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CAD systems for colorectal cancer 
from WSI are still not ready 
for clinical acceptance
Sara P. Oliveira1,2,6*, Pedro C. Neto1,2,6, João Fraga3,6, Diana Montezuma3,4,5, Ana Monteiro3, 
João Monteiro3, Liliana Ribeiro3, Sofia Gonçalves3, Isabel M. Pinto3 & Jaime S. Cardoso1,2

Most oncological cases can be detected by imaging techniques, but diagnosis is based on pathological 
assessment of tissue samples. In recent years, the pathology field has evolved to a digital era where 
tissue samples are digitised and evaluated on screen. As a result, digital pathology opened up many 
research opportunities, allowing the development of more advanced image processing techniques, 
as well as artificial intelligence (AI) methodologies. Nevertheless, despite colorectal cancer (CRC) 
being the second deadliest cancer type worldwide, with increasing incidence rates, the application 
of AI for CRC diagnosis, particularly on whole-slide images (WSI), is still a young field. In this review, 
we analyse some relevant works published on this particular task and highlight the limitations that 
hinder the application of these works in clinical practice. We also empirically investigate the feasibility 
of using weakly annotated datasets to support the development of computer-aided diagnosis systems 
for CRC from WSI. Our study underscores the need for large datasets in this field and the use of an 
appropriate learning methodology to gain the most benefit from partially annotated datasets. The 
CRC WSI dataset used in this study, containing 1,133 colorectal biopsy and polypectomy samples, is 
available upon reasonable request.

Pathologists are responsible for the diagnosis of samples collected during biopsies. Digital pathology methods 
have been increasing due to technological advances, and their implementation can support the work conducted 
by pathologists. And while this multi step process requires an additional scanning step (Fig. 1), the benefits far 
outweigh the increased initial overhead of these steps. For example, access to old cases, collaboration with exter-
nal laboratories, and data sharing are all made easier. For example, peer-review of a whole-slide image (WSI) is 
completed at a quicker pace with a digital pathology workflow. In addition, the ability to easily access images 
mitigates the risk of errors, making diagnosis more auditable.

Over the last decade, the advent of digitised tissue samples, the wider adoption of digital workflows in pathol-
ogy labs, and the consequent availability of more data, combined with a shortage of pathologists, enabled the 
evolution of the computational pathology field with the integration of automatic image analysis into clinical 
practice, mainly based in Artificial Intelligence (AI) methodologies1–4. Researchers have been exploring the 
implementation of computer-aided diagnosis (CAD) systems for several different tasks regarding cancer WSI. 
The most popular are the detection, grading and/or segmentation of lesions. Additionally, there are also predic-
tive systems that attempt to estimate the patient’s probability of survival.

Despite the ever-growing number of publications of machine learning (ML) methods applied to CAD systems, 
there is a dearth of published work for the task of joint detection and classification of colorectal lesions from WSI, 
lagging colorectal cancer (CRC) behind pathologies such as breast cancer and prostate cancer. Furthermore, 
a significant amount of the work developed does not use the entire WSI but instead uses crops and regions of 
interest extracted from these images. While these latter works show significant results, the applicability of such 
works in clinical practice is limited. Similarly, publicly available datasets often consist of crops instead of the 
original image. Others include only abnormal tissue, limiting the development of CRC diagnostic systems and 
the detection task.

As a first step in addressing these limitations, in this work, we examine and identify the benefits and short-
comings of the current body of work on CAD systems for CRC diagnosis from WSI. Since the development of 
such systems typically requires large and diverse datasets, any review would be incomplete without a concurrent 
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discussion of the existing data and associated annotation metadata. Following this initial reflection, and in an 
attempt to better understand the limitations of the data and methods used to develop CAD systems for CRC 
diagnosis, we analyse the impact of using partially annotated datasets, as well as the effect of increasing training 
instances, on the robustness of learning. We conduct this empirical study using in-house data, an ongoing effort 
to develop a reference dataset for CRC automatic diagnosis. These comparisons serve two distinct purposes: 
First, they validate the annotation and labelling efforts used in the dataset construction; Second, public data is 
used to evaluate the dependency of the performance with the number of used samples. One method was assessed 
for its applicability within a framework for pathological diagnosis in a digital workflow. In an attempt to address 
the lack of public CRC datasets with large numbers of slides, the colorectal data used in this study, that sums up 
1,133 colorectal biopsy and polypectomy samples, is available upon reasonable request.

This paper distinguish itself from previous reviews5,6 by focusing only on CRC histopathological slides clas-
sification, distinguishing works that evaluate complete slides from those that use only smaller portions of the 
image, without returning a final diagnosis for each case. Moreover, we discuss their major shortcomings, espe-
cially with regard to the properties of datasets that are used. In this review, we provide a detailed description of 
the proposed methods, including most of the references of the previous reviews and, in addition, some more 
recent works, making this a timely paper.

In addition to this introductory section, this paper consists of three other main sections and a conclusion. 
The development of AI models for medical applications should always take into consideration the clinical back-
ground, and thus “Clinical insights” section introduces the main clinical notions regarding CRC and overviews 
the process of classifying lesions. Afterwards, “Computational pathology” section provides a detailed review 
of CAD systems for CRC diagnosis from WSI, discussing the current problems regarding the analysis of these 
images. Finally, before the conclusion and discussion of future work on “Conclusions” section, “Feasibility study 
on the use of weakly annotated and larger datasets for CRC diagnosis” section not only describes the workflow of 
the CRC dataset construction, but also shows the results of our feasibility study on the use of weakly annotated 
and larger datasets.

Clinical insights
CRC epidemiology.  Colorectal cancer (CRC) represents one of the major public health problems today. A 
striking and often unknown fact is that CRC is the second most deadly cancer7,8. Globocan estimated data for 
2020 show that CRC is the third most incident cancer (10% of all cancers) and the second most deadly (9,4%; 
surpassed by lung cancer, 18%)8. CRC is the third most common cancer in men (after lung and prostate cancer) 
and the second most common cancer in women (after breast cancer). CRC is a disease of modern times: the 
highest rates of incidence happen in developed countries9. As the world becomes richer, and people shift to a 
western lifestyle, the incidence of CRC is expected to increase, since it is a multifactorial disease resulting from 
lifestyle, genetic, and environmental factors9,10. Population growth and ageing lead to an increasing incidence 
of the disease, as well as better and more numerous screening programs for early detection and prevention. The 
prevalence of screening among individuals aged 50 years and older increased from 38%, in 2000, to 66%, in 2018, 
according to data from the National Center for Health Statistics (NHIS)11. Importantly, CRC is a preventable 
and curable cancer if detected early on, and, therefore, screening is an effective tumour prevention measure12. 
Screening determines the decrease in mortality through timely detection and removal of adenomatous polypoid 
(pre-malignant) lesions, promoting the interruption of progression to cancer. It should begin with colonoscopy 
in asymptomatic individuals aged 50 years or over (and without personal or family risk factors for CRC) and 

Figure 1.   Digital pathology workflow, from collecting the biopsy sample to the WSI visualisation.
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repeated every ten years if normal13. It is worth mentioning that, due to the Covid-19 pandemic, CRC screening 
programmes have been disrupted worldwide. As such, it is crucial that catch-up screening is provided as soon 
and effectively as possible, hoping to mitigate the impact on CRC deaths14,15. Computer-aided diagnosis (CAD) 
solutions in CRC could help in this task, contributing to improve pathology diagnostic capacity.

