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Abstract

The role of blood flow in vascular development is complex and context-dependent. In this 
study, we quantify the effect of the lack of blood flow on embryonic vascular development 
on two vascular beds, namely the cerebral and trunk vasculature in zebrafish. We perform 
this by analysing vascular topology, endothelial cell (EC) number, EC distribution, apoptosis, 
and inflammatory response in animals with normal blood flow or absent blood flow. We 
find that absent blood flow reduced vascular area and EC number significantly in both 
examined vascular beds, but the effect is more severe in the cerebral vasculature, and 
severity increases over time. Absent blood flow leads to an increase in non-EC-specific 
apoptosis without increasing tissue inflammation, as quantified by cerebral immune cell 
numbers and nitric oxide. Similarly, while stereotypic vascular patterning in the trunk is 
maintained, intra-cerebral vessels show altered patterning, which is likely to be due to 
vessels failing to initiate effective fusion and anastomosis rather than sprouting or path-
seeking. In conclusion, blood flow is essential for cellular survival in both the trunk and 
cerebral vasculature, but particularly intra-cerebral vessels are affected by the lack of blood 
flow, suggesting that responses to blood flow differ between these two vascular beds.

Introduction

Endothelial cells (ECs) perform multiple functions 
during normal physiology including wound healing, 
tissue regeneration, immune response, menstruation, 
and pregnancy (1, 2, 3). Cerebral EC dysfunction is 
associated with neurodegenerative diseases, arteriovenous 
malformations, aneurysms, and stroke (4, 5). Increasing 
evidence suggests ECs display different molecular and 
functional properties according to their anatomical site, 
such as the cerebral or trunk vessels (6, 7, 8, 9, 10). This 
highlights the importance of studying the responses 

of multiple vascular in development and territories to 
experimental manipulations.

Zebrafish embryos are a frequently used model to study 
vascular development and disease (11, 12, 13). Fluorescent 
transgenic reporter lines allow cellular and sub-cellular 
visualization in vivo (14). Advanced microscopy, such 
as light sheet fluorescence microscopy (LSFM), acquires 
vascular information in great anatomical depth and over 
prolonged periods of time (15), allowing data acquisition 
to be rich in information and detail. Zebrafish embryonic 
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transparency allows non-invasive and in vivo studies of 
different vascular beds in the same animal.

After 24 h post-fertilization (hpf), the zebrafish basic 
body plan is established and cardiac contraction starts. 
Within this timeframe, vasculogenesis forms the primary 
vessels (16, 17). Blood flow plays an important role in 
processes, such as EC polarization, vascular lumenization, 
pruning, and cardiac trabeculation (18, 19, 20, 21, 22, 
23, 24), and directly impacts vascular architecture (25). 
Zebrafish embryos can survive for 7 days post fertilization 
(dpf) without blood flow via oxygen diffusion due to their 
small size (13, 26). This makes them well suited to examine 
the role of blood flow on vasculogenesis and angiogenesis.

One approach to study the effect of absent blood flow in 
zebrafish is the knockdown of cardiac troponin T2A (tnnt2a) 
using antisense morpholino oligonucleotides (MO). This 
prevents cardiac contraction and thus blood flow (27, 28). 
Contrary to recent debates on MO phenocopying mutant 
phenotypes, the tnnt2a MO phenocopies the silent heart (sih) 
mutation (28), making it a widely used MO-based approach 
to study the lack of blood flow. Additionally, a control MO 
group accounts for injection-induced developmental delays 
(29). Previous studies used this MO-based method to study 
the impact of blood flow on specific cerebral (30, 31) and 
trunk vessels (32), showing that EC numbers are reduced in 
the trunk when blood flow is absent (32, 33).

Even though these studies have provided invaluable 
insights into the role of blood flow, important questions 
remain unanswered about the role of blood flow in vascular 
development. These include whether absent blood flow has 
the same effects in different vascular beds, whether vessels 
of different identities respond differently, which steps of 
vasculature formation are altered, and whether effect sizes 
of absent blood flow differ in magnitude over time.

To examine these questions. we here use LSFM 3D 
in vivo imaging of the cerebral and trunk vasculature of 
2–5dpf zebrafish embryos with and without blood flow 
induced by tnnt2a knockdown. Our results show that 
even though the gross vascular responses to blood flow 
are comparable in different territories, some differences 
between anatomical sites exist, suggesting vascular 
territories exhibit differential sensitivity to absent  
blood flow.

Materials and methods

Zebrafish husbandry

Experiments were performed according to the rules 
and guidelines of institutional and UK Home Office 

regulations under the Home Office Project Licence 70/8588  
held by TC.

