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Intermediate scattering function 
of an anisotropic active Brownian 
particle
Christina Kurzthaler, Sebastian Leitmann & Thomas Franosch

Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move 
autonomously in aqueous media at low Reynolds number. These active agents are subject to strong 
stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest 
order moments of the displacements only, while more general spatio-temporal information on the 
stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions 
for the directly measurable intermediate scattering function for a mesoscopic model of a single, 
anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-
Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering 
function. These display different temporal regimes dominated by effective diffusion and directed 
motion due to the interplay of translational and rotational diffusion which is rationalized within the 
theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at 
intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales 
bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate 
that our characterization of the motion of active agents will serve as a reference for more realistic 
models and experimental observations.

Active particles are intrinsically out of equilibrium and exhibit peculiar dynamical behavior1–5 on the single as 
well as on the collective level. These active agents are ubiquitous in nature and include bacteria6–9, algae10, uni-
cellular protozoa11–13 or spermatozoa14,15, that move due to a single or an array of flagella pushed by molecular 
motors. Only recently, artificial active particles have been synthesized and are self-propelled by either biomi-
metic motors16,17, or due to the response of their patterned surface to chemical or temperature gradients, thereby 
converting chemical energy into directed motion18–22. Furthermore, they also move in crowded media and 
their effective swimming speed is strongly determined by the viscoelasticity and geometrical constraints of the 
surroundings23,24.

To capture analytically the intricacies of the propulsion mechanisms, simple models for single swimmers 
have been conceived on different levels of coarse-graining. Microscopic theories for squirmers25,26, linked-bead 
swimmers27–29, self-thermophoresis19, and, self-diffusiophoresis30 of Janus particles have been elaborated and 
include the full hydrodynamic flow. On a larger scale, effective models for individual self-propelled particles 
ignoring hydrodynamics and the origin of the swimming motion are used to describe the stochastic motion and 
the dynamic behavior. There, the dynamics is modeled in terms of non-equilibrium Langevin equations1,21,31,32 
such that the noise strength is an effective parameter unrelated to the temperature of the environment, in striking 
contrast to the fluctuation-dissipation theorem for equilibrium dynamics. In particular, these equations of motion 
serve as a suitable starting point for simulations33.

The complexity of the transport properties has often been quantified experimentally and in simulations 
in terms of low-order moments of the displacements18,20,24 and compared to theoretical models. For example, 
generically the mean-square displacement exhibits a regime resembling ballistic motion which directly reflects 
the persistent swimming. Only at longer times the motion becomes randomized and the mean-square displace-
ment increases as anticipated from conventional diffusion. Higher moments can be derived20 in principle from 
the stochastic equations of motion, yet the calculations become more and more cumbersome with increasing 
order. However, these low-order moments provide only restricted information on the statistical properties of the 

Institut für Theoretische Physik, Universität Innsbruck, Technikerstraβ​e 21A, A-6020 Innsbruck, Austria. Correspondence  
and requests for materials should be addressed to T.F. (email: thomas.franosch@uibk.ac.at)

received: 05 July 2016

accepted: 19 October 2016

Published: 10 November 2016

OPEN

mailto:thomas.franosch@uibk.ac.at


www.nature.com/scientificreports/

2Scientific Reports | 6:36702 | DOI: 10.1038/srep36702

random displacements as a function of time, in particular, they are to a large extend insensitive to the shape of the 
probability distribution.

More general spatiotemporal information is encoded in the intermediate scattering function F(k, t), which 
resolves the motion of the particle at lag time t on a length scale 2π/k, and is directly measurable in scattering 
experiments34 such as dynamic light scattering. The same quantity can be obtained by advanced image analysis 
within the recently developed differential dynamic microscopy (DDM)35,36, which provides direct access to the 
relevant length scales of active particles. Of course, single-particle tracking also collects the full statistical infor-
mation and the intermediate scattering function can be obtained from this information, yet often the temporal 
resolution is not high enough to monitor the dynamics on small length scales. Last, the intermediate scattering 
function can also be viewed as the characteristic function37 of the random displacements, which is equivalent to 
the full probability distribution. In particular, the moments of the displacements are encoded as derivatives with 
respect to the wavenumber. Theoretical approaches to the intermediate scattering function for active particles are 
rare38 and no exact solutions appear to be available.

