntR family transcriptional

FIG 2 Reconstruction of a metagenome by merging improved the assembly contiguity, gene detection and read mapping rate. (A) The plots of N-statistics
to measure the assembly contiguity reconstructed from three intestinal sites and of the merged metagenome in individuals 1 and 2. We computed the N-
statistics from N10 to N100 at 10 intervals, which is an extension of the N50 measure to evaluate assembly contiguity. (B) Percentage of functionally annotated
genes in the reconstructed genomes. Approximately 63,331 and 88,575 genes were not present in the COG database, and 112,790 and 152,845 genes were not
present in the KO database. (C) Mapping rate of microbial mRNA reads to the database and the reference metagenome (DB, database; RG, reconstructed reference
metagenome). This boxplot represents the mapping rates of mRNA reads from the cecum, transverse colon, and feces in individuals 1 and 2.
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regulator, trehalose operon transcriptional repressor), and K00332 (NADH-quinone oxidoreduc-
tase subunit C) (Fig. 4B). K19075 (CRISPR-associated protein Cst2) and 29 more KOs were differ-
entially expressed between the transverse colon and feces (Fig. 4C). Here, we focused on
genes involved in well-studied metabolic processes. The genes that were more highly
expressed in the whole community in the cecum and transverse colon than in the feces were
genes involved in the biosynthesis of vitamin B12 (cbiZ and pduX), vitamin K2 (mqnE), vitamin
B7 (bioD), and vitamin B6 (pdxH) and antibiotic resistance genes (arnA and arnB) (Fig. 4B and
C). The gene cbiZ, which salvages cobinamide (Cbi), a precursor of AdoCbl, originated in arch-
aea and was acquired by several bacterial strains via horizontal gene transfer (25). This gene is
required for bacterial growth on acetate (26). The detection of pduX as a differentially
expressed gene along with cbiZ is consistent with a previous study showing that pduX is
required for the cbiZ-mediated pathway (27). Two genes, arnA and arnB, are known to confer
resistance to antibiotics by modifying the outer membrane with lipopolysaccharide. This modi-
fication is regulated by the PmrA/PmrB two-component regulatory system, which is switched
on by low pH (28).

These differentially expressed genes are related to sugar utilization in the intestinal tract
(Fig. 5). The genes that were differentially expressed at the whole-community level between
the cecum and feces were the genes involved in the utilization of sorbitol (srlB), mannose
(manY), and L-fucose (fucI) (Fig. 5A). This result likely reflects the utilization of sugars that

FIG 3 Rationale for the covariation analysis and the resulting molecular functions associated with unknown genes. Covariation analysis incorporating bivariate spatial
relevance was performed to associate unknown genes with molecular functions. Evaluation of the covariation analysis results using the gene expression profile of
the whole community and per cell: (A) receiver operating characteristic (ROC) curves of false positive rate (FPR) versus sensitivity, (B) FPR curves and (C) sensitivity
curves along the L statistic value to associate known gene cluster pairs. True positives were defined as pairs of covariant genes with a common KEGG reaction
definition. (D) The functions of unknown gene clusters associated by covariation analysis using the gene expression profile of the whole community and the
functions of known gene clusters. Only functions enriched in either unknown or known gene clusters are shown (Fisher's exact test with P value , 0.01 adjusted by
the Benjamini-Hochberg method; Text S1; Table 9 posted at https://doi.org/10.5281/zenodo.6787048). The L statistic value that ensured an FPR , 0.05 in the
benchmark was used as the threshold (Text S1).
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were not absorbed in the small intestine by the microbiome (29). Fermentation of these sug-
ars by the cecal microbiome produces short-chain fatty acids (SCFAs) (30), increasing the
concentration of SCFAs in the colon; however, the level of SCFAs decreases in feces due to
their absorption in the colon (31). Acetic acid accounts for approximately 60% of SCFAs in
the colon (32) and, therefore, this change in the concentration of SCFAs along the colon
explains the changes in the expression of cbiZ (Fig. 5B), which is essential for bacterial
growth on acetate (26). Similarly, the decrease in the concentration of SCFAs from the ce-
cum to the descending colon was accompanied by an increase in pH, which is consistent
with the changes in the expression of the antibiotic resistance genes arnA and arnB, which
are activated at low pH (28) (Fig. 5C). Thus, many of these genes that were differentially

