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A B S T R A C T   

Mutations and gene expression are the two most studied genomic features in cancer research. In the last decade, 
the combined advances in genomic technology and computational algorithms have broadened mutation research 
with the concept of mutation density and expanded the traditional scope of protein-coding RNA to noncoding 
RNAs. However, mutation density analysis had yet to be integrated with non-coding RNAs. In this study, we 
examined long non-coding RNA (lncRNA) mutation density patterns of 57 unique cancer types using 80 cancer 
cohorts. Our analysis revealed that lncRNAs exhibit mutation density patterns reminiscent to those of protein- 
coding mRNAs. These patterns include mutation peak and dip around transcription start sites of lncRNA. In 
many cohorts, these patterns justified statistically significant transcription strand bias, and the transcription 
strand bias was shared between lncRNAs and mRNAs. We further quantified transcription strand biases with a 
Log Odds Ratio metric and showed that some of these biases are associated with patient prognosis. The prog-
nostic effect may be exerted due to strong Transcription-coupled repair mechanisms associated with the indi-
vidual patient. For the first time, our study combined mutational density patterns with lncRNA mutations, and 
the results demonstrated remarkably comparable patterns between protein-coding mRNA and lncRNA, further 
illustrating lncRNA’s potential roles in cancer research.   

1. Introduction 

Cancers are a major group of diseases characterized by the uncon-
trolled growth and spread of abnormal cells. They remain a major cause 
of death globally, with 19.3 million new cases reported in 2020, leading 
to over 10.0 million deaths worldwide [1]. Generally, cancers are caused 
by alterations in the genetic material, principally oncogenes, 
tumor-suppressor genes, and microRNA genes, which generally take the 
form of gene expression dysregulation or somatic mutations to DNA 
sequences that occur during cell division [2]. Early detection and 
diagnosis are key to successful treatment and improved outcomes for 
cancer patients. 

Mutations in cancer have been studied extensively in recent years to 
facilitate understanding their development and potential treatments. 
One area of research that has received less attention, however, is the role 
of mutational density patterns in evaluating the role of mutations and 
their significance. Mutational density patterns in cancer refer to a vol-
ume of mutations that occur in a given region of the genome, which can 

be used to identify oncogenes and understand the underlying mecha-
nisms of carcinogenesis [3]. Such patterns can also be used to predict the 
prognosis of a cancer patient and to identify potential therapeutic tar-
gets. This research has implications for understanding the underlying 
causes of cancer, as well as for developing new diagnostic and treatment 
strategies. 

In addition to somatic mutation, another major cause of cancer is 
gene expression dysregulation. The majority of previous cancer gene 
expression studies have focused on protein-coding genes. However, over 
the last decade, more evidence has shown the relevance of non-coding 
RNAs. Long non-coding RNAs (lncRNAs) are a class of RNA molecules 
that are transcribed from the genome but do not encode proteins. 
LncRNAs have become the focus of intense research due to their po-
tential role in the development and progression of cancer. One of the key 
functions of lncRNAs in cancer is their ability to act as molecular scaf-
folds, binding to and regulating the activity of specific proteins and DNA 
sequences[4]. Studies have shown that lncRNAs are involved in a variety 
of biological processes, including regulation of gene expression [5], 
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chromatin organization, and DNA methylation [6]. Through these reg-
ulatory functions, lncRNAs exert their oncogenic or tumor suppressor 
functions [7]. Moreover, studies have further shown that lncRNA 
expression levels are often altered in cancer cells compared to normal 
cells. In addition, lncRNAs have been shown to play a role in regulating 
the activity of the immune system, which can impact the ability of the 
body to respond to cancer cells [8]. 

Previous work has found particular mutational density biases be-
tween coding and template RNA strands around the DNA replication 
origin regions and transcription start sites (TSSs) [3]. These findings 
indicate that mutational density patterns are potentially indicative of 
tumorigenesis history. The discernment of distinct mutation density 
patterns typically implies the presence of either known or unknown 
underlying biological mechanisms. Consequently, this encourages re-
searchers to delve deeper into elucidating the relationship between the 
mutation density pattern and the associated biological mechanism. 
Given recent evidence demonstrating the relevance of non-coding RNAs 
to cancer, we hypothesized that essential lncRNAs exhibit similar 
mutational density strand biases as observed in protein-coding RNA. 
Such mutational density strand biases further evidence the cancer 
relevance of lncRNA. 

2. Methods 

2.1. Data collection 

The International Cancer Genome Consortium (ICGC) (https://dcc. 
icgc.org/repositories) assembled mutation data from 81 global cancer 
cohorts. Among the 81 cancer cohorts, the French cohort of Liver He-
patocellular Macronodules (LIHM-FR) contributed the scarcest data by 
recruiting only four cancer patients and calling only 103 mutations in 
total. One mutation category, C>G (G>C, equivalently), found zero 
count in LIHM-FR. Because such a low mutation volume did not permit 
quantification of mutation density in sufficiently sized genomic regions, 
we excluded LIHM-FR at the beginning of our analysis workflow. 