CRC pathological assessment.  During pathological assessment, colorectal biopsies/polyps can be strati-
fied in non-neoplastic, low-grade dysplasia (LGD), high-grade dysplasia (HGD, including intramucosal car-
cinomas) and invasive carcinomas, regarding their development sequence. Colorectal dysplasia refers to the 
pre-malignant abnormal development of cells/tissues, which can eventually progress to tumour lesions, and is 
classified in low- and high-grade, with the last confering a relative higher risk of cancer (Fig. 2).

The case for grading dysplasia.  It is well-known that grading colorectal dysplasia is a somewhat subjective issue. 
In a study to evaluate inter-observer variability in HGD diagnosis, five gastrointestinal pathologists conducted a 
consensus conference in which criteria for colorectal HGD were developed16. When grading the same 107 pol-
yps, the inter-observer agreement was found to be poor both before and after the consensus. Other studies have 
also shown sub-optimal agreement in grading colorectal dysplasia17,18. Despite this, the most recent guidelines 
from the European Society of Gastrointestinal Endoscopy (ESGE), as well as those from the US multi-society 
task force on CRC, continue to recommend surveillance for polyps with high-grade dysplasia regardless of their 
size13,19. Patients requiring surveillance after polypectomy include those with complete removal of:

•	 at least one adenoma ≥ 10mm or with high-grade dysplasia;
•	 five or more adenomas;
•	 any serrated polyp ≥ 10mm or with dysplasia13.

As such, it remains a current practice in most countries (although not in every laboratory) to evaluate and grade 
colorectal dysplasia.

Dysplasia grading.  As previously stated, various studies have shown good concordance among pathologists 
in recognising adenomatous features, but lower levels of agreement evaluating dysplasia grade, with significant 
inter-observer variability16–18. To date, there are still no tangible criteria on what distinguishes the high end of 
LGD from the low end of HGD. Although there are some reporting guidelines regarding grading dysplasia in 
colorectal biopsies20–22, objective criteria are still lacking. It is fairly easy for a pathologist to diagnose a typical 
low grade or high-grade adenoma but, since in fact these lesions exist in a continuum, the correct assessment of 
many intermediate cases is more difficult. Nevertheless, protocols such as the English National Health System 
(NHS) bowel cancer screening programme guidance, with guidelines from the bowel cancer screening pro-
gramme pathology group20 or the Pan-Canadian consensus for colorectal polyps report22, can aid pathologists 
to grade colorectal lesions more objectively. Additional information from reference books, such as the World 

Figure 2.   Normal colonic mucosa and dysplastic progression.
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Health Organization (WHO) Classification of Tumours: digestive system tumours7, can also assist in this task. 
The most relevant characteristics that differentiate low- and high-grade dysplasia are detailed in Table 1.

Computational pathology
The digitisation of histopathology images opened many research opportunities for the field of computer-aided 
image analysis23,24. In fact, due to the high-resolution and complex nature of whole-slide image (WSI) evaluation, 
advances in image analysis are required, which provides the opportunity to apply and advance image processing 
techniques, as well as AI methodologies, such as machine learning (ML) and deep learning (DL) algorithms3,4,23,24. 
Moreover, the integration of AI into healthcare routines is a required milestone for the years to come, and thus, 
in terms of pathology-focused research, many DL architectures have been applied with many different tasks in 
mind, either to predict diagnoses or even to identify new biomarkers3.

Regarding the field of AI, and its application in computational pathology, DL models25, which consist of 
multiple layers of processing to learn different levels of data representation, are the most common and promising 
methods nowadays. The networks are composed of multiple layers, each with multiple nodes. The large numbers 
of hidden layers confer depth to the networks, hence the name. Each node performs a weighted sum of its inputs 
and then feeds it into a non-linear function, the result of which is passed forward as input to the following layer 
and so on until the last layer, which provides the network output. In this way, these models have the intrinsic abil-
ity to learn features, directly from the input data, useful for the task at hand25. In particular, convolutional neural 
networks (CNN) are applied to images and automatically extract features, which are then used to identify objects/
regions of interest or to classify the underlying diagnosis26. In digital pathology, this type of models is used, for 
example, for mitosis detection27,28, tissue segmentation29,30, cancer grading31,32 or histological classification33,34.

Challenges of whole‑slide image analysis.  Despite the popularity, clear potential, progress and good 
results of DL in computer vision, and in medical imaging in particular, researchers should carefully consider and 
manage its pros and cons4,35. Indeed, digital pathology brings some specific challenges that need to be addressed:

•	 High dimensionality of data. Histology images are extremely informative, but at the cost of high dimension-
ality, usually over 50, 000× 50, 000 pixels35. Hence, these images do not fit in the memory of a Graphics 
Processing Unit (GPU), which is usually needed to train DL models. Current methods either downsample 
the original image or extract multiple smaller patches, choosing between the cost of losing pixel information 
or losing spatial information, respectively;

•	 Data variability, due to the nearly infinite patterns resulting from the basic tissue types, and the lack of 
standardisation in tissue preparation, staining and scanning;

•	 Lack of annotated data, since extensive annotation is subjective, tedious, expensive and time-consuming;
•	 Non-boolean diagnosis, especially in difficult and rare cases, which makes the diagnosis process more complex;
•	 Need for interpretability/explainability, in order to be reliable, easily debugged, trusted and approved4,35,36.

Therefore, the research community has the opportunity to develop robust algorithms with high performance, 
transparent and as interpretable as possible, always designed and validated in partnership with pathologists. To 
this end, one can take advantage of some well-known techniques such as transfer learning (using pre-trained 
networks instead of training from scratch), weakly/unsupervised learning (analysing images only with slide-
level labelling), generative frameworks (by learning to generate images, the algorithm can understand their main 
distinctive features) or multitask learning (learning interrelated concepts may produce better generalisations)35.

