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Biology of tooth replacement in amniotes

John A Whitlock and Joy M Richman

Tooth replacement is a common trait to most vertebrates, including mammals. Mammals, however, have lost the capacity for

continuous tooth renewal seen in most other vertebrates, and typically have only 1–2 generations of teeth. Here, we review the

mechanisms of tooth replacement in reptiles and mammals, and discuss in detail the current and historical theories on control of timing

and pattern of tooth replacement and development.
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INTRODUCTION

The majority of vertebrates, including fish, sharks, amphibians and

reptiles retain the capacity to renew their dentition multiple times

throughout life (polyphyodonty). In contrast, most mammals can

exchange their teeth only once (diphyodonty).1 Here we examine

the reasons for these differences in tooth renewal competence. We

compare the molecular controls of tooth replacement in the two

branches of amniotes, mammals and reptiles. We also discuss the

contribution of stem cells to the replacement process. Finally, we

review the theoretical models of tooth replacement along the entire

dentition and reconcile these with modern molecular insights.

THE DENTAL AND SUCCESSIONAL LAMINAE

As a prelude to discussing the details of tooth renewal, it is necessary

to understand the dental epithelial structures that support this pro-

cess. The dental lamina is the ingrowth of oral epithelium into the

facial mesenchyme. The lamina is present in the embryonic facial

prominences and is a multilayered tongue of epithelium which will

give rise to the enamel organs (Figure 1a and 1b). Even though there

is no tooth morphology present in the dental lamina, it is already

patterned in three axes, labial–lingual, oral–aboral and anterior–pos-

terior. The asymmetry is manifested in gene expression and cell pro-

liferation patterns.

Beginning with the labial–lingual axis, there are restricted patterns

of expression of several genes2–3 including sonic Hedgehog (Shh)

which is expressed on the lingual side, Wingless-related proteins and

Ectodysplasin receptor (Edar) which are also expressed on the labial

side of the early dental lamina.4 These differences are correlated with

higher proliferation on the labial side. Labial–lingual asymmetry may

specify the tooth forming capabilities of the labial side of the lamina. In

mammals, there are also labial–lingual differences in gene expression

in the dental lamina of ferrets (Sclerostin domain-containing protein

1, Wnt and Bmp antagonist, Sostdc1).5

The second axis is the oral–aboral axis. In this plane, the dental

lamina connects the oral epithelium to the different generations of

teeth (Figure 1c). At the free end of the dental lamina, there is usually

higher cell proliferation and higher expression of the Wnt target gene,

Lef1.2 The growing tip becomes the successional lamina when it

extends off the most immature tooth in a tooth family. Setting aside

cells that will form the successional lamina, over and over again is

critically important for polyphyodonty. We have hypothesized that

in mammals the absence of a third generation of teeth could be due

to the failure to form a successional lamina from the permanent tooth

buds or that a successional lamina forms, but it regresses prior to

forming a tooth. Evidence of a ‘third generation’ successional lamina

in human was reported in one study.6 In this detailed analysis of the

human dentition, the mandibular permanent lateral incisors had an

epithelial lamina originating from the enamel organ which is a position

where supernumerary teeth often form.7 Thus, the potential to form

supernumerary teeth may correlate with the presence of a vestigial

third generation successional lamina in some regions of the mouth.

In mammals, the dental lamina connecting the primary tooth and the

oral epithelium degrades6,8–9 (Figure 1d), and eventually, the primary

tooth erupts into the oral cavity (Figure 1d). This degeneration of the

dental lamina has been suggested to be due a combination of epithelial-

to-mesenchymal transformation and possibly apoptosis in the minipig

model.8 This same group of investigators have proposed that the loss of

the connection between the dental lamina and oral cavity in mammals

may be related to the inability to form a third or subsequent genera-

tions of teeth.8 In many reptiles, there is a robust connection between

tooth generations that is never lost even into adult hood10 (Figure 1c).

To explore the idea of a vestigial successional lamina further, we

investigated a reptile that only forms 2 sets of teeth, the bearded dragon.