Our workflow is applicable to only single base substitutions (SBSs). 
Hence, SBS mutation data for cancer patients of 80 ICGC cohorts 
covering 57 unique cancer types were taken as the raw data. By design, 
multiple ICGC cohorts for a same cancer type originate from different 
distinct nations or territories, which usually feature distinct race com-
positions. For instance, cohorts from countries like China, Japan, or 
Korea exclusively comprise Asian patients, while cohorts from Western 
nations typically exhibit racial diversity, with Caucasians being the 
predominant group. Nevertheless, ICGC does not release detailed race 
information. Even if such information were available, variations in 
culture and dietary factors within the same cancer type across different 
geographic regions would likely introduce biases. Hence, we did not 
attempt to combine distinct cohorts toward a same cancer type, but 
instead conducted parallel workflows for each cohort individually. 

Genomic coordinates of lncRNA transcripts were taken from LNCi-
pedia (v5.2) [9]. The lncRNA coordinate data file downloaded from 
LNCipedia (v5.2) comprised 127,432 raw lncRNAs, presenting an 
extremely biased gene body length distribution. The longest lncRNA 
entity, identified as “lnc-MAT2B-3:28″, had a length of 1787,073 bp, 
whereas the median length was only 4.6 kb. Exceptionally long gene 
bodies of lncRNAs raise suspicion, and the corresponding boundaries are 
subject to future calibration. To prevent from unnecessary dilution of 
potential transcription strand bias due to inflated gene bodies, we 
excluded the top 5% raw lncRNAs of the longest lengths before merging 
overlapping transcripts. These pre-processing steps led to a set of 53,248 
technically defined, mutually exclusive lncRNA gene bodies. The TSS of 
each lncRNA gene was extracted as the terminal position on either the 
5′-end (gene on the forward strand) or the 3′-end (gene on the reverse 
strand). Accordingly, the transcription end site of each lncRNA gene was 
taken as the other terminal position of the gene body region. All data 
curation and analysis steps were done using the statistical analysis 

software R. 

2.2. Mutation density pattern and transcription strand bias 

Due to the complementary property of DNA, the 12 possible single 
nucleotide mutations are classified into six mutational categories as 
C>A (C>A & G>T), C>G (C>G & G>C), C>T (C>T & G>A), T > A (T >
A & A>T), T > C (T > C & A>G), and T >G (T > G & A>C). Of note, each 
mutational category consists of two mutually complementary forms, 
such as the pair of C>T and G>A. Mutation density analysis requires 
predefined focal genomic features. In a previous study, we demonstrated 
the transcription strand bias in the vicinity of the TSS of protein-coding 
RNAs [3]. In this study, our focal genomic feature is lncRNA TSS. To 
analyze the spatial patterns of mutation density in the vicinity of focal 
genomic features, we counted mutations in the immediate flanking re-
gions which include 2000 nucleotides one either upstream or down-
stream flank. The bidirectional flanks were evenly divided into a total of 
40 bins with a length of 100 nucleotides each. The mutations (distinct 
genomic positions) called from a cancer cohort were counted within 
each sequential 100-bp bin relative to all instances of lncRNA TSS. The 
mutations within each bin were further normalized by considering the 
G/C relative to A/T ratio in GRCh38, giving rise to the mutation density 
assessed in “Mutations Per Kilo total mutations per Megabase” (MPKM). 
The mutation densities of the two complementary strands were plotted 
using R for visualization. This section of analyses leveraged our previ-
ously developed R application MutDens [3]. 

Two primary statistical analyses were offered by MutDens and were 
conducted in the present study in regards to lncRNA TSS (Fig. 1A). First, 
we tried to detect whether a mutation peak or dip exists in the vicinity of 
lncRNA TSS. A peak denotes an visible sharp mutation density increase 
which can be observed centering the genomic feature or residing left 
(PeakL) or right (PeakR) to the genomic feature. A dip denotes a visible 
sharp mutation density decrease. To statistically detect peak or dip, a 
background mutation density in Poisson distribution was established 
using mutations far away from the focal genomic features. The mutation 
density of lncRNA for each ICGC cohort was compared to the back-
ground distribution to detect peaks or dips in mutation density. Nominal 
p < 1 × 10− 5 out of the Poisson test was adopted to affirm a mutation 
density peak or dip. Next, we tested whether a strand bias exists using 
Wilcoxon Signed-Rank test. While MutDens outputted Wilcoxon Signed- 
Rank test results for three different sections (TSS upstream flank, TSS 
downstream flank, and bidirectional flanks), we only considered the TSS 
downstream test result to seek potential transcription strand bias with 
False Discovery Rate controlled at 0.2 (Benjamini-Horchberg 
adjustment). 