FIG 4 Significant KEGG Orthology of differentially expressed genes between the cecum, transverse colon, and feces. The top 50 KOs with the highest differential
gene expression between either pair of sites at the whole-community level are shown, along with gene expression levels per cell and gene abundance. (A)
Differential gene expression between the cecum and transverse colon; (B) differential gene expression between the cecum and feces; and (C) differential gene
expression between the transverse colon and feces. The difference in gene abundance/expression levels between the whole community and per cell is displayed
using log2-transformed values. For each KO, the upper bar represents individual 1, and the lower bar represents individual 2. The difference was considered and
is denoted “significant” if the difference changed in the same direction by more than 2-fold in both individuals.
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expressed between intestinal sites are associated with the SCFAs produced by microbial
sugar metabolism. As these typical genes are obviously encoded in multiple bacterial species,
we selected the L-fucose metabolic gene (fucI) and identified the bacteria that exhibited dif-
ferential expression of this gene. In the reconstructed reference metagenome, 30 loci encod-
ing fucI were detected, each representing one bacterial species (Fig. 6). This analysis showed
many bacteria (scaffolds) belonging to the Firmicutes phylum contributed to the expression
level of the fucI gene at the whole-community level and scaffold ID S123510, belonging to
the Megamonas genus, was an important contributor in individual 1. On the other hand,
scaffold ID S127859, belonging to the Akkermansia genus, a well-known SCFA-producing
bacterial genus (33), showed the greatest abundance of fucI in individual 1, although
the expression level per cell was low. This finding demonstrates the power of our method of
integrating metagenomes and metatranscriptomes to enable analysis at the gene level.

Comparison of microbiomes among animal models by 16S rRNA gene sequenc-
ing. To identify similarities and differences between the common marmoset micro-
biome and those from humans and other major model animals (macaques, mice, and
rats), 16S rRNA amplicon sequencing of marmoset fecal samples was conducted. The
16S rRNA gene sequence data for fecal samples from humans, macaques, rats, and
mice were obtained from a previous study (34). Operational taxonomic unit (OTU) anal-
ysis of microbiome similarity was performed quantitatively (weighted) and qualitatively
(unweighted) at the genus and family levels. The results of principal-component analy-
sis (PCA) of the OTU profiling data are shown in Fig. 7. In contrast to the weighted anal-
ysis, the unweighted analysis more clearly isolated clusters of species. The marmoset
clusters overlapped with human clusters in both weighted and unweighted analyses,
revealing the marmoset and human microbiomes were most similar. Mouse and rat
clusters were located near each other in the unweighted analysis. The analysis at the
family level showed the Muribaculaceae family accounted for approximately half of the
microbiome of mice and was also detected in rat and macaque individuals (Fig. S3). In
contrast, most humans and marmosets did not retain Muribaculaceae (Fig. S3). Despite