Indeed in prehatching animals we found a short, thin, rudimentary

successional lamina. We were unable to detect expression Axin2 or Tcf7

(transcription factor 7, another Wnt pathway transcription factor and
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target gene) in the rudimentary successional lamina.4 The lack of Wnt

readouts in bearded dragon contrasts the high Wnt activity in the snake

successional lamina.2 Ultimately, increased apoptosis occurs in the bear-

ded dragon teeth which we predicted would result in loss of the succes-

sional lamina some time during the post-hatching period. This predic-

tion was recently tested in chameleons that only form a single generation

of teeth.11 These authors observed a successional lamina in pre- and

post-hatching juveniles, although the relative size of the lamina is much

smaller in the older animals. These size differences correlate with reduced

proliferation in the juvenile successional lamina. Thus, for the first

time, the mechanism for loss of tooth capacity in adults can be directly

attributed to lack of growth of the rudimentary successional lamina.

The third axis of the dental lamina is the anterior–posterior axis. It

may be surprising to learn that the primary dental lamina of humans

most closely resembles that of the reptile and not that of the mouse.

Examination of serial reconstructions of embryonic and foetal human

jaws carried out by Ooë6 leaves no doubt that a continuous primary

dental lamina is present around the jaw in the late embryonic and fetal

periods (schematized in Figure 1b). The primary teeth form within

this dental lamina and remain connected to it until the roots begin to

form or late bell stage. In addition reconstructions of the ferret dental

lamina report similar continuity between teeth of the primary den-

tition.5 The appearance of this primary mammalian dental lamina is

virtually indistinguishable from the snakes and geckos that we have

reconstructed (Figure 1c and 1d).10,12 However, unlike mammals, the

continuous dental lamina surrounding the jaw in reptiles persists into

post-hatching animals.10

In rodents, there does not appear to be a continuous dental lamina.

Instead the odontogenic band which consists of a region of localized

gene expression marking the position of the tooth row is resolved into

discontinuous placodes, one for the continuously erupting incisors

and one for the molars which are never replaced.13 There is a diastema

between the incisor and molar placode in mice where vestigial tooth

buds form and regress.14 Thus the lack of a continuous dental lamina

in rodents is a part of their specialized dentition. The one place in the

rodent dentition where the dental lamina extends is in the molar

region.6,13 The contribution of the dental lamina of the first molar

to the addition of second and third molars has been recently proven in

a fate-mapping experiment. The authors took advantage of the Sox2

transcription factor which is expressed strongly in the dental lamina of

mice, ferrets, snakes, lizards and alligators.15 In the mouse model, a

Sox2–CreERT2 line was crossed with a Rosa26-reporter line

(Sox2CreERT2;R26RlacZ) and expression was turned on by injection

of Tamoxifen at E13.0.15 It was possible to show in culture that second

and third molar enamel organs derive from the Sox2-expressing dental

lamina. Taking the fate mapping data together with the conserved

Sox2 expression in mammals and reptiles, we now believe that we

can use the addition of mouse molars to understand some of the

molecular mechanisms underpinning tooth renewal.

In humans, non-rodent mammals and reptiles, it is not clear what

positive or negative signals may act to restrict tooth formation to

defined locations along the continuous dental lamina. For example,

careful examination of the diphyodont shrew and ferret have not yet

discovered a gene coding for an activator or inhibitor that is regionally

restricted in the dental lamina.5,16 Examples of activators are the Wnt

ligands and inhibitors of this pathway include secreted frizzled-related

(Sfrp), Dikkopf (Dkk) or Sostdc proteins. So far in reptiles our

regional analysis of gene expression is limited to serial sections

ba

dc

Continuous dental lamina
around maxillary arch

Post

Ant

Ling

Aboral

Ant

Oral

Reptilian tooth families

1

2

2

1

2
3

In
te

rg
en

er
at

io
na

l
In

te
rd

en
ta

l

Mammalian tooth development
and succession

1° 1° 1°

1°

2°2°

Lab
PostEarly dental lamina

Figure 1 Development of generational teeth in a diphyodont mammal and a polyphyodont reptile. (a, b) The early dental lamina in both reptiles and at least some