Dynamics of an Active Brownian Particle
Model.  We assume the active Brownian particle to move at constant velocity v along its instantaneous orien-
tation u(t) subject to random fluctuations determined by the rotational diffusion coefficient Drot. This diffusion 
process can geometrically be regarded as the diffusion of the orientation u(t) on the unit sphere, as in Fig. 1. In 
addition, the motion of the anisotropic active particle is characterized by axisymmetric translational diffusion 
measured in terms of the short-time diffusion coefficients parallel (D||) and perpendicular (D⊥) to the anisotropic 
particle, Fig. 1. Hence, for a three-dimensional swimmer the dynamics are described by the Langevin equations 
in Ito form for the position r(t) and the orientation u(t)

ξ= − − ×t D t t D t d tu u d ud ( ) 2 ( ) 2 ( ) ( ), (1)rot rot

 ζ= + 


+ − 


.|| ⊥d t v t dt D t t D t t d tr u u u u u( ) ( ) 2 ( ) ( ) 2 ( ( ) ( ) ) ( ) (2)
T T

Here the diffusion coefficients D|| and D⊥ for the motion along and perpendicular to the axis of the swim-
mer encode the translation-rotation coupling. The random fluctuations are modeled in terms of independent 
white-noise processes, ξ(t) and ζ(t) with zero mean and covariance 〈​ξi(t)ξj(t′​)〉​ =​ 〈​ζi(t)ζj(t′​)〉​ =​ δijδ(t −​ t′​) for i, 
j =​ 1, 2, 3. The drift term in Eq. (1) ensures that the normalization condition remains fulfilled, d[u(t)2]/dt =​ 0. 
Let us emphasize that if the Stratonovich interpretation is used, the drift term in the equation for the orientation 
needs to be dropped.

The model contains two dimensionless parameters, first the translational anisotropy Δ​D =​ D|| −​ D⊥ relative to 
the mean diffusion coefficient = +|| ⊥D D D( 2 )/3. For passive rod-like particles in the limit of very large aspect 
ratio hydrodynamics suggests D|| =​ 2D⊥39, such that ∆ =D D/ 3/4. Here we consider D|| and D⊥ as effective 
parameters quantifying the noise only, and the anisotropy can take arbitrary values in − ≤ ∆ ≤D D3/2 / 3. Next, 
the problem displays a characterstic length, =a D D3 / /2rot , which corresponds to the geometric radius of a 
spherical particle in the case of equilibrium diffusion coefficients Drot =​ kBT/8πηa3 and πη=D k T a/6B . Then the 
second dimensionless parameter is the Péclet number = va DPe /  measuring the relative importance of the active 
motion with respect to diffusion.

Figure 1.  Model set up. Left: Anisotropic particle with orientation u(t) and translational D||, D⊥ and rotational 
Drot diffusion coefficients. Right: Diffusion of the orientation u(t) on the unit sphere.
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Analytic solution.  From the stochastic differential equations one derives the Fokker-Planck equation37,40 for 
the time evolution of the probability density  t tr u r u( , , , , )0 0 0  to find the swimmer at position r, with orienta-
tion u at time t given that it has been at some position r0 with initial orientation u0 at an earlier time t0. Since the 
stochastic process is translationally invariant in time and space, only displacements Δ​r =​ r −​ r0 and lag times t  
(with t0 =​ 0) have to be considered,  ≡ ∆ tr u u( , , )0 . Then the Fokker-Planck equation assumes the form