FIG 5 Functional activities in the microbiome along the host intestinal tract. In relation to Fig. 4, the functional
shifts of the microbiome along the intestinal tract estimated from the differentially expressed genes between sites
were as follows: (A) Sugars that are not absorbed in the small intestine are fermented by the cecal microbiome to
produce SCFAs (29, 30). As SCFAs are absorbed in the large intestine, the concentration of SCFAs gradually decreases
from the cecum to the descending colon (31). (B) The growth of bacteria under acetate (26), which is abundant in
SCFAs (32), requires cbiZ in the vitamin B12 biosynthetic pathway, and the production of SCFAs makes this gene
more active in the cecum and transverse colon than in feces. (C) Similarly, a decrease in pH with increasing SCFA
concentration switches on the antibiotic resistance genes arnA and arnB (28). The pH value at each intestinal site
displayed in the left figure was taken from previous studies (64).
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all three groups being primates, the macaque microbiome did not resemble the mar-
moset or human microbiome in the unweighted profile, and no specific common bac-
teria were detected between macaques and humans or between macaques and
marmosets. On the other hand, characteristic bacteria were found in the comparison
between marmosets and humans. The Bacteroidaceae family and Bacteroides genus are
major members in marmosets and humans. Bacteroides, which inhabits healthy human
intestines, has been reported to have a reduced abundance in IBD patients and is
attracting attention as a probiotic (35). The Bifidobacteriaceae family, Bifidobacterium
genus, Coriobacteriaceae family, and Collinsella genus were also present in most mar-
moset and human individuals but were not detected in many individuals of other ani-
mal model species. Bifidobacterium is known to be significantly depleted in individuals
with colorectal cancer, IBD, irritable bowel syndrome, and obesity and has been
reported to enhance the effectiveness of cancer immunotherapy (36, 37). Collinsella is
a proinflammatory genus involved in rheumatoid arthritis and nonalcoholic steatohe-
patitis and has potential applications as a disease biomarker (38, 39). In brief, it was
found that the marmoset and human fecal microbiomes are significantly similar and
share many bacteria involved in a variety of human diseases.

DISCUSSION

The method proposed in this study was used to reconstruct the common reference
metagenome by merging scaffolds assembled from metagenomic read data from
three different intestinal sites; using this approach, it was possible to identify the corre-
sponding genes among three intestinal sites with high accuracy. Here, we evaluated
the nonchimeric rate of the reconstructed genomes using a benchmarking data set
that collected only DNA reads assigned to known bacterial species. The nonchimeric
rate is defined by the percentage of the genome length assembled solely with DNA
reads from a single species. The nonchimeric rates were 92.8% and 94.7% for individu-
als 1 and 2, respectively; this revealed that most genomes were completely recon-
structed as a single species within the metagenome (Text S1).

In addition, we compared the proposed method for merging metagenomic contigs
among the multiple sites with six other methods, including a coassembly method that

FIG 6 Thirty scaffolds encoding the L-fucose isomerase gene (fucI), each representing one bacterial species. The bar plot shows the relative gene
abundance and expression of fucI at the whole-community and per-cell levels from 30 scaffolds in individuals 1 and 2. Each scaffold ID and its taxonomic
classification are shown at the bottom and colored by phylum-level classification.
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assembles all the reads from multiple sites together. As a result of evaluation by the
composite performance metric (CPM) (40) reflecting both contiguity and accuracy for
an assembly, the proposed method achieved the highest score (Table S4 and S5).
Furthermore, our method not only reconstructed the metagenome more accurately
than conventional methods (Table S6) but also overcame the bottleneck of identifying
the corresponding same gene among multiple samples. By this approach, we pre-
dicted the function of 10,856 unknown genes by spatial covariation analysis (Fig. 3).

The changes in gene expression among the cecum, transverse colon, and feces were
shown to be more dynamic than the changes in microbiome abundance, which was consist-
ent with the results of a previous study (5, 41). This result is also consistent with a previous
study based on 16S rRNA gene analysis (8), which concluded that the microbiome composi-
tion in feces reflects that in the large intestine in terms of abundance. However, we found
the gene expression levels of the microbiome varied among the cecum, transverse colon,
and feces. For example, we found genes related to carbohydrates were activated in the ce-
cum compared with the feces, and coenzymemetabolism genes and antibacterial resistance
genes were more highly expressed in both the cecum and transverse colon than in the
feces, but these gene abundances did not vary significantly. As the differential expression of
these genes was considered to be influenced by the concentration of SCFAs derived from
carbohydrates by the microbiome, we focused on the fucI gene, which is involved in carbo-
hydrate metabolism. The reconstructed reference metagenome identified 30 bacteria (scaf-
folds) encoding fucI, and the Megamonas genus contributed the most to the expression of
fucI at the whole-community level, despite the highest abundance of fucI being observed in
Akkermansia. SCFAs are involved in host lipid metabolism (42), and Akkermansia, a genus of
SCFA-producing bacteria, has received attention as a factor that suppresses high-fat-diet-