Computational pathology on colorectal cancer.  As mentioned earlier, the rise of DL and its applica-
tion in computer vision has been critical to computer-aided diagnosis (CAD) research. Several researchers have 

Table 1.   Colorectal low- and high-grade dysplasia characterisation. *Architectural features: gland morphology 
and placement; **Cytological features: cell level characteristics.

Low-grade dysplasia High-grade dysplasia

Extension – Changes must involve more than two glands (except in tiny biopsies of 
polyps)

Low power magnification Lack of architectural complexity suggests low-grade dysplasia throughout
Alterations have to be enough to be identified atlow power: complex 
architectural abnormalities, epithelium looks thick, blue, disorganised and 
“dirty”

Cytology/architecture Does not combine cytological high-grade dysplasia with architectural 
high-grade features

Needs to combine high-grade cytological and high-grade architectural 
alterations

Architectural features*
Gland crowding, showing parallel disposition, with no complexity (no 
back-to-back or cribriforming); Global architecture may vary from tubular 
to villous

Complex glandular crowding and irregularity; Prominent budding; 
Cribriform appearance and back-to-back glands; Prominent intra-luminal 
papillary tufting

Cytological features**

Nucleus are enlarged and hyperchromatic, many times cigar-shaped; 
Nucleus maintain basal orientation (only up to the lower half of the 
height of the epithelium, although in some cases we can see glands with 
full-thickness nuclear stratification - this is not HGD if the archite- ture 
is bland); There is no loss of cell polarity or pleomorphism; No atypical 
mitosis; Maintained cytological maturation (mucin)

Noticeably enlarged nuclei, often with a dispersed chromatin pattern and 
evident nucleoli; Loss of cell polarity or nuclear stratification to the extent 
that the nuclei are distributed within all 1/3 of the height of the epithelium; 
Atypical mitoses; Prominent apoptosis/necrosis, giving the lesion a “dirty” 
appearance; Lack of cytological maturation (loss of mucin)
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sought to work alongside pathologists to improve or reduce the workload of diagnosing cancer using histopatho-
logical images. However, the development of AI applications for colorectal cancer (CRC) diagnosis on WSI is 
still limited, as noted by Thakur et al.5: of the 30 papers reviewed, only 20% have diagnosis as a final goal. In fact, 
the majority of the papers deal with a wide variety of tasks, with a particular focus on tissue segmentation, the 
goal of 62% of the reviewed papers5. Last year, Wang et al.6 also published a review on the application of AI to 
CRC diagnosis and therapy, reflecting the same trend. However, CRC diagnosis is a growing application, with 
an increasing number of publications in recent years. In the next section, we collect and describe the published 
works on CRC diagnosis, with a particular focus on slide diagnosis (Table 2), but also summarising some works 
using partial regions of tissue (region crops or tiles) without aggregation for WSI.

CRC diagnosis on WSI.  In 2012, Kalkan et al.37 proposed a method for CRC automatic detection from Haema-
toxylin and Eosin (H&E) slides, combining textural and structural features of smaller patches ( 1024× 1024 pix-
els). Firstly, the patches are classified into normal, inflamed, adenomatous or cancer with a k-NN classifier, based 
on local shape and textural features, such as Haralick features, Gabor filters features and colour histograms fea-
tures. Then, the (up to) 300 patches representing the slide are summarised in the average probabilities for all the 
four primary classes, and used as a feature vector for a logistic-linear regressor, to obtain a final slide diagnosis: 
normal or cancer. The proposed method was trained on 120 H&E stained slides and achieved an Area Under the 
Curve (AUC) of 0.90 and an average accuracy of 87.69%, with accuracies of 79.17% and 92.68% for cancer and 
normal slides, respectively. Similarly, using traditional computer vision techniques, Yoshida et al.38 presented an 
approach to classify CRC H&E slides into 4 types: non-neoplastic, adenoma, carcinoma and unclassifiable. For 
each WSI, all tissue regions are identified, summing 1328 sections from 1068 H&E slides. Then, each section is 
processed for blur detection and colour normalisation before the analysis in two steps: cytological atypia analysis 
and structural atypia analysis. In the first step, the method proposed by Cosatto et al.39 is used, based on multiple 
instance learning (MIL) formulation using a Multilayer Perceptron (MLP), to grade the degree of cytological 
alteration of the tissue (high or low).

Then, the image is classified into low atypia, intermediate atypia, high atypia or unclassifiable, based on 
structural nuclear features and cytoplasmatic features, extracted from consecutive ROIs, that are summarised 
by the mean-square of the top 3 ROIs. Finally, each image is classified based on the combination of structural 
atypia analysis result (high, intermediate or low) and the cytological atypia analysis result (high or low), given 
that carcinoma presents higher atypia values. The model has an undetected carcinoma rate of 9.3%, an undetected 
adenoma rate of 0.0% and an over detection proportion of 27.1%.

The first DL application model was presented in 2017, by Korbar et al.40, to automatically classify colorec-
tal polyps on H&E stained slides into five classes: normal, hyperplastic, sessile serrated, traditional serrated 
adenoma, tubular adenoma and tubulovillous/villous adenoma. The 697 H&E stained slides (annotated by a 
pathologist) were cropped into ROIs of 811× 984 pixels (mean size), and then divided into overlapping smaller 
patches. These patches were classified using the ResNet-152 and the prediction of the slide was obtained as the 
most common colorectal polyp class among all patches of the slide. However, if no more than five patches are 
identified with the most common class, with a confidence higher than 70%, the slide is classified as normal. 
The proposed system achieved 93.0% accuracy, 89.7% precision, 88.3% recall and 8.8% F1-score. Later, the 
authors proposed a visualisation method41, based on this approach, to identify highly-specific ROIs for each 

Table 2.   Literature overview on colorectal whole slide image diagnosis. CRC​: Colorectal Cancer; AD: 
Adenoma; CA: Carcinoma; ADC: Adenocarcinoma; H&E: Haemotoxylin & Eosin; px: pixels; k-NN: k Nearest 
Neighbours; ROI: Region of Interest CNN: Convolutional Neu- ral Network; SVM: Support Vector Machine; 
MLP: Multi-Layer Perceptron; MIL: Multiple Instance Learning; Acc.: Accuracy; AUC​: Area Under the ROC 
Curve; FNR/FPR: False Negative/Positive Rate