Maintenance of adult zebrafish was performed as 
described in standard husbandry protocols (34, 35). 
Embryos, obtained from controlled mating, were kept in 
E3 (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM 
MgSO4) medium buffer with methylene blue and staged 
according to Kimmel et al. (36). The following transgenic 
reporter lines were used: Tg(kdrl:HRAS-mCherry)s916 (37) 
visualizes EC membrane, Tg(fli1a:eGFP)y1 (14) visualizes 
EC cytosol, Tg(flk1:nls-eGFP)zf109 (38) visualizes EC 
nuclei, Tg(mpx:GFP)i114 (39) visualizes neutrophils, and 
Tg(fms:GAL4.VP16)i186, Tg(UAS-E1b:nfsB.mCherry)il149 (40) 
visualizes macrophages. To assess cell death in vivo, we 
created the stable transgenic Tg(secAnnexinV:mVenus)SH632 
in pDestCryaa:RFP, similar to (41) and the plasmid cloning 
of (42).

Morpholino injection

Development of functional heart contraction 
was inhibited via injection of tnnt2a ATG 
morpholino (1.56 ng final concentration), as 
described in (27, 28) (sequence 5’-CATGTTTGCTCT 
GATCTGACACGCA-3’). Control morpholino injections 
(5’-CCTCTTACCTCAGTTATTTATA-3’; no target sequence 
and little/no biological activity; Genetools, LLC) were 
performed with the above final concentration to study off-
target effects of injections. Injections were conducted at a 
one-cell stage using phenol red as an injection tracer.

Chemical and histological stains

In vivo visualization of cell death was performed using  
2 µg/mL solution of Acridine Orange (Sigma) in 1X E3 for 
2 h in 3dpf embryos, followed by three washes in E3 before 
image acquisition (43).

In vivo visualization of inflammation via nitric oxide 
(NO) (44) was performed using 2.5 µM DAF-FM-DA 
(Molecular Probes; D23844) (45) for 6 h in 3dpf embryos. 
DMSO control was performed at the same concentration 
and duration.

Image acquisition settings and properties

Anaesthetized embryos were embedded in 2% LMP-
agarose with 0.01% Tricaine in E3 (MS-222, Sigma). Data 
acquisition of the cranial and trunk vasculature was 
performed using a Zeiss Z.1 light sheet microscope, Plan-
Apochromat 20×/1.0 Corr nd = 1.38 objective, dual-side 
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illumination with online fusion, activated Pivot Scan, 
image acquisition chamber incubation at 28°C, and a 
scientific complementary metal-oxide-semiconductor 
(sCMOS) detection unit. The properties of acquired data 
were as follows: 16 bit image depth, 1920 × 1920 × 400–600 
voxel (x,y,z; approximate voxel size of 0.33 × 0.33 × 0.5 µm, 
respectively). Multicolour images in double-transgenic 
embryos were acquired in sequential mode.

Image analysis

As tnnt2a can develop considerable oedema, we ensured 
comparability between samples by standardized image 
acquisition from the dorsal view, including the most 
dorsal vessel the dorsal longitudinal vein (DLV) to the 
more ventral basilar artery (BA; Supplementary Fig. 3A, 
see section on supplementary materials given at the end 
of this article). For image analysis, ROI selection was 
performed as previously described (Supplementary Fig. 
9B) (46).

Automatic nuclei detection
To remove salt-and-pepper noise (47), a 6-by-6 
neighbourhood median filter (48) was applied, while 
background removal was achieved with the rolling ball 
algorithm with size 200 (49). Following, 2D maximum 
intensity projection, and detection of local noise maxima 
using Fiji Software (50, 51). The Voronoi diagram was 
established following Otsu thresholding (52). Nuclei 
nearest neighbour distance (NND) was quantified in MIPs 
following pre-processing as above and Otsu thresholding, 
using the Fiji NND plugin (https://icme.hpc.msstate.
edu/mediawiki/index.php/Nearest_Neighbor_Distances_
Calculation_with_ImageJ.html).

Signal intensities
Signal intensity measurement of Acridine Orange and 
DAF-FM was conducted by creating 3D vascular masks 
following Sato filter for vascular enhancement and Otsu 
thresholding segmentation as previously described (46, 
53, 54). Signal mean was quantified in ROIs in 2D MIPs. 
The signal-to-noise (SNR) ratio was quantified as the mean 
signal in ROI divided by the mean signal of the background 
(ROI placed outside the fish with a size of 10 × 10 μm). 
Acridine orange foci were detected in ROI following 2D 
median filtering using the detection of maxima with 
intensity over 10.

Manual analysis
All analysis was performed using Fiji (51).

Diameter of basilar artery (BA) was measured 
approximately 30 μm before bifurcating into posterior 
(caudal) communicating segments (PCS).

Posterior cerebral vein (PCeV) was measured 
approximately 20 μm before turning dorsally.

Posterior cardinal vein (PCV) and dorsal aorta (DA) 
diameters were measured above the cloaca, with three 
measurement points each in the same animal.

Intersegmental vessel (ISV) lengths of arterial (aISVs) 
and venous (vISVs) were measured above the cloaca, with 
three measurement points of the same vessels each in the 
same animal.

Vessel-specific nuclei measurements were conducted 
manually. First, nuclei were counted in aISVs and vISVs 
closest to the cloaca. Secondly, nuclei in the PCeV and BA 
were measured in an 80 μm long ROI positioned from the 
posterior end of the PCeV.