   ∂ = − ⋅ ∂ + ∆ + ∂ ⋅ ⋅ ∂v Du D( ), (3)t r u r rrot

subject to the initial condition  δ δ∆ = | = ∆tr u u r u u( , , 0 ) ( ) ( , )0
(2)

0 , where the delta function on the surface of 
the sphere δ(2)(⋅​, ⋅​) enforces both orientations to coincide. Here, ∂​r denotes the spatial gradient, Δ​u the angular 
part of the Laplacian, reflecting the orientational diffusion, and = + −|| ⊥D DD uu uu( )T T . The first term on the 
right describes the active motion, in addition to the standard Smoluchowski-Perrin equation39 for the diffusion of 
an anisotropic particle. The Fokker-Planck equation for  simplifies upon a spatial Fourier transform

 ∫| = − ⋅ |
∼ t r tk u u k r r u u( , , ) d exp( i ) ( , , ), (4)0

3
0

which solves the equation of motion

   ∂ = ∆ − ⋅ − + ∆ ⋅ .
∼ ∼ ∼ ∼

⊥D v D Du k k u ki [ ( ) ] (5)t urot
2 2

The quantity of interest in scattering experiments34 is the intermediate scattering function (ISF)

= − ⋅ ∆F t tk k r( , ) exp[ i ( )] , (6)

which is obtained by marginalizing over all final orientations u and averaging over all initial orientations u0,

∫ ∫ π
= | .

∼F t u u tk k u u( , ) d d
4

( , , ) (7)
2

2
0

0

The ISF can also be interpreted as the characteristic function37 of the random displacement variable Δ​r(t). In par-
ticular, the moments are obtained by taking derivatives with respect to the wave vector k. Since after averaging the 
motion is isotropic, the ISF F(k, t) ≡​ F(k, t) depends only on the magnitude of the wave vector k =​ |k|. Averaging 
over the directions of k yields the equivalent representation

=
∆
∆

F k t
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k t
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r
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,
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and the expansion of the ISF for small wavenumbers
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allows one to recover the mean-square displacement 〈​|Δ​r(t)|2〉​ and the mean-quartic displacement 〈​|Δ​r(t)|4〉​ by 
comparing the corresponding terms in the small-wavenumber expansion. More generally, even moments can be 
obtained numerically by taking derivatives of the ISF with respect to the squared wavenumber,

∆ = −
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∂
.
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k
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The equation of motion, Eq. (5), is reminiscent of a Schrödinger equation on the unit sphere and can be solved by 
separation of variables. We parametrize the orientation u =​ (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ)T in terms of its polar 
angles, and similarly for u0. Then the solution is a superposition of appropriate eigenfunctions

 ∑ ∑π
η η| = .
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Here we abbreviated η =​ cos ϑ, η0 =​ cos ϑ0, and η


c RPs ( , , )m  are the generalized spheroidal wave functions of order 
m and degree 41–43. They solve the corresponding eigenvalue problem

η
η
η

η η
η

η









 −





+ − −

−
+







=
 

R c m A c Rd
d

(1 ) d
d 1

Ps ( , , ) 0,
(12)

m m2 2 2
2

2

with eigenvalue =
 

A A R c( , )m m  and we identify the dimensionless parameters R =​ −​ikv/Drot and c2 =​ Δ​Dk2/Drot. 
Hence, at fixed wavenumber k, R parametrizes the importance of active motion with respect to orientational dif-
fusion, whereas c measures the coupling of the translational and orientational diffusion. In particular, the ratio 

= ∆R c D D/ Pe 4 /3  is wavenumber-independent.
Integrating Eq. (11) over the polar angles, only 



Ps0 contributes and we obtain
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The explicit expression Eq. (13) for the intermediate scattering function F(k, t) in terms of the generalized sphe-
roidal wave functions is one of the principal results of this work.

Exact low moments.  The low-order moments can be obtained upon expanding the ISF for small wave 
numbers (Eq. (13)) such that the moments can be identified with Eq. (9). Here we illustrate the derivation only 
for the mean-square displacement.