Author Year Task Dataset Description Results

Kalkan et al.37 2012 CRC detection (normal vs cancer) 120 H&E slides (tile annotations) 1024 × 1024 px tiles; k-NN classifier 
+ Logistic-linear classifier Acc.: 87.69%; AUC: 0.90

Korbar et al.40 2017
Polyp classification (6-class): normal, 
hyperplastic, sessile serrated, 
traditional serrated, tubular and 
tubulovillous/villous

697 H&E slides (annotated)
811 × 984 px ROIs (mean 
size); ResNet-152 + argmax of tile 
class frequency

Acc.: 93%; Precision: 89.7%; Recall: 
88.3%; F1-score: 88.8%

Yoshida et al.38 2017
CRC classification (4-class): unclas-
sifiable, non-neoplastic, adenoma 
and CA

1068 H&E slides (w/ labelled tissue 
sections)

Tissue sections crop + cytological 
atypia analysis + structural atypia 
analysis + overall classification

FNR (CA): 9.3%; FNR (adenoma): 
0%; FPR: 27.1%

Iizuka et al.43 2020 CRC classification (3-class): non-
neoplastic, AD and ADC

4536 H&E slides (annotated) + 547 
H&E slides from TCGA-COAD 
collection

512 × 512 px tiles at 20×; Inception-
v3 + RNN

AUC: 0.962 (ADC), 0.993 (AD); 
AUC (TCGA-COAD subset): 0.982 
(ADC)

Song et al.46 2020 Colorectal adenoma detection (nor-
mal vs adenoma)

411 H&E slides (annotated) + exter-
nal set: 168 H&E slides

640 × 640 px tiles at 10×; Modified 
DeepLab-v2 + 15th largest pixel 
probability

AUC: 0.92; Acc. (external set): >90%

Wei et al.45 2020
Polyp classification (5-class): Nor-
mal, hyperplastic, tubular, tubulovil-
lous/villous, sessile serrated

508 H&E slides (annotated) + exter-
nal set: 238 H&E slides

224 × 224 px tiles at 40×; ResNet 
models ensemble + hierarchical 
classification

Acc.: 93.5%; Acc. (external set): 87%

Xu et al.47 2020 CRC detection (normal vs cancer) 307 H&E slides (annotated) + 50 
H&E slides (external set)

768 × 768 px tiles; Inception-v3 + 
tiles tumour probability thresholding Acc.: >93%; Acc. (external set): >87%
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type of colorectal polyps within a slide, using the Guided Grad-CAM method42 and a subset of data (176 H&E 
colorectal slides).

In 2020, several authors presented solutions for CRC diagnosis, with varying degrees of detail. Iizuka et 
al.43 proposed the combination of a Inception-v3 network with a recurrent neural network (RNN) to classify 
H&E colorectal WSI into non-neoplastic, adenoma and adenocarcinoma. Each slide was divided into patches 
of 512× 512 pixels (at 20X magnification, with a sliding window of 256 pixels) and assigned to one of the three 
diagnostic classes. Then, all tiles are aggregated using a RNN, trained to combine the features outputted by the 
CNN. The dataset consists of subsets from two different institutions, summing 4536 WSIs. Moreover, the model 
was also evaluated on a subset of 547 colon surgical resection cases from The Cancer Genome Atlas (TCGA) 
repository44, containing adenocarcinoma and normal samples (TCGA-COAD collection). On the private data-
set, the proposed approach measured AUCs of 0.962 and 0.992 for colorectal adenocarcinomas and adenomas, 
respectively. On the public dataset, the model achieved an 0.982 AUC for adenocarcinomas. It is noteworthy 
that the authors report that, since the samples from the external subset are much larger than the biopsies used 
for training, the RNN aggregation was replaced by a max-pooling aggregation. Meanwhile, Wei et al.45 aimed to 
identify five types of polyps in H&E stained colorectal slides: normal, tubular adenoma, tubulovillous or villous 
adenoma, hyperplastic polyp, and sessile serrated adenoma. To train the model, the authors used 509 slides (with 
annotations of relevant areas by five specialised pathologists) and for further testing, they used an external set of 
238 slides, obtained from different institutions. The model consists of an ensemble of the five versions of ResNet 
(namely, networks with 34, 50, 101, and 152 layers) to classify tiles of 224× 224 pixels (at 40X magnification). 
Then, the patches are combined with a hierarchical classifier to predict a slide diagnosis. Based on the predicted 
tile classes, the model first classifies a polyp as adenomatous or serrated, by comparing the frequency of tiles 
classes (tubular, tubulovillous, or villous vs. hyperplastic or sessile serrated). Adenomatous polyps with more 
than 30% tubulovillous or villous adenoma tiles are classified within this class and the remaining are classified 
as tubular adenoma. Serrated polyps with more than 1.5% of sessile serrated tiles are classified within this class 
and the remaining are classified as hyperplastic. The thresholds were set with a grid search over the training set, 
reaching an accuracy of 93.5%, on the internal test set, and 87.0% on the external test set.

Moreover, also during last year, two other authors proposed segmenting colorectal tissue simultaneously 
with the diagnosis. Song et al.46 presented an approach based on a modified DeepLab-v2 network on 640× 640 
pixel tiles, at a 10X magnification. The dataset consists of 411 annotated slides, labelled as colorectal adenomas 
or normal mucosa (which includes chronic inflammation), and a subset of 168 slides collected from two other 
institutions, to serve as an external test. The authors modified the DeepLab-v2 network by introducing a skip 
layer that combines the upsampled lower layers with the higher layers, in order to retain semantic details of the 
tiles. Then, the 15th largest pixel-level probability is used for the slide-level prediction. In the inference phase, 
the slide is decomposed into tiles of 22002200 pixels. The proposed approach achieved an AUC of 0.92 and, 
when tested on the independent dataset, an accuracy over 90%. In turn, the model of Xu et al.47 was trained on 
a set of 307 slides (normal and CRC), with tissue boundaries manually annotated by a pathologist, achieving a 
mean accuracy of 99.9% for normal slides and 93.6% for cancer slides, and a mean dice coefficient of 88.5%. For 
further testing, the model was also evaluated on an external set of 50 CRC slides and achieved a mean accuracy 
of 87.8% and a mean Dice coefficient of 87.2%. The method uses the Inception-v3 architecture, pre-trained on 
the ImageNet dataset, to classify patches of 768× 768 pixels, resized to 299× 299 pixels. The final tumour regions 
and slide diagnosis are obtained by thresholding the tile predictions: tiles with tumour probability above 0.65 
are considered as cancer.