mammals, including humans, is a continuous invagination of oral epithelium (pink tones) into the dental mesenchyme (blue stippling) that will give rise to the all teeth of

the primary dentition. b is redrawn from ref. 6. (c) In reptiles, the dental lamina remains continuous in both the intergenerational (dark pink) and interdental (lighter

pink) regions. Tooth families contain several generations of teeth (1, 2, 3) at progressive stages of development. The lingual side or non-tooth forming side of the dental

lamina contains the label-retaining putative stem cells (green circles). The successional lamina continues as an extension of the dental lamina off the newest forming

tooth. (d) In diphyodont mammals, the dental lamina is continuous and connects adjacent teeth of the primary dentition until the dental lamina degrades in the bell

stage, disconnecting the enamel organ from the oral epithelium. The permanent tooth bud is also disconnected from the primary tooth once the primary tooth begins

root formation. Three-axis compass rose orients a, c and d; single axis rose orients b.
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through a section of snake dental lamina probed for the activator,

Shh.12 However, here we found continuous expression of Shh in the

oral part of the dental lamina with no interruption along the anterior-

posterior axis. Shh is also expressed in the inner enamel epithelium of

the tooth once it has formed. We exclude Shh as being a periodic

activator in the dental lamina; however, more three-dimensional

reconstructions of gene expression are needed in both reptiles and

diphyodont mammals to identify putative dental patterning signals.

ROLE OF EPITHELIAL STEM CELLS IN TOOTH REPLACEMENT

Repeated organogenesis requires a store of pleuripotent cells to enable

growth of new tissues; in other ectodermal organ systems, such as hair

and continuously erupting mouse incisors, stem cells have been iden-

tified.17–26 Recent studies have used GFP driven by the Sox2 promoter

to identify stem cells in the labial incisor cervical loop.27 These cells

give rise to all of the labial ameloblasts and are responsible for con-

tinued growth. It is interesting that in the incisor and hair there are

recognizable thickenings that contain the stem cells. The slowly divi-

ding stem cells replace themselves and are a stable population that can

always be seen in the niche. We have looked for a thickened region of

the dental epithelium in reptilian dentitions but have not found such

structures. Instead, we used a labeling method adapted from hair

research to mark the most slowly dividing cells in the dental epithe-

lium and by proxy, mark the putative stem cells.10 Label retaining cells

were clustered in groups, generally on the lingual surface of the inter-

generational dental lamina (Figure 1c). These label retaining cells are

Wnt-responsive and express several stem cell markers such as Lgr5,

Dkk3 and Igfbp5. These label-retaining cells remain in this position

over a protracted period of time, up to 5 months, during which teeth

would have been exchanged 2–3 times. We hypothesize that this popu-

lation of label retaining cells forms a self-replenishing population in

between tooth families that is regulated by a stationary niche in the

adjacent mesenchyme.4,28 Future work will focus on identifying the

niche and tracing the fate of the label retaining cells in order to see

whether they do indeed give rise to all parts of the enamel organ and

successional lamina.