CtA sprouting and connectivity to BA were measured 
manually from the left PHBC.

Immune cells
Intracranial macrophages and neutrophils were quantified 
manually in 3D after ROI selection of the dorsal  
cerebral vasculature.

Availability of data and the code
Data and code will be made available upon request.

Statistical analysis

Gaussian distribution conformation was evaluated using 
the D’Agostino-Pearson omnibus test (21). Statistical 
analysis was performed using one-way ANOVA or paired 
Students t-test in GraphPad Prism Version 7 (GraphPad 
Software). Statistical significance was represented as: 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Graphs 
show mean values ± s.d. unless otherwise indicated. Image 
representation and visualization were done with Inkscape 
Version 0.48 (https://www.inkscape.org). Images were 
visualized as maximum intensity projections (MIPs). 3D 
rendering was performed using Arivis software (arivis AG, 
Munich, Germany).

Results

Cerebrovascular patterning is impaired by absent 
blood flow

We first examined whether cerebrovascular patterning 
is altered by lack of blood flow. Thus, we compared the 
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cerebral vascular morphology of uninjected controls 
(Fig. 1A, B, C and D), control MO (Fig. 1E, F, G and H), 
and tnnt2a MO-injected embryos (Fig. 1I, J, K and L). 
When examining the global morphology, tnnt2a MO 
showed pericardial oedema, eye oedema, smaller eyes, 
and abnormal body curvature, which became more severe 
over time (Supplementary Fig. 1). The tnnt2a morphants 
were smaller with overtly abnormal cerebral vasculature, 
with effects becoming more severe from 2 to 5dpf. Intra-
cerebral vessels, especially in the midbrain, were most 
severely affected showing altered growth patterns and 
an overall reduction of cerebral size was observed (Fig. 
1L, dotted line). The primary head sinus (PHS), which 
extends laterally to the otic vesicle (OV), was enlarged, 

suggesting OV enlargement (Fig. 1L, filled arrowheads), 
while peripheral/perineural vessels, such as the primordial 
hindbrain channel (PHBC), formed relatively normally 
(Fig. 1L, unfilled arrowhead; schematic of cerebral vessels 
from 2 to 5dpf Supplementary Fig. 2). Our observations 
also confirm previous work in which vessels from the 
spinal cord and brain are still undergoing integration in 
the absence of blood flow (55).

We next examined the distribution of EC in these 
animals (Fig. 2). This also suggested that peripheral vessels 
were less severely affected by absent blood flow, for example, 
when comparing nuclei distribution in the middle cerebral 
vein (MCeV, Fig. 2, unfilled arrowhead) to central arteries 
(Fig. 2, black arrowhead). This was confirmed when 
examining Voronoi diagrams of EC nuclei distribution 
(Fig. 2M, N and O). Voronoi tessellation, overlapping 
nuclei images, aided the visualization of EC nuclei density/
distribution by partitioning MIPs into sub-regions based 
on nuclei position. Thus the Voronoi diagram lines and 
their colour indicate the spatial relationship of nuclei to 
each other, for example, larger tessellation and brighter 
colours show that a larger region is taken up by a nucleus. 
This showed EC distribution to be altered, particularly in 
the basilar artery (BA) or midbrain vessels.

This suggested that the effect of lack of blood flow 
becomes more severe over time and that central vessels are 
more impacted than peripheral vessels.

Vascular patterning in the trunk is preserved, but 
vascular morphology altered

We next examined vascular patterning in the trunk of the 
same animals to study whether the observed effects were 
conserved or different in these vascular beds (Fig. 3A, B, C, 
D, E, F, G, H, I, J, K and L). Vessels formed by vasculogenesis 
were observed and in contrast to the cerebral vessels, trunk 
vessel patterning was largely unaltered in the absence of 
flow. However, the morphology of the caudal vein plexus 
(CVP) was less defined upon lack of blood flow (Fig. 3, white 
arrowhead) and intussusceptive pillars were lacking (Fig. 
3A′, E′ and I′). All our observations were consistent with 
previous studies that blood flow is required for plexus to 
caudal vein remodelling (56). Intussusception, and dorsal 
aorta (DA)-to-CVP segregation (57), but not intersegmental 
vessel (ISV) migration (17).

We next examined whether trunk EC numbers were 
changed. Examination of EC nuclei suggested EC numbers 
in the trunk were less severely impacted by lack of blood 
flow in comparison to cerebral vessels (Fig. 4), with EC 

Figure 1
The effect of tnnt2a morpholino knockdown on cerebral vessel 
development. (A, B, C and D) Cerebral vasculature from 2 to 5dpf in 
Tg(kdrl:HRAS-mCherry)s916 uninjected animals. (E, F, G and H) Cerebral 
vasculature in control MO-injected animals. (I, J, K and L) Cerebral 
vasculature in tnnt2a MO injected animals (n = 7–10; two experimental 
repeats). The lack of blood flow in tnnt2a morphants perturbs vascular 
development and worsens over time. Comparison between treatment 
groups shows that the midbrain vasculature is severely affected in tnnt2a 
MO (dotted lines) and the PCV surrounding the OV is enlarged (filled 
arrowhead), while the PHBC appears normal (unfilled arrowhead;  
d – dorsal, v – ventral; representative images colour-coded by depth).
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distribution in animals without blood flow being similar 
in the CV but altered in ISVs (Fig. 4M, N and O).