While some of the reported results are impressive and show high potential, there are still some obvious short-
comings that need to be addressed. One of the issues is model evaluation: most of the papers analysed have not 
used any form of external evaluation on public benchmark datasets, as can be seen by the dataset descriptions 
on Table 2. This validation is necessary to understand and compare the performance of models that, otherwise, 
cannot be directly compared to each other due to the use of distinct datasets. It also limits the study of robustness 
of the model when it is exposed to data from sources other than those used for training. On the other hand, as 
with any DL problem, the size of the dataset is crucial. Although, as mentioned earlier, it is expensive to collect 
the necessary amount of data to develop a robust model, it is noticeable that the reviewed articles could greatly 
benefit from an increase in the volume of data, since most of the works are trained on only a few hundred slides 
(Table 2). Describing and sharing how the data collection and annotation processes were performed is also crucial 
to assess the quality of the dataset and the quality of the annotations. For example, the number of annotators, their 
experience in the field, and how their discrepancies were resolved. However, this description was not a common 
practice in the articles reviewed. Moreover, comparing models becomes more complicated when one realises 
that the number of classes used for the classification tasks is not standardised across published work. Therefore, 
together with the difference in the kind of metrics presented, direct comparisons should be made with caution.

Other CRC classification approaches.  Despite the small number of published works on colorectal WSI diagnosis 
(Table 2), there is a myriad of other articles also working on CRC classification using information from smaller 
tissue regions, that can be exploited as a basis for general diagnostic systems. Despite the different task, these 
works that use image crops, or even small patches48–52, can be leveraged for slide diagnosis, in combination with 
aggregation methods that combine all the extracted information in a single prediction.

As for WSI classification, there are also approaches for crop images classification based on traditional com-
puter vision methods or DL models, and even a combination of both. In 2017, Xu et al.53 proposed the combina-
tion of an Alexnet (pre-trained on ImageNet dataset) as feature extractor and a SVM classifier to develop both 
a binary (normal vs. cancer) and a multiclass (CRC type) classification approach for cropped images (variable 
size, 40X magnification) from CRC H&E slides. The latter goal is to distinguish between 6 classes: normal, 
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adenocarcinoma, mucinous carcinoma, serrated carcinoma, papillary carcinoma cribriform adenocarcinoma. 
Each image is divided into overlapping patches of 672× 672 pixels (then resized to 224224 pixels), from which 
4096-dimensional feature vectors are extracted. For cancer detection, features are selected based on the differ-
ences between positive and negative labels: the top 100 feature components (ranked from the largest differences to 
the smallest) are kept. Then the final prediction is obtained with a linear SVM (one-vs-rest classification for CRC 
type). The CRC detection model has an accuracy of 98% and the CRC type classification model has an accuracy 
of 87.2%, trained on 717 image crops. Already in 2019, Yang et al.54 and Ribeiro et al.55 proposed works based 
on color and geometric features, and classical ML methods, to classify CRC. With colour pictures ( 350× 350 
pixels, 20× magnification) from H&E stained colorectal tissue sections (labelled and marked by professional 
pathologists), Yang et al.54 proposed a method based on sub-patch weight color histogram features, the RelicfF 
based forward selection algorithm and a Morlet wavelet kernel-based least squares SVM classifier. The method 
was developed using a total of 180 images and obtained an AUC and accuracy of 0.85 and 83.13%, respectively. 
Ribeiro et al.55 associated multidimensional fractal geometry, curvelet transforms and Haralick features and tested 
several classifiers on 151 cropped images ( 775× 522 pixels, 20X magnification) from 16 H&E adenocarcinoma 
samples. The best result, an AUC of 0.994, was achieved with multiscale and multidimensional percolation 
features (from curvelet sub-images with scale 1 and 4), quantifications performed with multiscale and multidi-
mensional lacunarity (from input images and their curvelet sub-images with scale 1) and a polynomial classifier.

Regarding DL models, there are also several proposed approaches for several CRC classification tasks. In 
2017, Haj-Hassan et al.56 proposed a method based on multispectral images and a custom CNN to predict 3 CRC 
types: benign hyperplasia, intrapithelial neoplasia and carcinoma. From the H&E stained tissue samples of 30 
patients, 16 multispectral images of 512× 512 pixels are acquired, in a wavelength range of 500–600 nm. After 
a CRC tissue segmentation with an Active Contour algorithm, images are cropped in smaller tiles of 60× 60 
pixels (with the same label of the slide) and fed to a custom CNN (input size of 60× 60× 16 ), reaching an 
accuracy of 99.17%. In 2018, Ponzio et al.57 adapted a pre-trained VGG16 net for CRC classification into adeno-
carcinoma, tubuvillous adenoma and healthy tissue. They used tissue subtype large ROIs, identified by a skilled 
pathologist from 27 H&E stained slides of colorectal tissue from a public repository58, that were then cropped 
into 1089× 1089 patches, at a magnification level of 40×. By freezing the weights up to the most discriminative 
pooling layer (determined by t-SNE) and training only the final layers of the network, the solution provided a 
classification accuracy over 90%. The system was evaluated at two levels: the patch score (fraction of patches 
that were correctly classified) and patient score (per-patient patch score, averaged over all cases), that reached 
96.82% and 96.78%, respectively. In 2019, Sena et al.59 proposed a custom CNN to classify four stages of CRC 
tissue development: normal mucosa, early pre-neoplastic lesion, adenoma and carcinoma. The dataset consist of 
393 images from H&E colorectal slides (20× magnification), cropped into nine subimages of 864× 548 pixels. 
For further validation on significantly different images, the authors also used the GLaS challenge dataset60,61, 
with 151 cropped images. Since both datasets differ on resolution, the GLaS images were resized with bi-cubic 
interpolation and centrally cropped. The proposed method obtained an overall accuracy of 95.3% and the external 
validation returned an accuracy of 81.7%. Meanwhile, Zhou et al.62 proposed a pipeline to classify colorectal 
adenocarcinomas, based on the recent graph neural networks, converting each histopathological image into a 
graph, with nucleus and cellular interactions being represented by nodes and edges, respectively. The authors 
also propose a new graph convolution module, called Adaptive GraphSage, to combine multilevel features. 
With 139 images ( 4548× 7520 pixels, 20x magnification), cropped from WSI labelled as normal, low grade and 
high grade, the method achieved an accuracy of 97%. For the same classification task, in 2020, Shaban et al.63 
proposed a context-aware convolution neural network to incorporate contextual information in the training 
phase. Firstly, tissue regions ( 1792× 1792 pixels) are decomposed in local representations by a CNN ( 224× 224 
pixels input), and the final prediction is obtained by combining all contextual information with a representation 
aggregation network, considering the spatial organisation of smaller tiles. This method was developed on 439 
images ( ∼ 5000× 7300 pixels, 20× magnification) and achieved an average accuracy of 99.28% and 95.70% for 
a binary and three class setup, respectively.