JAW-WIDE PATTERNS OF TOOTH REPLACEMENT

The replacement of teeth, in all animals for which it occurs, occurs on

regular schedules that vary between animals and are not related

directly to wear, breakage or loss of teeth.29–30 In humans, the

sequence of permanent tooth formation and eruption is not linear

but instead is more advanced in the incisor region compared the

premolar with the maxillary canines being the last to be replaced.31

Patterns of tooth replacement are also seen in reptiles, but here instead

of being regionalized to certain parts of the jaw, there is generally an

alternating sequence. Previous work stretching back almost 100 years

on pre- and post-hatching crocodiles,32 chameleons33 and tuataras34

found that positions 1, 3, 5 et al. are most similar, in size and stage of

development, as are teeth in positions 2, 4, 6 et al. (Figure 2). Based on

these data, several scientists have concluded that teeth at different

positions along the jaw initiate independently.30,34 Woerdeman35

was the first person to propose that teeth arise and replace in waves

and coined the term Zahnreihen to describe this pattern. In its purest

sense, a Zahnreihe consists of a group of neighboring (adjacent) teeth

from different tooth families that are at a similar stage of development

(anterior to posterior diagonal lines, Figure 2). The diagonal arrange-

ment of the Zahnreihe is superimposed on the straight line of replace-

ment teeth within single-tooth families. In this way, should several

teeth be exfoliated at the same time, there would be some teeth close to

being fully formed and ready to erupt to fill the gap. In the human

dentition during transition from the primary to permanent dentition,

there is also staggered development so that all incisors or deciduous

molars are not exfoliated at the same time as their nearest neighbours.

Theories on the control of replacement—wave stimulus and zone of

inhibition

Well before the start of the molecular age, Edmund30,36–37 proposed a

theory to explain the alternating patterns of tooth replacement. He

suggested that an extrinsic ‘wave stimulus’ originates in the anterior

dental mesenchyme and is transmitted posteriorly through the odon-

togenic anlage, stimulating tooth growth as it passes. The stimulus or

signal would diminish in intensity leaving the intervening tooth at a

more immature stage. Subsequent wave stimuli appear along the jaw

and are responsible for subsequent generations of teeth; temporal

staggering of these stimuli sets up the pattern of replacement observed

(Figure 3a and 3a9). This hypothesis was predicated on two assump-

tions common at the time: (i) the first tooth to develop is typically the

first/most mesial; and (ii) teeth are progressively initiated in order

along the length of the tooth row. Although these ideas were initially

widely accepted (e.g. refs. 38–40, subsequent work on lizards and

alligators41–44 has shown that neither assumption is correct. Recent

chameleon data nicely shows that areas of tooth initiation are not

orderly in the anterior-posterior direction but instead seem to corre-

late with regions of increased jaw growth.11 In other words, when

space is available, additional teeth form.

The Zahnreihen break down with increasing maturity of the indi-

vidual30,45 and at different positions around the dental arcade.38,46–47

Replacement waves even appear to reverse at various points in the

jaw.47 Regional differences in replacement capacity also exist, with

replacement occurring anteriorly, but not at all in the distal-most

dentition in some lizards.38 Taken together, the observed variability

in dental replacement patterns illustrate that it may be hard to ge-

neralize. Furthermore, these natural variations between reptiles high-

light the necessity of getting to know your animal model in detail

before embarking on experimental perturbations.

The second model to explain Zahnreihen is the ‘zone of inhibition’

(ZOI) theory, which suggests that a developing tooth emits a signal

into the surrounding mesenchyme that inhibits the development of

Zahnreihen and tooth succession

654321 7

Figure 2 Diagrammatic representation of the first seven tooth families in a

hypothetical reptile jaw. Diagonal lines connecting teeth in decreasing stages of

development, or Zahnreihen, can be drawn across tooth families (shown in blue),

illustrating the apparent ‘waves’ of tooth replacement. The dashed line shows

succession within a single tooth family. The pink layer indicates the teeth that are

not visible in the oral cavity and are still forming. Consequently, Zahnreihen can

only be seen on radiographs or in histology.
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additional teeth within a certain radius.48–49 Under this hypothesis,

the dental lamina is a constantly proliferative area of potential tooth

forming cells. Initiation of each new tooth enlarges the ZOI, preven-

ting uncontrolled tooth formation (Figure 3b–3b999). As teeth erupt

and as the jaw grows anterior-posteriorly, space is created for the

initiation of additional teeth. Assuming the ZOI is roughly spherical

(as would result from a secreted inhibitor diffusing equally from a

central point), once the tooth expressing the inhibitor has erupted,

the dental lamina on either side is no longer inhibited and thus is free

to develop teeth. In this way, an alternating pattern is constructed,

based entirely on the order of initiation.