Together, this suggested that vascular growth patterns 
in the trunk were unaltered, but remodelling, including 
intussusception, were lacking and that this is accompanied 
by changes in EC numbers and distribution.

Lack of blood flow affects vascular area and 
EC number

To elucidate the effect of absent blood flow over time, 
we quantified cerebrovascular area (vascular voxels in 
2D (MIPs)). This was significantly reduced in tnnt2a 
morphants from 2 to 5dpf (Fig. 5A; uninjected control 

Figure 2
Lack of blood flow impacts cerebral EC number. (A, B, C and D) Cerebral 
EC nuclei from 2 to 5dpf in Tg(flk1:nls-eGFP)zf109 uninjected control. (E, F, G 
and H) Cerebral EC nuclei in control MO. (I, J, K and L) Cerebral EC nuclei in 
tnnt2a MO (n = 7–10; two experimental repeats). Comparison of cerebral 
EC nuclei shows reduced cell numbers in tnnt2a MO with CtAs (filled 
arrowhead) being particularly affected (d – dorsal, v – ventral; 
representative images colour-coded by depth). (M, N and O) Voronoi 
(image partitioning based on nuclei position) diagrams of cerebral EC 
nuclei suggests nuclei numbers to be maintained in peripheral vessels 
such as the PHBC (white arrowheads), while EC density is reduced in the 
midbrain (grey arrowhead) and BA (unfilled arrowhead).

Figure 3
The effect of absent blood flow on trunk vessel development. (A, B, C and 
D) Trunk vasculature from 2 to 5dpf in Tg(kdrl:HRAS-mCherry)s916 uninjected 
control. (E, F, G and H) Trunk vasculature in control MO (n = 7–10; two 
experimental repeats). (I, J, K and L) Trunk vasculature in tnnt2a MO. 
Topology of the trunk vasculature is established in the absence of flow, 
but morphology of the CV is severely altered (black arrowheads) and 
intussusceptions are lacking (green arrowhead; d – dorsal, v – ventral; 
representative images colour-coded by depth).
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2dpf P < 0.0001, 3dpf P < 0.0001, 4dpf P < 0.0001, 5dpf 
P < 0.0001), with similar results in craniovascular branch 
points (Supplementary Fig. 3A). Similarly, the number 
of cerebral EC nuclei was significantly reduced in tnnt2a 

morphants from 2 to 5dpf; while EC number almost 
doubled from 2 to 5dpf in controls, EC numbers were 
almost unaltered in fish without blood flow (Fig. 5B; 
uninjected control 2dpf P = 0.0409, 3dpf P < 0.0001, 4dpf 
P < 0.0001, 5dpf P < 0.0001). To examine the relationship 
between vascular area and EC nuclei number, vascular 
area-to-nuclei ratios were calculated (Fig. 5E), showing a 
decrease in uninjected controls (0.78-fold-change 2–5dpf) 
and control MO (0.87-fold-change 2–5dpf), while the ratio 
increased in tnnt2a MO (1.69-fold-change 2–5dpf). This 
showed that the number of nuclei-to-vasculature increased 
in controls but decreased in animals without blood flow.

We performed the same analysis on the trunk, and 
found that vascular area was significantly reduced by 
absent blood flow at 2dpf (P = 0.0074) and 3dpf (P = 0.0195), 
but not 4dpf (P = 0.1904) and 5dpf (P > 0.9999) in tnnt2a 
MO (Fig. 5C). Additionally, the number of nuclei was not 
significantly lower at 2dpf (P = 0.1514; Fig. 5D) but was 
significantly decreased at 3–5dpf (3dpf P = 0.0018, 4dpf 
P = 0.0013, 5dpf P < 0.0001). Similar results were observed 
when assessing trunk vascular branch points as co-metric 
(Supplementary Fig. 3B). Analysis of vascular-to-nuclei 
ratio showed that vascular area increased in all three 
groups (Fig. 5F; fold-change 2–5dpf: uninjected control 
1.10, control MO 1.55, tnnt2a MO 2.51). Together, this 
suggested that cerebral vessels were more severely affected 
than trunk vessels by the absence of blood flow and that 
lack of blood flow increases the vascular-to-nuclei ratio in 
both the brain and trunk.

We next quantified the nuclei nearest neighbour 
distance (NND), finding it to be decreased in tnnt2a MO in 
both vascular beds (Fig. 5G and H), supporting the visual 
assessment of Voronoi diagrams and previous studies that 
suggest the less net distance between ECs in the absence of 
flow (56).