For R  = ​ 0 and c2 = ​ 0 the spheroidal wave functions reduce to the Legendre polynomials, 
η η= +

 

Ps (0,0, ) P ( ) (2 1)/20  with eigenvalues = + 



A (0,0) ( 1)0 . For small dimensionless parameters R, c 
the Legendre polynomials are deformed analytically, to order  k( )2 , as required for the mean-square displace-
ment, Eq. (9), the 



Ps0 acquire contributions 


P , ±P 1, and, ±P 2, concomitantly the eigenvalues 


A0 shift. The 
explicit expressions are lengthy and deferred to the methods section. The integral in Eq. (13) can then be per-
formed using the orthogonality of the Legendre polynomials and one concludes that only terms ≤ 2 need to be 
taken into account to order  k( )2 . Yet, inspection of Eq. (19) of the methods section shows that integration of 

ηR cPs ( , , )2
0  yields terms of order R( )2  and c( )2  and after squaring in Eq. (13) of only order k( )4 . Hence, the 

contributing eigenfunctions for the mean-square displacement evaluate to

∫ η η =






− + ⋅ =
− + ⋅ = .−







R c R
R

1
2

d Ps ( , , ) 1 /24 ( ) 0,
/2 3 ( ) 1 (14)1

1 0
2 



and the corresponding eigenvalues read

=






− + ⋅ =

+ + + ⋅ = .







A R c c R
c R

( , ) /3 /6 ( ), 0,
2 3 /5 /10 ( ), 1 (15)

0
2 2

2 2




Collecting results for the ISF F(k, t) to order  k( )2  and comparing with Eq. (9), yields for the mean-square 
displacement

∆ = + − + .−t v
D

e D t Dtr( )
2

( 2 1) 6
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D t2
2

rot
2

2
rot

rot

This expression generalizes the earlier result for the case of an isotropic active agent31,38 and anisotropic pas-
sive particle39,44. It also recovers the mean-square displacement of a freely rotating ellipsoidal particle45 obtained 
directly from the Langevin equations. Alternatively 〈​|Δ​r(t)|2〉​ can be calculated by time-dependent perturbation 
theory from Eq. (5) up to second order.

The first contribution to the mean-square displacement in Eq. (16) reflects the active motion, which displays 
directed motion v2t2 for times  τ = −t D:rot rot

1 where the particle does not change its direction significantly. 
During this time the particle covers a typical distance L =​ v/Drot, which we refer to as the persistence length. In 
contrast at times  τt rot the active contribution increases linearly v2t/6Drot where the orientational degree of 
freedom is relaxed. The second contribution is merely the isotropically averaged translational motion. 
Interestingly at the level of the mean-square displacement there is no coupling between the translational diffusion 
and the active motion induced by the orientational diffusion.

From the mean-square displacement we identify three temporal windows, Fig. 2(a). For short times 
 τ =t D v: /diff

2 it increases linearly by the translational diffusion only, while at longer times the persistent 

Figure 2.  Exact low-order moments of a single self-propelled particle subject to translational Brownian 
motion with hydrodynamic anisotropy ∆ =D D/ 3/4. (a) Mean-square displacement 〈​|Δ​r(t)|2〉​/L2 in units of 
the persistence length L =​ v/Drot, and, (b) non-Gaussian parameter α2(t) for different Péclet numbers, 
= va DPe / . Simulation and theory results are shown using symbols and lines, respectively.
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swimming motion dominates. At even longer times  τt rot the mean-square displacement increases again line-
arly with an effective diffusion coefficient = +D D v D/6eff

2
rot , equivalently the enhancement is 

= +D D/ 1 2Pe /9eff
2 . The crossover from persistent motion to effective diffusion occurs at length scale 

+ −L [1 (Pe )]2 2 . The window of persistent motion is set by the ratio of the two crossover times τrot/τdiff =​ 4Pe2/3 
and opens upon increasing the Péclet number.