FIG 7 Comparison of the fecal microbiomes of marmosets, mice, rats, macaques, and humans. OTU-based unweighted
and weighted PCA (A) at the genus level and (B) at the family level. The 16S rRNA gene sequence data for fecal samples from
six marmosets were obtained in this study. The 16S rRNA gene sequence data for fecal samples from humans, macaques, rats,
and mice were obtained from a previous study (34).
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induced metabolic disorders, including metabolic endotoxaemia and insulin resistance (33).
Our results showed Megamonas is a more important member as a potential producer of
SCFAs, especially in the cecal environment. These results highlight the fact that integrated
metagenomic and metatranscriptomic analysis also provides biological interpretations based
on two aspects: gene abundance and expression levels.

Finally, we compared the fecal microbiomes of six common marmosets with those of
humans and the major model animals macaques, mice, and rats by 16S rRNA gene analy-
sis. The marmoset microbiome was found to be most similar to the human microbiome,
with Bacteroides, Bifidobacterium, and Collinsella shared between them. These results sug-
gest marmosets can be expected to be a useful animal model in microbiome studies.

In conclusion, this study developed a method for integrating the metagenome and
metatranscriptome for the analysis of multiple intestinal sites. This analysis method allows
us to quantify gene expression levels and analyze gene expression changes among intes-
tinal sites, including changes in unknown bacterial genes, which are overlooked by con-
ventional methods. As a result of applying this analysis method to multiple intestinal sites
of the common marmoset, we revealed that changes in the internal environment along
the intestinal tract may lead to variation in the expression pattern of the microbiome.
Moreover, this microbial change may have a mutualistic effect on the environment inside
the intestine. These findings highlight the importance of database-independent methods
in metatranscriptomic analysis to quantify gene expression in the microbiome.

MATERIALS ANDMETHODS
Animal experiences. Common marmosets were housed at the Central Institute for Experimental Animals

(Kawasaki, Japan) with free access to a pellet diet (for monkeys, CLEA New World Monkey Diet, CMS-1M; CREA
Japan, Tokyo, Japan). The cage size was 820 � 610 � 1,578 mm, and the cages were positioned facing each
other to allow the animals to communicate visually and vocally. All cages were equipped with a sleeping area,
wooden perches, and hammocks. The animal rooms were maintained at 26°C to 28°C and 40% to 60% humidity
with a 12 h:12 h light/dark cycle. The animals were negative for Salmonella spp., Shigella spp., and Yersinia pseu-
dotuberculosis in yearly fecal examinations. Two marmosets were selected in this experiment so that the sample
volumes from all three sites satisfied the requirements of the experimental protocol. Marmosets were euthanized
with intravenous administration of pentobarbital overdose, and the digestive tract was isolated. The gastrointesti-
nal tract of each animal was excised, and the luminal and mucosal content of each gastrointestinal tract site was
collected and divided into samples for metagenomic and metatranscriptomic analyses. The contents were imme-
diately frozen in liquid nitrogen and stored at280°C. The metatranscriptomic analysis samples were crushed and
homogenized in solution D containing guanidinium, which inhibits RNase (43), within 1 week after dissection to
protect against degradation and stored at 280°C. The luminal and mucosal contents of the cecum and trans-
verse colon and fecal contents of the marmosets (individual ID: I6289M and individual ID: I6027M; Table 10
posted at https://doi.org/10.5281/zenodo.6787048) were used for metagenomic and metatranscriptomic analy-
ses. These three sites were targeted at the beginning, middle, and end of the colon, which has an abundant
microbiome. The fecal contents of a total of six marmosets in addition to these two marmosets were used for
16S rRNA gene analysis.