To assess how the observed reduced head size 
(Supplementary Fig. 4A) related to vascular and nuclei 
density, vasculature-to-ROI and nuclei-to-ROI ratios were 
quantified. This showed that for all three groups, vascular 
coverage was maintained at about 30% from 2 to 5dpf 
(Supplementary Fig. 4B), with ratios higher in tnnt2a MO 
at 5dpf in comparison to uninjected controls (P = 0.0074). 
Similarly, the nuclei-to-ROI ratios were maintained over 
time in all three groups (Supplementary Fig. 4C), but with 
higher ratios in tnnt2a MO than in controls.

Together, this showed that even though tnnt2a MO 
have a reduced head size, vasculature-to-ROI and nuclei-to-
ROI ratios are maintained or even larger than in controls.

Figure 4
Lack of blood flow impacts trunk EC number. (A, B, C and D) Trunk EC 
nuclei from 2 to 5dpf in Tg(flk1:nls-eGFP)zf109 uninjected control. (E, F, G and 
H) Trunk EC nuclei in control MO. (I, J, K and L) Trunk EC nuclei in tnnt2a 
MO (n = 7–10; two experimental repeats). Visual comparison of trunk EC 
nuclei suggests comparable numbers between treatment groups  
(d – dorsal, v – ventral; representative images colour-coded by depth).  
(M, N and O) Voronoi analysis of trunk EC nuclei shows EC distribution is 
maintained in the CV (black arrowhead), a decrease is observed in ISVs 
(red arrowhead), and significant changes are observed more anteriorly 
(unfilled arrowhead).
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Figure 5
Quantification of vasculature and nuclei. (A) The cerebral vasculature is reduced in tnnt2a MO from 2 to 5dpf (n = 7– 10; two experimental repeats).  
(B) The number of cerebral EC nuclei is reduced in tnnt2a MO from 2 to 5dpf. (C) The trunk vasculature is reduced in tnnt2a MO at 2–3dpf, but not 4–5dpf 
(n = 7– 10; two experimental repeats). (D) The number of trunk EC nuclei is not altered in tnnt2a MO at 2dpf, but significantly reduced from 3 to 5dpf. (E) 
The ratio of cerebral vasculature-to-nuclei remains consistent in uninjected controls (green) and control MO (magenta), but increases over time in tnnt2a 
MO (blue). (F) The ratio of trunk vasculature-to-nuclei remains consistent in uninjected controls (green) and control MO (magenta), but increases over 
time in tnnt2a MO (blue). (G) Quantification of cerebral nuclei nearest neighbour distance (NND) showed nuclei distance to be decreased in tnnt2a MO in 
comparison to uninjected controls (P < 0.0001) and control MO (P < 0.0001; Kruskal–Wallis test). (H) Quantification of trunk nuclei NND showed nuclei 
distance to be decreased in tnnt2a MO in comparison to uninjected controls (P < 0.0001) and control MO (P < 0.0001; Kruskal–Wallis test).
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Arterial and venous responses to lack of blood flow 
are vascular bed dependent

To study whether vessels of different identities were 
differentially or similarly impacted by lack of blood, we 
quantified the diameter of selected arteries and veins in the 
brain and trunk 3dpf. Quantification of cerebral BA diameter 
showed no difference between tnnt2a MO and controls 
(Supplementary Fig. 5A; uninjected control P > 0.9999, 
control MO P > 0.9999), while the diameter of the posterior 
cerebral vein (PCeV) was reduced in animals without blood 
flow (Supplementary Fig. 5B; uninjected control P = 0.0175, 

control MO P = 0.1230). BA diameter was reduced by 2.5% 
(uninjected control 16.41 µm; tnnt2a MO 16.00 µm), while 
the PCeV diameter was reduced by 36.46% (uninjected 
control 11.52 µm; tnnt2a MO 7.32 µm). Quantifying trunk 
ISV diameters, aISV diameter (Supplementary Fig. 5C; 
uninjected control P = 0.0017, control MO P = 0.0121) and 
vISV diameter (Supplementary Fig. 5D; uninjected control 
P = 0.0010, control MO P = 0.0094) were both reduced 
in tnnt2a MO. The mean diameter of aISVs was reduced 
by 40.4% (uninjected control 10.52 µm; tnnt2a MO  
6.27 µm), while the mean diameter of vISVs was reduced 

Figure 6
Cell death is increased by absent blood flow. (A, B 
and C) Cell death, visualized in the transgenic 
reporter line Tg(secAnnexinV:mVenus)SH632 (n = 
13–15; three experimental repeats; 3dpf). (D, E 
and F) Annexin levels in the trunk vasculature 
appeared visually similar between groups. (G) 
Quantification of cerebral annexin SNR showed 
an increase in tnnt2a MO in comparison to 
uninjected controls (P = 0.0012) but not control 
MO (P = 0.072; Kruskal–Wallis test). (H) 
Quantification of trunk annexin SNR showed no 
increase in tnnt2a MO in comparison to 
uninjected controls (P > 0.9999) or control MO (P > 
0.9999; Kruskal–Wallis test). (I) Quantification of 
cerebral annexin foci (white arrowheads) showed 
no increase in tnnt2a MO in comparison to 
uninjected controls (P > 0.9999) and control MO 
(P = 0.4542; Kruskal–Wallis test).
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by 46.64% (uninjected control 11 µm; tnnt2a MO 5.87 µm). 
The diameter of the DA (Supplementary Fig. 5E; uninjected 
control P = 0.0008, control MO P = 0.0105) as well as the 
posterior cardinal vein (PCV) (Supplementary Fig. 5F; 
uninjected control P = 0.0159, control MO P = 0.0548) were 
reduced in tnnt2a MO. The mean diameter of the DA was 
reduced by 40.76% (uninjected control 25.86 µm; tnnt2a 
MO 15.32 µm), while the mean diameter of the PCV was 
reduced by 29.1% (uninjected control 27.46 µm; tnnt2a MO 
19.47 µm). This suggested that vessel diameter is impacted 
by flow in the vessel of venous and arterial identity in the 
trunk, while arterial vessel calibre of the BA is unaltered 
without flow.