Extending the expansion of the intermediate scattering function up to fourth order in the wavenumber k is 
tedious and the result is lengthy,

〈|∆ | 〉 = + ∆ −
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+ + − +
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In contrast to the mean-square displacement, the mean-quartic displacement depends explicitly on the transla-
tional anisotropy Δ​D such that the rotational-translational coupling becomes important. We shall see below that 
depending on Δ​D the dynamics becomes qualitatively different.

Rather than the mean-quartic displacement, we focus on the non-Gaussian parameter46

α =
∆

∆
−t

t

t

r

r
( )

3 ( )

5 ( )
1,

(18)
2

4

2 2

which is a sensitive indicator on how far the process deviates from diffusion, see Fig. 2(b).
For long times  τt rot the non-Gaussian parameter approaches zero  −t( )1  for all Péclet numbers as antici-

pated by the central limit theorem. Interestingly, for the limiting case of a self-propelled particle without any 
translational diffusion, Pe =​ ∞​, one infers α2(t →​ 0) =​ −​2/5, which reflects the persistent swimming motion at 
short-times. In contrast, for non-vanishing translational diffusion, Pe <​ ∞​, the non-Gaussian parameter 
approaches a constant α τ = ∆t D D( ) 4 /452 diff

2 2 for short-times, as anticipated for anisotropic translational 
diffusion. In particular, for D|| =​ 2D⊥ it assumes the value α τ =t( ) 1/202 diff , whereas it vanishes for isotropic 
diffusion. For large Péclet number there is an extended intermediate temporal regime, where the non-Gaussian 
parameter is close to the one for infinite Péclet number, thereby a prominent minimum emerges. Here the nega-
tive non-Gaussian parameter can be traced back to the directed swimming motion, which dominates the transla-
tional diffusion of the active agent at these intermediate times. Thus, for decreasing τdiff the intermediate negative 
plateau of directed swimming motion in the non-Gaussian parameter is observed for longer times, see Fig. 2(b).

For the parameters shown in Fig. 2(b) an additional maximum occurs at shorter times. One can work out 
analytically from the initial slope of α2(t) that this happens only for positive anisotropies Δ​D >​ 0 and Péclet num-
bers > ∆ ⊥D DPe 3 /2 . Conversely, we conclude that a maximum in the non-Gaussian parameter is a genuine 
fingerprint of active motion.

Intermediate scattering function.  We have evaluated numerically the series for the intermediate scatter-
ing function in Eq. (13) for arbitrary times and wavenumbers and compare the results to stochastic simulations, 
see Fig. 3. The natural scale for the wavenumbers k is set by the persistence length L, and our data cover the 
small length scales resolving the persistent swimming motion as well as large length scales where the particle 
undergoes a random walk. Indeed for small wavenumbers the ISF are well approximated by an effective diffusion, 
exp(−​Deffk2t) with the effective diffusion coefficient obtained from the long-time behavior of the mean-square 
displacement. Increasing the wavenumber the qualitative behavior depends on the Péclet number.

For small Péclet number (see Fig. 3(a)) the ISF decreases monotonically for all wave numbers, in particular, 
the large wavenumbers approach again an exponential −Dk texp( )2  characterized by the mean translational dif-
fusion coefficient D. This behavior is consistent with the linear increase of the mean-square displacement, 
Fig. 2(a), for small Péclet numbers. For intermediate wavenumbers (Fig. 3(b,c)) the shape of the ISF is no longer 
a pure exponential since the translation-rotation coupling becomes relevant at time scales  τt rot.