Feasibility study on the use of weakly annotated and larger datasets for CRC 
diagnosis
Collecting and labelling data for computational pathology problems is a lengthy and expensive process. As seen 
in the previous section, research is often conducted on small datasets containing a high granularity of annota-
tions per sample. Despite the benefits of detailed annotations, researchers have recently turned their attention 
to weakly-supervised approaches. These approaches, notwithstanding the simplified annotation, can leverage 
larger datasets for learning. More importantly, weakly-supervised learning techniques are less prone to bias in 
data collection. Performance is also evaluated on a more extensive test set, and thus, the behaviour of the model 
in the real-world can be generalised much more accurately. In this section, we conduct a feasibility study on 
the use of efficiently annotated datasets to drive the development of computer-aided diagnosis (CAD) systems 
for colorectal cancer (CRC) from whole-slide images (WSI). We attempt to answer the question of the required 
dimension of the dataset, as well as the extension of annotations, to enable the robust learning of predictive 
models. We also analyse the advantage of using a loss function adapted to the ordinal nature of the classes cor-
responding to the CRC scores.

Datasets.  This feasibility study was conducted on two datasets: the first contains colorectal haematoxylin 
& eosin (H&E) stained slides (CRC dataset), whereas the second includes prostate cancer H&E-stained biopsy 
slides (PCa dataset). As mentioned in “Computational pathology on colorectal cancer” section, there is a short-
age of large public datasets containing CRC WSIs and most of the existing ones are based on cropped regions 



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14358  | https://doi.org/10.1038/s41598-021-93746-z

www.nature.com/scientificreports/

instead of entire slides. Hence, we relied on a PCa dataset that, while not fully transferring to colorectal use case, 
is one of the largest WSI datasets publicly available. This amount of data allowed us to study the data require-
ments of a weakly supervised approach and how the performance evolved with the growth of the dataset.

CRC dataset.  The CRC dataset contains 1133 colorectal biopsy and polypectomy slides and is the result of our 
ongoing efforts to contribute to CRC diagnosis with a reference dataset. We aim to detect high-grade lesions 
with high sensitivity. High-grade lesions encompass conventional adenomas with high-grade dysplasia (includ-
ing intra-mucosal carcinomas) and invasive adenocarcinomas. In addition, we also intend to identify low-grade 
lesions (corresponding to conventional adenomas with low-grade dysplasia). Accordingly, we created three 
diagnostic categories for the algorithm, labelled as non-neoplastic, low-grade and high-grade lesions (Table 3). 
In the non-neoplastic category, cases with suspicion/known history of inflammatory bowel disease/infection/
etc. were omitted. We selected conventional adenomas as they were the largest group on daily routine (serrated 
lesions, and other polyp types, were omitted).

All cases were retrieved from the data archive of IMP Diagnostics laboratory, Portugal, and were digitised 
by 2 Leica GT450 WSI scanners, and evaluated by one of two pathologists (Fig. 3a). Data collection and usage 
was performed in accordance with national legal and ethical standards applicable to this type of data. Since the 
study is retrospectively designed, no protected health information was used and patient informed consent is 
exempted from being requested.

Diagnostics were made using a medical grade monitor LG 27HJ712C-W and Aperio eSlide Manager software. 
When reviewing the cases, most diagnosis were coincident with the initial pathology report and no further 
assessment was made. In case of difference, the case was rechecked and decided between the two pathologists. 
A small number of cases (n=100) were further annotated with region marks (Fig. 3b) by one of the pathologists 
and then rechecked by the other, using the Sedeen Viewer software64.

Corrections were made when considered necessary by both. For complex cases, or when agreement could not 
be reached, both the label and/or annotation were reevaluated by a third pathologist. Case classification followed 
the criteria previously described in “Dysplasia grading” section. Accordingly, cases with only minimal high-grade 
dysplasia (HGD) areas (only one or two glands), or with areas of florid high-grade cytological features but without 
associated worrisome architecture, were kept in the low-grade dysplasia class, as well as cases with cytological 
high-grade dysplasia only seen on the surface. It is worth noting that some cases may be more difficult to grade 
and have to be decided on a case-by-case basis, preferentially by consensus. Additionally, as recommended by 
the World Health Organization (WHO), intramucosal carcinomas were included in the HGD cases20,65.

Table 3.   CRC dataset class definition.

Algorithm data classes Pathological diagnosis

Non-neoplastic Normal CR mucosa, non-specific inflammation, hyperplasia

Low-grade lesion Low-grade conventional adenoma

High-grade lesion High-grade conventional adenoma and invasive adenocarcinoma

Figure 3.   Example of a whole-slide (a) from the CRC dataset. Manual segmentations (b) include regions 
annotated as non-neoplastic (white), low-grade lesions (blue), high-grade lesions (pink), linfocytes (green) and 
fulguration (yellow).
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Regarding the distribution of slide labels, while the annotated samples are considerably imbalanced, as seen 
in Fig. 4a, when combined with the non-annotated samples, the distribution of the labels is significantly more 
even. Figure 4b shows this final distribution and it is closer to what is seen in clinical practice. Moreover, it was 
important to fully annotate cases that are especially difficult or high-grade, so the model can learn more about 
these critical cases. The CRC dataset was used not only to develop the proposed methodology, but also to evalu-
ate the relevance of annotations in a model pre-training: can a small set of annotated images leverage the overall 
performance of the weakly supervised model?

PCa dataset.  Besides the influence of the level of annotations, we also aimed to evaluate the proposed clas-
sification methodology on a larger dataset, also with a multiclass formulation, to investigate the impact of the 
dataset size on the performance of the algorithm. In this sense, we used 9,825 PCa biopsy slides from the dataset 
of the Prostate cANcer graDe Assessment (PANDA) challenge66. The available full training set consists of 10,616 
WSI of digitized H&E stained PCa biopsies (we excluded cases with some type of error) obtained from two 
centres: the Radboud University Medical Centre and the Karolinska Institute, and includes both labelling and 
tissue segmentation. Each image is labelled with the correspondent ISUP grade and includes tissue annotation, 
differentiating tumour areas from normal tissue. The International Society of Urological Pathology (ISUP) grad-
ing system is the currently score to grade PCa, which is based on the modified Gleason system (a score based on 
glandular architecture within the tumour), providing accurate stratification of PCa67.