To further examine whether EC number was affected 
by vessel identity and/or vascular bed, EC nuclei per vessel 
were quantified. Analysis of nuclei of cerebral BA and PCeV 
in 80 μm ROI showed no significant difference between 
those vessels in the examined treatment groups and no 
significant change upon lack of blood flow (Supplementary 
Fig. 5G). Quantification of nuclei in trunk aISV and vISV 
showed no significant difference in EC numbers between 
vessels of different identity (Supplementary Fig. 5H). Upon 
lack of blood flow arterial EC number was not reduced 
(P = 0.5756), but venous EC number was significantly 
reduced (P = 0.0005).

Together, this suggests that vascular responses are 
vascular-bed as well as vascular-identity specific.

Non-EC-specific cell death is increased by absent 
blood flow

To examine whether cell death contributed to the reduced 
EC numbers observed in tnnt2a morphants, we quantified 
this using the transgenic Tg(secAnnexinV:mVenus)SH632 and 
the live dye Acridine Orange.

Visual inspection of the transgenic reporter line 
suggested an overall increase in cell death in tnnt2a MO 
compared to controls in the head (Fig. 6A, B and C) but 
not trunk (Fig. 6D, E and F), with specific foci found in the 
brain (white arrowhead). To examine whether the observed 
increase in annexin levels was vascular or non-vascular, we 
extracted non-vascular (Fig. 6A′, B′, C′, D′, E′ and F′) from 
vascular (Fig. 6A″, B″, C″, D″, E″ and F″) signal by producing 
vascular masks in 3D, finding that the observed cell death 
was not EC-specific. Quantification of tissue signal-to-
noise ratio (SNR; Fig. 6G and H) showed an increase in the 
head in tnnt2a MO compared with uninjected controls 
(P = 0.0012, Fig. 6G) but not trunk (P > 0.9999, Fig. 6H). 
The number of annexin foci was not increased in tnnt2a 
MO (Fig. 6I; uninjected control P > 0.9999).

To examine this further, the same experiments were 
conducted using the live dye Acridine orange, which 
showed similar results. However, cell death foci were clearly 
increased in fish without blood flow using the Acridine 
Orange assay (Supplementary Fig. 6).

Together, this suggests that overall cell death is 
increased in tnnt2a MO, not restricted to EC.

Inflammatory responses are not triggered by the 
absence of blood flow

We next examined whether immune cell numbers would 
be altered due to the observed cell death potentially 
triggering an inflammatory response, or local tissue 
ischemia due to lack of blood flow, equally triggering 
an inflammatory response (58). As the observed effects 
of lack of blood flow were more severe in the head 
vasculature, quantification was only performed in this 
vascular bed.

Quantification of the number of macrophages in 
controls and tnnt2a MO at 3dpf (Fig. 7A, B and C) showed no 
difference between groups (Fig. 7D; P = 0.2356). Similarly, 
no difference was found in intracranial neutrophil numbers 
at 3dpf when comparing tnnt2a MO to controls (Fig. 7E, F 
and G; P = 0.1708).

To further examine whether the observed cell death 
was associated with altered tissue inflammation in the 
absence of altered macrophage and neutrophil numbers, 
we visualised the inflammatory mediator nitric oxide (NO) 
using the live dye DAF-FM. The visual assessment showed 
no difference in DAF-FM levels in the head (Fig. 8A, B 
and C) and trunk (Fig. D, E and F). This was confirmed by 
SNR quantification in the head (Fig. 8G; P = 0.7967) and 
trunk (Fig. 8H; P = 0.9371) which showed no differences 
comparing samples with blood flow to samples without 
blood flow.

Interestingly, we observed that the DAF-FM signal, 
previously described to be localized in the bulbus arteriosus 
after 2dpf (59), was absent in fish without blood flow 
(Supplementary Fig. 7), suggesting bulbus arteriosus NO 
expression is blood flow-dependent.

Together, our data suggested that the lack of blood 
flow does increase cell death but not tissue inflammation 
or immune cell recruitment at the investigated time-point.