For Péclet numbers,  .Pe 3 4, the ISF displays damped oscillations for wavenumbers that start to resolve the 
motion on the scale of the persistence length. At length scales τDk 12

diff  short-time diffusion takes over again, 
see Fig. 3(b). Inserting the definition of τdiff, one infers that this regime corresponds to length scales ka Pe where 
the swimmer moves only a fraction of its size a. In particular, for high Péclet numbers Pe 12 the short-time 
diffusion is no longer resolved for the wavenumbers shown in Fig. 3(c). For infinite Péclet number, the transla-
tional diffusion is negligible and the ISF oscillates for wavenumbers resolving the persistence length, Fig. 3(d).

The physics of these oscillations can be rationalized easily by inspecting the general expression of the ISF, 
Eq. (8). For wavenumbers such that the rotational and translational diffusion can be ignored, the trajectories can 
be approximated by purely persistent motion |Δ​r(t)| =​ vt and there the ISF follows F(k, t) =​ sin(vkt)/vkt, as has 
been discussed already in Ref. 34. For infinite Péclet number the sinc function serves as a good approximation for 
wavenumbers kL 20.

It is also interesting to ask how the oscillations emerge mathematically from the general solution in terms of 
eigenfunctions, Eq. (13). Naively, one expects that the ISF is a sum of relaxing exponentials only, in particular, 
they should decay monotonically. Yet, the operator in Eq. (12) for the eigenvalue problem is non-Hermitian, since 
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R =​ −​ikL is not real, such that the eigenvalues can become complex. Indeed one can show (see section Methods, 
Fig. 4), for example Pe =​ ∞​, that at |R| =​ 1.9 the two lowest real eigenvalues merge and bifurcate to a pair of 
complex conjugates. Further bifurcations for larger eigenvalues occur at even larger |R|. For large Péclet numbers 
the scenario is qualitatively similar, whereas for small Pe the eigenvalues remain real and no oscillations in the 
ISF emerge. Since the eigenvalues depend non-analytically on |R| =​ kL, there is a finite radius of convergence for 
the expansion of the ISF in powers of k set by the first bifurcation point. In particular, the oscillations cannot be 
obtained by extending the series expansion, Eq. (9), in terms of the moments to arbitrary order.

Summary and Conclusion
We have determined exact analytic expressions for the intermediate scattering function (ISF) of an anisotropic 
active Brownian particle in terms of an expansion of eigenfunctions. The solution is validated and exemplified 
by stochastic simulations. Interestingly, the ISF displays a regime with oscillatory behavior in striking contrast to 
passive motion in equilibrium systems. These oscillations are rationalized in terms of bifurcations of the eigen-
value problem and reflect the directed swimming motion of the active particles. In addition to the mean-square 
displacement, we have analyzed the non-Gaussian parameter and identified a characteristic maximum for posi-
tive anisotropies and large Péclet numbers.

The non-Gaussian parameter has been derived before for two-dimensional isotropic swimmers31,38 by a trun-
cated mode expansion of the Fokker-Planck equation. Yet, for isotropic diffusion the non-Gaussian parameter 
remains negative for all times, in contrast to experimental observations20. The mode expansion also yields approx-
imate expressions for the ISF which in principle also display oscillations in time for the two-dimensional case.

In differential dynamic microscopy experiments for dilute suspensions of E. coli bacteria in three dimensions 
an oscillatory behavior for the ISF has been observed and analyzed approximately in terms of pure persistent 
swimming motion36. Our results predict that these oscillations fade out for large as well as small wavenumbers 
which should in principle be also measurable in the set-up. The motility parameters then can be extracted from 
the measured ISF relying on different wavenumbers. The dynamics on small length scales is dominated by transla-
tional diffusion, at intermediate ones by the swimming motion, and finally at large length scales by the rotational 
diffusion.

Furthermore the spatio-temporal information obtained from the ISF allows to discriminate quantitatively the 
dynamics of different swimming behaviors, whereas the mean-square displacement of several models such as 
simple run-and-tumble motion47 is hardly distinguishable from that of an active Brownian particle.