The animal experiment protocol was approved by the CIEA Institutional Animal Care and Use
Committee (approval no. 17031). The study was conducted in accordance with the guidelines of CIEA
that comply with the Guidelines for Proper Conduct of Animal Experiments published by the Science
Council of Japan. Animal care was conducted in accordance with the Guide for the Care and Use of
Laboratory Animals (Institute for Laboratory Animal Resources, 2011).

Shotgun metagenomic sequencing. DNA was extracted from each metagenomic sample using a
MORA-EXTRACT Kit (Kyokuto Pharmaceutical Industrial Co., Ltd., Tokyo, Japan). Sequencing libraries were pre-
pared using the TruSeq Nano DNA Library Prep Kit (Illumina Inc., San Diego, CA, USA). All these procedures
were performed according to the kit manufacturer’s instructions (Table 11 posted at https://doi.org/10.5281/
zenodo.6787048). Illumina HiSeq sequencing yielded a total of 435 giga nucleotides (Gnt) of paired-end reads
(250 nt � 2) for the metagenome. This data set included an average of 145.1 M reads 6 3.9 M reads (mean 6
s.d.) per sample before quality filtering, described below, and 125.9 M reads 6 5.3 M reads afterwards (Table 12
posted at https://doi.org/10.5281/zenodo.6787048). Shotgun metagenome libraries were adapter trimmed and
quality filtered by Trimmomatic (44) version 0.36 with the following parameters: “ILLUMINACLIP:Adapter.fa:2:30:
10:8:true, LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:50” and FASTX-Toolkit version 0.0.14 with “-q 20
-p 80” (http://hannonlab.cshl.edu/fastx_toolkit/), respectively. Potential host and feed contaminants were then fil-
tered by removing reads with sequences aligned to the host genome and feed genome (Text S1).

Metatranscriptomic sequencing. RNA was extracted by a combination of the acid-guanidium-phe-
nol-chloroform RNA extraction method (45) and bead crushing method and assessed to ensure high
quality (RNA integrity number [RIN] scores $7.9) (Table 13 posted at https://doi.org/10.5281/zenodo.6787048).
rRNA was removed using the Ribo-Zero Gold rRNA Removal Kit (Epidemiology) (Illumina). Sequencing libraries
were prepared using the TruSeq Stranded Total RNA HT Kit (Illumina). All these procedures were performed
according to the manufacturer’s instructions (Table 11 posted at https://doi.org/10.5281/zenodo.6787048).
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Illumina HiSeq sequencing yielded a total of 165 Gnt of paired-end reads (100 nt� 2) for the metatranscriptome.
This data set included an average of 137.7 M reads6 2.8 M reads (mean6 s.d.) per sample before quality filter-
ing, described below, and 126.7 M reads 6 4.0 M reads afterwards (Table 12 posted at https://doi.org/10.5281/
zenodo.6787048). Metatranscriptome libraries were adapter trimmed and quality filtered using the same method
as those used for the metagenome libraries. The rRNA reads were removed by SortMeRNA (46) version 2.1 with
“-e 1e-30.” Potential host and feed contaminants were filtered in the same way as the metagenome libraries.

Integrated metagenomic and metatranscriptomic analyses. The integrated analytical method pro-
posed in this study is composed of three main steps: (i) reconstruction of a common reference metage-
nome for all sites by assembly, scaffolding and merging (Fig. 1A and B); (ii) mapping of DNA and mRNA
reads to the reconstructed reference metagenome (Fig. 1C and D); and (iii) quantification of microbial
gene expression at the whole-community and per-cell levels (Fig. 1E). Evaluation of this analytical method
and determination of parameters for each step were carried out by using the genomes of known bacterial
species (Table 14, 15, and 16 posted at https://doi.org/10.5281/zenodo.6787048; Text S1).