The PCa dataset contains six different labels, corresponding to the five ISUP grades and the normal label, 
whereas the CRC dataset has only three different labels. Histopathological slides are quite different for different 
types of cancer, for instance, the quantity of tissue varies significantly. The images require some pre-processing 
that creates the tiles from the WSI. Such processing removes the background, and thus, tissue variations deeply 
affect the number of tiles of one slide. Table 4 displays an illustrative example of this, by comparing the number 
of tiles and the mean number of tiles per slide included in both datasets. The average number of tiles per slide is 
approximately 82x and 45x higher, respectively on the CRC annotated subset and on the complete dataset, when 
compared to the PCa dataset. Because of this variation in tissue proportion, despite having 8.6x more slides, the 
PCa dataset still has around 5x fewer tiles.

Methodology.  Traditional supervised learning techniques would require all the patches extracted from the 
original image to be labelled. However, cancer grading (in clinical practice) aims to classify the whole slide 
image, not individual tiles. Moreover, labelling the tiles represents a significant effort with regards to the work-
load of the pathologists. Therefore, techniques such as multiple instance learning (MIL), have been adapted to 
computational pathology problems68–70. MIL only requires slide level labels and the original supervised problem 
is converted to a weakly-supervised problem. The nature of the problem allows the implementation of this tech-

Figure 4.   Slide classes distribution on CRC dataset.

Table 4.   Comparison between the number of tiles extracted from the PCa slides and the CRC slides.

Dataset # Slides # Tiles Mean # Tiles per slide

PCa 9825 253,291 25.78

CRC all 1133 1,322,596 1167.34

CRC annotated 100 211,235 2112.35
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nique knowing that, if a WSI is classified with a label Y, no tile belongs to a more severe class than Y and at least 
one tile belongs to the label Y. Therefore, using the MIL concept, we propose a workflow (Fig. 5) based on the 
work of Campanella et al.69 with several adaptations: 

1.	 Ordinal labels: First, the problem at hand has a multiclass formulation, whereas the original had only two 
labels. In order to contextualise the premises of the MIL method and the clinical information, the labels 
must not be seen as independent and their relation must be modelled. For instance, normal tissue is closer 
to low-grade lesions than to high-grade dysplasias. Thus, there is an order regarding labels.

2.	 Removal of recurrent aggregation: The original approach leveraged a Recurrent Neural Network (RNN) to 
aggregate predictions of individual tiles into a final prediction. All the tests conducted for the feasibility 
results did not show any benefit of having this RNN aggregation, in fact, the performance degraded. Thus, 
it was removed from the pipeline.

3.	 Tile ranking using the expected value: Using a single tile for the prediction requires a ranking rule in order to 
select the most representative of potentially thousands of tiles. Since the problem is non-binary, the original 
rule is not applicable69. Therefore, to create a ranking of tiles that are meaningful for the final prediction, 
the backbone network is used to compute the outputs of each tile and the expected value is then computed 
from these outputs: 

 with n_classes the number of classes, xi the class, pi the correspondent probability;
4.	 Loss function: The problem includes ordinal labels, so the minimisation of the cross-entropy fails to fully 

capture the model’s behaviour. As mentioned before, the distance between labels is different and cross-
entropy treats them as if they are equally distant. Thus, in an attempt to increase the performance of the 
initial baseline experiments the model is now optimised to minimise an approximation to the Quadratic 
Weighted Kappa (QWK)71.

Training details.  The setup of the experiments was similar across datasets: ResNet-34 as the backbone, batch-
size of 32, the Adaptive Moment Estimation (Adam) algorithm with a learning rate of 1× 10−4 as optimiser, tiles 
of 512× 512 pixels that include 100% of tissue and mixed-precision from the Pytorch available package. Only 
one tile was used for predicting the label of the slide (MIL formulation), thus the training set was only regarding 
the selected tile. As for hardware, all the experiments were conducted using an Nvidia Tesla V100 (32 GB) GPU.

tile_score =

n_classes∑

i=1

xi × pi

Figure 5.   Proposed workflow for colorectal cancer diagnosis on whole-slide images.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14358  | https://doi.org/10.1038/s41598-021-93746-z

www.nature.com/scientificreports/

Experimental results and discussion.  In deep learning problems, it is not always trivial to determine the 
required dataset size to achieve the expected performance. Usually, it is expected that increasing the size of the 
dataset increases the model performance. However, this is not always true. Hence, to fully understand the impact 
of the dataset size in the computational pathology domain, the developed approach was trained on several sub-
sets of the original PCa training set with different sizes: 80, 160, 500, 1000, 2500, 5000 and 8348 (complete 
training set). For a fair comparison, all the experiments were evaluated on the same test set, that included 1477 
slides (15% of the total dataset) independent from the training set. As can be seen in Table 5, the model is able 
to leverage more data in order to achieve better performance. Moreover, in line with these results, Campanella et 
al.69 stated that for the MIL approach to work properly, the dataset must contain at least 10,000 samples. In our 
experiments, the performance with 5000 slides was already close to the best performance.

To further infer the generalisation capability, an extra model was trained on 80 slides and evaluated on 20 
slides randomly sampled from the 1477 test set. As seen in Table 6, as expected, when the size of the test set 
increases, the performance rapidly degrades, nursing the concerns and requirements for larger datasets. It is also 
worth noting that the performance of the model is considered poor in terms of accuracy scores. The QWK, on 
the other hand, records reasonable values. This difference in performance means that, while the model misclas-
sifies about 40% of the slides, it classifies them with neighbour classes of the ground-truth. One possible reason 
for this could be the noise present in the labels of this specific dataset. 

The third set of experiments explores the potential to leverage the annotations of a subset of data in order to 
improve the performance of the overall MIL method. Table 7 shows the results of the best epoch of each of the 
experiments. There are notable performance gains in both the accuracy and the QWK score as the number of 
training samples increases. However, perhaps the most exciting performance gain is related to the pre-training 
of the backbone network on the 100 annotated samples for only two epochs before the start of the MIL training. 
This experiment is able to outperform the best epoch of the experiment without pre-training in only 7 epochs, 
in other words, 12 hours of training, with 84.94% accuracy and 0.803 QWK score. Moreover, these values kept 
increasing until the last training epoch, reaching an accuracy and QWK score of 88.42% and 0.863, respectively. 
The final results presented in Table 7 can be extended with a sensitivity to lesions of 93.33% and 95.74% for the 
last two entries respectively. The training set comprises 874 samples (100 annotated and 774 non annotated), 
whereas the test set has 259 WSI.