The analytic solution for the active Brownian swimmer derived here should serve as a reference for more 
complex swimming behavior. For example, E. coli bacteria display a distribution of swimming velocities, 
which can be accounted for directly by post-averaging our results for the ISF. Similarly, the swimming veloc-
ity may fluctuate itself1 leading to a further smearing of the oscillations in the ISF. Furthermore, the rotational 

Figure 3.  Intermediate scattering function F(k, t) of an active Brownian particle subject to translational 
diffusion (here ∆ =D D 3 4/ / ) for the full range of wavenumbers k measured in terms of the persistence 
length L = v/Drot. The dashed line represents relaxing exponentials exp(−​Deffk2t) and −Dk texp( )2  for small and 
large wavenumbers, respectively. The dashed-dotted line in (d) indicates the sinc function sin(kvt)/kvt.
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diffusion for bacteria should be complemented by a run-and-tumble motion6 as observed by particle tracking. 
Species-specific propulsion mechanisms, such as circular motion of the algae Chlamydomonas reinhardtii36, can 
be accounted for by introducing a torque in the Fokker-Planck equation. Our solution strategy can be adapted 
also to two-dimensional systems, for instance for the movement of Janus particles20 confined between two glass 
plates or for the circular motion of E. coli bacteria close to surfaces8.

Methods
Expansion of the eigenfunctions in powers of the wavenumber.  The starting point of the expansion 
are the reference solutions η η≡ = + 

 

Ps (0,0, ) : P ( ) (2 1)/20  for ∈ 0 of the eigenvalue problem, Eq. (12), 
for parameters R =​ c2 =​ 0. By standard perturbation theory one derives to the desired order  = R c R c( , , )3 2 4
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with corresponding eigenvalues


η η

η= + +
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Here = 0 for < 0, the difference of unperturbed eigenvalues is denoted by ∆ = −
 

A A A(0,0) (0,0)j
j

0 0 , and 
the matrix elements of the perturbation

∫η η η η η= + +
−

 



n n(2 1)(2 1) d P ( ) P ( )/2, (21)
j

n
j

1

1

for j =​ 1, 2 can be evaluated using the properties of the Legendre polynomials.

Numerical evaluation of the ISF.  For the ISF we need the eigenvalues 


A0 and the integrals over the eigen-
functions 



Ps0, Eq. (13). We expand these in terms of the Legendre polynomials41 η = ∑ =
∞



c R d jPs ( , , ) j j
0

0
0 . Then 

the integrals in Eq. (13) can be performed and the intermediate scattering function of the anisotropic active 
Brownian particle reads

∑= .−

=

∞
−⊥





F k t e d e( , ) [ ]
(22)

D k t D A t

0
0
0 22

rot
0

Inserting the expansion into Eq. (12) and projecting onto 〈​n| leads to the matrix eigenvalue problem

Figure 4.  Real (a) and imaginary (b) part of the eigenvalues A R( ,0)1
0  to A R( ,0)4

0  for vanishing translational 
diffusion (Pe =​ ∞​).
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∑ η η δ− + + = .



n c R j n n d A d[ ( 1) ]
(23)j

jn j n
2 2 0 0 0

Since the matrix elements are non-vanishing for j =​ n −​ 2, ..., n +​ 2 only, it is in fact a band matrix with two diag-
onals on each side. Then the normalized eigenvectors = ...   d d dd ( , , , )0

0
0

1
0

2
0 T

 and eigenvalues 


A0 can be effi-
ciently determined numerically. In practice we truncate the matrix in Eq. (23) to sufficiently high order such that 
the normalization at time t =​ 0 for the ISF, Eq. (22), is achieved. Since the generalized spheroidal wave equation is 
not Hermitian, the corresponding eigenvalues can become complex. In fact for Pe =​ ∞​ (c =​ 0), the two lowest 
eigenvalues merge at |R| =​ kL =​ 1.9 and a bifurcation to two complex conjugates occurs, see Fig. 4. In contrast for 
small Pèclet number Pe =​ 1.1 the eigenvalues remain real for all wavenumbers.
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