The sequenced DNA reads were assembled by Megahit (47) version 1.1.3 with “-k-min 21, -k-max 141, -k-step
12, -prune-depth 20.” Contigs shorter than 1,000 bp were discarded from further processing. The contigs were
scaffolded by OPERA-LG (48) version 2.0.6 using paired-end read information. By merging the scaffolds of meta-
genomes from three intestinal sites using QuickMerge (49) version 0.3 with “-hco 50, -c 50, -mL 1000,” the com-
mon reference metagenomic sequences were reconstructed. These parameters were decided by assessing the
accuracy of the genomes constructed at each step. QuickMerge is a tool developed for merging contigs from
long-read assembly and hybrid assembly of the same sample. We applied this tool to merge metagenomic con-
tigs between sites. The merging parameters need to be set appropriately to avoid incorrect pairing between
overlapping regions since this usage differed from the original design of QuickMerge in two ways: (i) the metage-
nome contains a variety of bacterial genomes, and hence merging contigs is more complex than merging
contigs from a single species; and (ii) the base-calling accuracy of short-read is higher than those of long-read
assemblies (50). Therefore, we determined the optimal combination of parameters by evaluating the genome
construction accuracy among multiple combinations of parameter values: the alignment confidence “-c,” overlap
confidence “-hco,” and merge length cutoff “-mL,”which is higher than the default setting (Text S1). Gene-coding
regions were then predicted in the reference metagenomic sequences by MetaGeneMark (51) version 3.38 to
generate the entire list of genes in the intestinal sites. We used GhostKOALA (52) and DIAMOND blastp (53) ver-
sion 0.9.21.122 with “–evalue 1e-10, –query-cover 85” to annotate the predicted genes according to orthologous
groups in the KEGG database (release 94.1) and the COG database (21). Subsequently, mRNA reads were mapped
to the metagenomic reference sequences by Bowtie2 (54) version 2.3.4.3, and the number of mRNA reads was
counted by HTSeq (55) version 0.9.1 to quantify the gene expression level. DNA reads were also mapped to the
metagenomic reference sequences by Bowtie2 version 2.3.4.3 with “-x 2000,” and the coverage of each metage-
nomic sequence was calculated by Samtools (56) version 0.1.19.

Covariation analysis incorporating bivariate spatial relevance.We performed covariation analysis
to predict the functions of unknown genes. This analysis was based on the assumption that functionally similar
genes are covariant in their expression levels (23). First, we benchmarked using the profiles of expression at
the whole-community and per-cell levels by assessing the accuracy of this covariation analysis in classifying the
known genes with the same metabolic process. We grouped the known genes into gene clusters by COG
annotation and calculated the bivariate spatial association measure (L statistic value) (24) to detect covarying
gene pairs in a six-dimensional vector of expression levels in three sites in two individuals. This benchmark was
used to evaluate the covariation analysis method by AUCs of FPR versus sensitivity along the L statistic value
and to determine the threshold of the L statistic value to guarantee FPR, 0.05. As a result of the benchmark-
ing, we found that using the expression levels for the whole community was more accurate than using the
expression levels per cell. Next, we grouped the unknown genes into gene clusters by protein sequence simi-
larity using MMSEQS2 (57). We performed covariation analysis on the unknown and known gene clusters to-
gether. This allowed us to predict the functions of the unknown gene cluster when the known and unknown
gene clusters were linked (Table 9 posted at https://doi.org/10.5281/zenodo.6787048; Text S1).

Quantification of gene expression levels. Metatranscriptomic functional activity was assessed with
two quantification methods. The first was a general method to quantify gene expression by normalizing mRNA
read counts with transcripts per million (TPM) (this is called the “gene expression level in the whole community”
in this study). This method can estimate metatranscriptomic activity in a microbial community. The second
method was normalization of the mRNA read counts with DNA coverage, thus estimating the gene expression
level per single bacterium (this parameter is called the “gene expression level per cell” in this study) (Text S1).

Taxonomic profiling. Each reconstructed genome was identified at the taxon level by mapping the
predicted genes against the nonredundant protein database and assigning taxonomic annotations with
a voting-based approach using CAT version 4.3.3 (58).