Sprouting angiogenesis is altered but not halted by 
lack of blood flow

We next examined whether the observed changes in 
vascular patterning were due to changes in angiogenic 
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Figure 7
Lack of blood flow does not impact the number of cerebral innate immune cells. (A) Identification of immune cells was performed in 3D, allowing to 
discern non-specific signal (unfilled arrowhead) from immune cells (filled arrowhead). (B and C) Macrophages (magenta) were quantified examining the 
transgenic Tg(fli1a:eGFP)y1, Tg(fms:GAL4.VP16)i186, Tg(UAS-E1b:nfsb.mCherry)il149. (D) Number of macrophages was not changed upon blood flow loss 
(P = 0.2356; n = 12; 3dpf; Mann–Whitney U test). (E and F) Neutrophils (green) were examined in the transgenic reporter line Tg(mpx:GFP)i114, Tg(fms:GAL4.
VP16)i186, Tg(UAS-E1b:nfsb.mCherry)il149. (G) Number of neutrophils was not changed upon blood flow loss (P = 0.1708; n = 12; two experimental repeats; 
3dpf; Mann–Whitney U test).
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Figure 8
Inflammation is not increased by absent blood flow. (A, B and C) Examining nitric oxide (NO; visualized by DAF-FM) as an inflammatory marker, showed 
similar levels of NO in the head of uninjected controls, control MO, and tnnt2a MO (uninjected control n = 11, control MO n = 12, tnnt2a MO n = 11; three 
experimental repeats; 3dpf). (D, E and F) DAF-FM levels in the trunk vasculature appeared visually similar between groups. (G) Quantification of cerebral 
DAF-FM SNR showed no difference between tnnt2a MO and uninjected controls (P > 0.9999) or control MO (P > 0.9999; Kruskal–Wallis test). (H) 
Quantification of trunk DAF-FM SNR showed no difference between tnnt2a MO and uninjected controls (P = 0.1391) or control MO (P = 0.1216; Kruskal–
Wallis test).

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International 
License.

https://doi.org/10.1530/VB-21-0009
https://vb.bioscientifica.com © 2020 The authors
 Published�by�Bioscientifica�Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/VB-21-0009
https://vb.bioscientifica.com


E Kugler et al. Impact of blood flow on 
vascular topology

123:1

https://vb.bioscientifica.com © 2020 The authors
� Published�by�Bioscientifica�Ltd

sprouting. To examine this, we first examined trunk ISV 
sprouting and subsequent dorsal longitudinal anastomotic 
vessel (DLAV) formation, which are known to develop in 
a highly stereotypic anterior-to-posterior growth pattern. 
Comparison of time-lapse data in controls and embryos 
without blood flow (Supplementary Fig. 8A), showed that 
ISVs are competent to sprout in fish with blood flow, as 
previously suggested (17). Also in agreement with previous 
studies, we did not observe inverse membrane blebbing 
to occur in the absence of flow (60). However,DLAV 
anastomosis is delayed in fish without flow. Following 
the initial delay, ISVs sprout laterally to form the DLAV 
upon anastomosis. While vessels in controls become 
subsequently perfused upon anastomosis, this is not the 
case in fish without blood flow.

We next examined cerebrovascular sprouting by 
examining CtA sprouting and numbers, due to their 
stereotypic sprouting pattern from the PHBC and 
anastomosis with the BA. This showed that CtA’s were 
able to sprout from the PHBC and merge with the BA 
(Supplementary Fig. 8B) and when quantifying the number 
of sprouts this showed no significant difference in sprout 
number in fish without blood flow (Supplementary Fig. 8C; 
uninjected controls P = 0.4737). However, quantification of 
CtA’s merged to the BA, were significantly reduced in the 
absence of blood flow (Supplementary Fig. 8D; uninjected 
controls P = 0.0005).

Importantly, for all examined vessels stereotypic 
patterning was observed in the absence of flow,  
suggesting that path-finding is dependent on factors other 
than blood flow.

Discussion

In this study, we present the first assessment of the impact of 
blood flow on zebrafish embryonic vascular development 
from 2 to 5dpf, and present the first comparison of the 
impact of flow in two vascular beds, namely the head 
and trunk. We show that though the overall response 
to lack of blood flow is similar in both vascular beds, the 
head vasculature is more severely impacted than trunk 
vasculature, with intra-cerebral vessels particularly being 
affected. Additionally, the effect of absent blood flow 
increases over time. Our data show that lack of blood flow 
significantly increases cell death without significant cell 
death in ECs, without evidence of a significant increase of 
tissue inflammation, as quantified by cerebral immune cell 
numbers and nitric oxide (Table 1).

Our work complements previous work (33), which 
found blood flow cessation to induce EC apoptosis in 
zebrafish embryos at 30hpf, while our assessment of 
cerebral macrophage numbers extends the examinations 
of Xu et al. who limited their studies to macrophage of the 
tectum (61). Our finding that NO is lacking in the bulbus 
arteriosus at 3dpf in fish without blood flow is the first 
functional evidence of bulbus arteriosus NO to be blood 
flow-dependent (59).