The results shown in Fig. 6a,b, respectively for the QWK and the accuracy, are representative of the gains that 
both the number of samples and the use of annotations bring to the model. Moreover, the use of annotations 

Table 5.   Evolution of the model performance when trained on subsets of the PCa dataset with different sizes, 
keeping the test set size constant (n=1,477). Bold values indicate best results

# Train slides # Train tiles QWK score Accuracy (%)

80 1919 0.497 32.36

160 3851 0.586 37.71

500 12,714 0.628 41.28

1000 25,757 0.692 47.66

2500 64,697 0.738 50.03

5000 129,734 0.771 58.43

8348 215,116 0.789 59.40

Table 6.   Performance comparison of the model trained on a subset of the PCa dataset, when evaluated on test 
sets with different sizes. Bold value indicates best results

Dataset # Train slides # Test slides # Train tiles # Test tiles QWK score

PCa 80 1,477 1,919 38,175 0.497

PCa 80 20 1,919 579 0.591

Table 7.   Performance of the model on the different experiments on the CRC dataset. Bold values indicate best 
results

Dataset Pre-train QWK score Accuracy (%) Convergence Time (Epoch)

CRC annotated (n=100) No 0.583 75.00 6.5 h (13)

CRC All (n=1,133) No 0.795 84.17 2 days and 19 h (27)

CRC All (n=1,133) Yes 0.863 88.42 4 days (40)
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appears not only to speed up convergence at high values, but also to increase the model’s ability to learn at 
further epochs.

The finding in these feasibility results supports the need for larger datasets. Not only that, but it also increases 
the confidence in the performance of weakly-supervised learning techniques, especially if it is possible to include 
at some point some supervised training to propel the performance even more. It is expected that these novel 
techniques and larger datasets converge to models that are closer to be deployed for clinical practice.

Conclusions
Despite the growing popularity and availability of computational pathology works, there are relatively few pub-
lished works on colorectal cancer (CRC) diagnosis from whole-slide images (WSI), as shown in “CRC diagnosis 
on WSI” section. Moreover, the reported results are based on relatively small and private datasets, which renders 
them fragile and makes direct comparisons not so fair. The reviewed papers on CRC diagnosis leverage different 
techniques and approaches to solve the same problem, from attention to graph neural networks and even weakly-
supervised learning. However, there is still room for progress in each of these techniques, both individually and 
in combination. Nevertheless, it is difficult to perform a proper evaluation when the size of the dataset does not 
favor the use of these techniques and limits the research. Therefore, the first and perhaps most crucial step for the 
further development of computer-aided diagnosis (CAD) systems for CRC is to establish a large and meaningful 
dataset. As studied in “Feasibility study on the use of weakly annotated and larger datasets for CRC diagnosis” 
section, increasing the number of WSI in the training data leads to an increase in performance, as does detailed 
annotation of, at least, part of the dataset.

Nonetheless, the construction of larger datasets with extensive annotations is not an easy and expeditious 
task. Hence, there is still a plethora of techniques to be explored with weakly labelled datasets. One of these 
tasks is known as multiple instance learning (MIL) and while it has been employed several times on these type 
of problems, it can still be improved to achieve more accurate results. As shown in “Experimental results & 
Discussion” section, the performance of MIL systems is greatly improved with a pre-training on the 10% of the 
dataset that is annotated. Future research is needed to delineate the lowest percentage of the dataset that needs 
to be annotated so this approach improves both accuracy and convergence times. Moreover, there are other 
techniques that can leverage weak labels. For instance, self-supervised learning methods leverage all the pixels 
of the images as “labels”. On this note, it is important to also evaluate if there is a feasible way to combine the 
benefits of both methodologies.

Since the main goal of deep learning (DL) in computational pathology is to develop a solution that can be 
deployed in a clinical environment, it is important to develop it in a similar fashion to the clinical practice, in 
other words, to handle the same type of data given to pathologists, WSI. In that sense, the work proposed in this 
paper is considerably more in line with the end goal of CAD systems for computational pathology: our proposal 
can be directly applied to a lab workflow.

Future work.  Other approaches to be explored in the future are based on improving the supervised pre-
training stage. For example, could it be possible to use pre-training, not as a separate initial process, but, instead, 
use annotated data as an extra-label in a multi-task learning configuration? Can pre-training leverage the use of 
synthetic data to improve the performance? All these questions represent open research directions that could 
be explored in the future. Recently, researchers have also approached a more human type of learning, known as 

Figure 6.   Performance evaluated on CRC dataset.
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curriculum learning. This could also be used effectively if, for example, the pre-training and MIL training are 
distinct stages. Both stages can be iterated multiple times, with hard samples added at each iteration.

Despite the use of attention in some of the articles reviewed, they still incorporate these mechanisms as a type 
of aggregation layer for their network. However, recent work in natural language processing and in computer 
vision shows that these mechanisms are considerably more powerful than originally thought72. Transformers 
(neural network architectures based only on attention layers) have shown impressive results. Both Facebook73 
and Google74 have already started exploring these networks for vision and a similar path could also be interest-
ing for CAD systems in pathology.

From a dataset point of view, there is one more issue that has been largely ignored in computational pathol-
ogy research: a developed model should not be specific to scanning machine output or to particular laboratory 
configurations. The broad knowledge acquired by the model during the training phase should not be wasted or 
useless. It is then necessary that the models can either be directly generalised to other scanning machines, or that 
a small sample of non-annotated WSIs are sufficient to fine-tune a model with similar performance to the original. 
Thus, broader studies should be conducted in this area, but on a positive note, they do not require large datasets.

In order for these approaches to be used in practice, it is important that researchers develop techniques to 
inform pathologists about the spatial location that was most responsible for the diagnosis and to explain the 
reasons for the prediction. Interpretability and explainability have been explored in medical applications of DL75, 
and so they should be present in Computational Pathology use cases76, such as CRC diagnosis. The ultimate goal 
is to create transparent systems that medical professionals can trust and rely on.

Data availability
The CRC dataset, from IMP Diagnostics, used in the current study is available on reasonable request through 
the following email contact: cadpath.ai@impdiagnostics.com. The external PCa dataset was obtained from the 
Prostate cANcer graDe Assessment (PANDA) challenge and is publicly available through the competition website: 
https://​www.​kaggle.​com/c/​prost​ate-​cancer-​grade-​asses​sment.
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