16S rRNA gene sequencing and comparison among animal models. To compare the common
marmoset fecal microbiomes with those of humans and other major animal models, 16S rRNA sequencing
was conducted on fecal samples from 6 marmosets. Marmoset fecal DNA was extracted from each metage-
nomic sample using the MORA-EXTRACT Kit (Kyokuto Pharmaceutical Industrial Co., Ltd., Tokyo, Japan) by the
bead crushing method. The 16S rRNA V3 to V4 region was amplified using the KAPA HiFi HotStart ReadyMix
PCR Kit (KAPA BioSystems, USA). For PCR, the forward primer 59-CCTACGGGNGGCWGCAG-39 and reverse
primer 59-GACTACHVGGGTATCTAATCC-39 were used. Sequencing libraries were prepared using the Nextera
XT Kit (Illumina) (Table 11 posted at https://doi.org/10.5281/zenodo.6787048). All these procedures were performed
according to the kit manufacturers’ instructions. Sequencing was performed using an Illumina MiSeq sequencer,
which yielded a total of 11.3 Gnt of paired-end reads (forward: 350 bp, reverse: 250 bp). This data set included an
average of 3,154,000 6 1,190,000 reads per sample before quality filtering and 1,387,000 6 346,000 reads after-
wards (Table 12 posted at https://doi.org/10.5281/zenodo.6787048). The sequences were analyzed using
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Quantitative Insights into Microbial Ecology (QIIME; version 1.9.1) (59). The 16S rRNA gene sequence data for
fecal samples from humans, macaques, rats, and mice were obtained from a previous study (34) (Text S1). To
avoid any bias from differences in sequencing depths, the OTU table was rarefied to the lowest number of
sequences per sample.

Comparison of the accuracy of metagenome reconstruction methods.We compared the metage-
nome reconstruction method proposed in this study with other existing methods, including simple coas-
sembly. Furthermore, we validated the methods using only metagenomic reads (MG) and using both
metagenomic and metatranscriptomic reads (MG1MT) as inputs. The methods were as follows: (i) merg-
ing (MG) (our method): briefly restated, the metagenomic reads were assembled per site, and the gener-
ated scaffolds were subsequently merged among multiple sites; (ii) merging (MG1MT): same method as
(i), but included the metatranscriptomic reads as well as the metagenomic reads to be assembled; (iii)
coassembly (MG): the metagenomic reads of all sites were simply coassembled and scaffolded; (iv) coas-
sembly (MG1MT): same method as (iii), but included the metatranscriptomic reads as well as the meta-
genomic reads to be assembled; (v) MOSCA (60): a pipeline for metatranscriptomic analysis, but because
it is not specifically designed to integrate multiple sites as in this study, we used a concatenated meta-
genomic read file among multiple sites as input for the comparison; (vi) IMP3 (61): a pipeline for hybrid
assembly of metagenomic and metatranscriptomic reads, but because it is not specifically designed to
integrate multiple sites as in this study, we used a concatenated metagenomic and metatranscriptomic
read file among multiple sites as input; (vii) merging (two individuals): the metagenomes reconstructed
per individual in (i) were further merged between individuals. In (v) and (vi), the pipeline was executed
with default settings. These reconstruction methods were assessed using MetaQUAST (62) by feeding
the final contigs output from each method. The data set used as input contained DNA and RNA
sequence reads assigned to the top 20 bacterial species in the taxonomic profile by Kraken2 (63)
(Table 14 posted at https://doi.org/10.5281/zenodo.6787048). The assessment index to evaluate the as-
sembly performance was the composite performance metric (CPM) proposed for assembler evaluation
in a previous study (40). The CPM was computed based on the information derived from the results of
MetaQUAST (62) (see Text S1for details on calculation methods).

Data and source code availability. All raw sequence data have been submitted to the DDBJ under
project PSUB014668 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
The codes and pipelines used in this study for metagenome assembly, gene expression analysis, and
spatial covariation analysis are all available at https://github.com/MikaUhr/IMPIA.git. The gene expres-
sion profile and gene annotation profile are available at https://doi.org/10.5281/zenodo.6782852.
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