Our data showed that even in the complete absence 
of flow, stereotypic vascular patterning is preserved in the 
trunk and peripheral cerebral vessels. Our findings show 
that sprouting angiogenesis occurs in both vascular beds 
in the absence of flow but that anastomosis is delayed in 
the trunk and reduced in the head. This shows that in 
both, the trunk and head vasculature, vascular sprouting 
and path-seeking can occur in the absence of flow and 
is therefore not solely dependent on pressure gradients 
but likely to be induced by molecular or biochemical 
cues. However, successful fusion and anastomosis are 
blood flow dependent in both examined vascular beds. 
In agreement with previous work, we find that vascular 
plexus remodelling (56, 57) and vascular lumenization 
are blood flow-dependent (60). While previous studies 
suggest that pruning is directly driven by blood flow (19), 
it was never shown that this is the case for vessels that 
have never experienced blood flow. Our data show that 
early vascular networks are established. We suggest that, 
particularly in the head, multiple mechanisms contribute 
to the altered vascularization (a) lacking vascular self-
fusion and remodelling in the absence of flow could be 

Table 1 Overview of vascular properties altered upon lack of 
blood flow.

Without blood flow
Head Trunk

Vasculogenesis Yes Yes
Angiogenic sprouts Yes Yes
Anastomosis Reduced Delayed
Inverse membrane blebbing N/A No
Kugeln No N/A
Cell death Increased No
Macrophages and neutrophils No N/A
DAF-FM No No
Vascular area Reduced Reduced
EC number Reduced Reduced
Vasculature:nuclei ratio Increased Increased
NND Reduced Reduced
BP Reduced Reduced
Artery diameter No Reduced
Vein diameter Reduced Reduced
Artery nuclei No No
Vein nuclei No Reduced
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the mechanism for the observed phenotype, as suggested 
for the subintestinal vein (23); (b) reduced vascular 
stabilization (62, 63); (c) potentially changed EC polarity 
and maintenance needs to be examined (18).

Critically, our work shows that vessel identity affects 
cell response to flow and that this is furthermore impacted 
by the vascular bed. Thus, we suggest that even though 
genetic factors establish vascular identity prior to blood 
flow (64, 65), the fine-tuning of vascular response is likely 
to be caused by extrinsic vascular-bed-specific signaling 
molecules or biochemical cues (7).

Our data show that EC nuclei net distance is 
reduced in the absence of flow by examination of NND 
and Voronoi tessellation. Our study suggests that this 
might be in part due to a reduced vascular area (i.e. 
vasculature and nuclei numbers are reduced; vascular-
to-nuclei ratios are unaltered in early development but 
changed with age) rather than significantly altered 
cell movements as nuclei are observed in all formed 
vessels. However, it has been previously shown that ECs  
migrate against the flow, thus the lack of blood 
flow might also alter EC net distance via migration  
changes (66).

Our studies show that cerebral EC cell numbers double 
from 2 to 5dpf in controls but remain stationary in fish 
without blood flow. Even though we observe cell death, 
there is a high likelihood that decreased proliferation due 
to the lack of blood flow is a contributing factor (67).

Once established blood vessels are established, also 
their EC properties and functions rely on blood flow, as it 
was previously shown regarding maintenance (7, 62, 63, 
68), polarity (66, 69), and kugeln (9).

The finding that central cerebral vessels show severely 
altered growth patterns, while peripheral vessels are less 
impacted, suggests that the response to blood flow is 
different in different vascular territories; whether this 
is due to a difference in vessel formation (e.g. peripheral 
vessels are formed from angiogenesis-derived clusters, 
while central vessels are formed by angiogenesis from 
primary vessels) (70, 71) or identity (e.g. perineural, 
extra-cerebral, vs intra-cerebral) (72) requires future 
investigation.

The mechanisms of the observed effects in response 
to absent blood flow still require future investigation. 
This could include examining the expression of different 
mechanoreceptors and EC properties to complement 
previous findings about the importance and impact of 
blood flow (32, 73, 74, 75, 76, 77). Similarly, molecular 
pathways and their context-dependent interpretation 
(such as VEGF, BMPs, Wnt (62, 78, 79, 80)) might play 

a role in encountered differences in the head and trunk 
vasculature.

Together, our findings emphasize the important role 
of blood flow in vascular patterning and development 
and highlight different responses in different vascular 
territories to mechanical stimuli.

Key points

• We here use zebrafish as a model to quantitatively assess 
the impact of the lack of blood flow in development and 
compare its impact in two vascular beds, namely the 
cerebral to trunk vasculature.

• In both vascular beds, vascular growth and endothelial 
cell number are reduced by lack of blood flow, with 
increasing effect size from 2–5 days post fertilization.

• Examination of vascular patterning shows that while in 
the absence of flow vasculogenesis and sprouting occur, 
anastomosis is delayed in the trunk and reduced in the 
head.

• Studying differential responses in vessel types, we 
found that vascular responses to absent blood flow are 
vascular-bed as well as vascular-identity specific.

• We found non-EC-specific cell death to be increased 
in both vascular beds, with a larger effect size in the 
brain, but that this cell death occurs without triggering 
recruitment of immune cells (macrophages or 
neutrophils) or tissue inflammation.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/
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