Much as we have discussed, the activators or inhibitors that could

set up the ZOIs have not yet been identified. However, there are several

candidate pathways that have been shown to play a role in spacing of

other ectodermal organs, such as feathers.50–53 A reaction-diffusion

reaction prevents the initiation of a replacement structure until the

functional structure has reached a certain stage of maturity. In par-

ticular, Wnt, Fgf, Eda and Bmp pathways are among those that have

been implicated as potential regulators of feather spacing.52–55 Our lab

has mapped expression of a Wnt antagonist, Secreted frizzled-related

protein (Sfrp2) in pythons and bearded dragons (Handrigan and

Richman, unpublished data). We found that it was expressed around

the tooth anlagen but not within the teeth themselves. This pattern is

complementary to areas of high Wnt activity within and next to the

successional lamina and suggests that Sfrp2 may help to restrict tooth

formation to odontogenic mesenchyme.

The best functional evidence for an inhibitory mechanism in facial

mesenchyme comes from an organ culture experiment using mouse

incisor tooth germs. By trimming the mesenchyme around the incisors

very close to the teeth, supernumerary teeth formed.56 This demon-

strated that inhibitory factors in the mesenchyme limited the number

of teeth. One such molecule is the Bmp and Wnt antagonist, Sostdc1,

which is expressed in the mesenchyme. Indeed, the deletion of Sostdc1

in epithelium and mesenchyme leads to formation of double inci-

sors.57 Therefore, increased Bmp and Wnt activity leads to deregula-

tion of tooth number. However, the tissue in which gene inactivation

occurs is critical. In other studies, disrupting Wnt signalling speci-

fically in the mesenchyme58 leads to a downregulation of Bmp4.

Although these gene expression changes are opposite to the Sostdc1

mutant animals, supernumerary incisors also form. These seemingly

contradictory results demonstrate that there is a dialogue between

epithelium and mesenchyme which regulates tooth number. Finally,

in a different approach, inhibitors were placed directly into the incisor

mesenchyme, essentially creating an ectopic ZOI very close to a tooth

bud. The high level of inhibitor caused the single tooth germ to split up

into several incisors in organ culture.56 Based on this mouse data, the

mesenchyme is important in negatively regulating tooth number and

that ZOI may be created by spatially restricted expression of antago-

nists such as those that inhibit Wnt activators. The advantage of such

zones of inhibition in the human dentition would be that crowding of

teeth would be prevented. Teeth that are too close together during

development may increase the probability of defects in either the

crown or root. By delaying development of the terminal tooth in each

tooth morphotype (incisor, premolar, molar) jaw size can increase and

there will be room for all the permanent dentition.

CONCLUSIONS

The transition from polyphyodonty in extinct mammals to diphyo-

donty in modern mammals may be due to (i) the loss of integrity of the

dental lamina which in turn leads to loss of dental epithelial stem cells;

(ii) inability to reform a successional lamina which also could be due

to loss of the stem cell niche; or (iii) vestigialization of a successional

lamina. The reptile and mouse molars are both good models to explore

the molecular underpinnings of tooth renewal. The reptile model will

give additional insights into the patterning of tooth renewal along the

jaw including whether there are inhibitory signals prevent initiation of

a tooth within a certain radius of the existing tooth.
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6 Ooë T. Human Tooth and Dental Arch Development. Tokyo: Ishiyaku Publishers Inc.,
1981: 217.

7 Wang XP, Fan J. Molecular genetics of supernumerary tooth formation. Genesis 2011;
49(4): 261–277.
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9 Štembı́rek J, Buchtová M, Král T et al. Early morphogenesis of heterodont dentition in
minipigs. Eur J Oral Sci 2010; 118(6): 547–558.

10 Handrigan GR, Leung KJ, Richman JM. Identification of putative dental epithelial
stem cells in a lizard with life-long tooth replacement. Development 2010;
137(21): 3545–3549.
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