2.3. Prognostic bias strength of single base substitution 

Beyond application of MutDens functionalities, we also employed a 
Cox Proportional Hazard model to assess prognostic value of single base 
substitution transcription bias (Fig. 1B). The transcriptional strand bias 
is visible at cohort level. However, in order to utilize it for survival 
analysis, quantification of transcriptional strand bias at individual level 
is needed. At individual level, the quantity of transcriptional strand bias 
will show a great variation due to tumor heterogeneity, genetic back-
ground differences etc. To quantify the prominence of transcription 
strand bias in each individual, we devised a metric that was inspired by 
Log Odds Ratio (LOR). In light of the coordinates of TSSs and tran-
scription end sites of lncRNAs (details above), the genome-wide SBSs 
were reduced to those occurring in lncRNA gene bodies. Based on the 
strandedness of each lncRNA gene, a mutation reported at a particular 
genomic position was counted towards one of four groups: the defining 
SBS on the coding strand (SBScoding), the complementary SBS (i.e., SBS′) 
on the coding strand (SBS′coding), the defining SBS on the template strand 
(SBS′template), and the complementary SBS on the template strand 
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(SBS′template). In the literature, researchers typically calculate the ratio of 
two paired mutation forms (e.g. C>A & G>T) for coding strands and 
template strands separately and further display a marked disparity be-
tween the two ratios. Hence, we captured the prominence of transcrip-
tion strand bias with a LOR metric (Eq. 1). Given the proposed 
mechanistic explanations for transcription strand biases in lung and liver 
cancers [10], strong biases can be reflected as extreme LOR values in 
either the positive or the negative direction. A systemic bias of LOR to 
large positive values implies the coding strand favors one form of mu-
tation (SBS), whereas a systemic bias of LOR to the negative direction 
implies the coding strand favors the complementary form of mutation 
(SBS′). Of note, a LOR should be calculated only when the mutations of 
an SBS category exceeds a minimum number, which was set at 50 in this 
work. 

LOR = log2(
SBScoding

/
SBS′

coding

SBStemplate

/
SBS′

template

) (1)  

hazard rate =
λ x→(t)
λ0(t)

= exp(βLOR • LOR+ βage • Age+ βsex • Sex) (2) 

In cases where a given cancer cohort had 100 or more patients with 
information for both the LOR measure and overall survival, the LOR 
measure was built into a multivariate Cox proportional hazard survival 
model, along with the age and the sex of each individual (Eq. 2). The Cox 
models were built and resolved for all combinations of cancer types and 
mutation categories. In the case of Uterine Corpus Endometrial Carci-
noma (UCEC), the sex variable was dropped because there were only 
female patients. Since up to six SBS types were analyzed separately for 
each cancer cohort, we performed Benjamini Hochberg multiple test 
adjustment within each cancer cohort. Within each cancer cohort, if 
nominal p < 0.05 and False Discovery Rate was less than 0.2, we re-
ported the variable LOR for the specific SBS as a statistically significant 
prognostic marker. To visualize the prognostic value of LOR, we calcu-
lated a fitted hazard rate for each individual as the linear combination of 
the three variables (LOR, age, and sex) using the corresponding co-
efficients resolved from the Cox model (Eq. 2). Patients were evenly 
partitioned to a high risk group and a low risk group based on the lin-
early combined hazard rate, and Kaplan-Meier survival curves were 

plotted for the two groups respectively. 

3. Results 

3.1. Overall study design 

Our workflow was divided into two components, purported for 
detecting mutation density patterns and prognostic markers respectively 
(Fig. 1). The detailed cancer cohort, type, and sample size information 
can be seen in Supplementary Table 1. 

The same mutation density analysis workflow (Fig. 1A, via MutDens) 
was repeatedly applied to investigate 80 cancer cohorts of 57 cancer 
types. This component is considered a cohort-level analysis due to three 
facts. First, SBS mutations of all individuals were merged and distinct 
SBS sites were compiled into a wholesome mutation dataset for the 
cohort. Second, the MPKM values and mutation density values in vi-
cinity of lncRNA TSSs were based on the cohort-specific mutation 
dataset, so their interpretation must be made with respect to the com-
plete cohort, not a cancer patient. Third, if a significant trend of tran-
scription strand bias is ascertained, it suggests that a cancer type tends to 
show transcription strand bias for a SBS category, but it can happen that 
a specific cancer patient does not demonstrate transcription strand bias. 
Previous studies have accrued transcription strand bias findings at the 
cohort level, affirming C>T bias in melanoma, G>T bias in lung cancer, 
etc. Our exhaustive screening in 57 cancer types for all six SBS categories 
provides an opportunity to detect potential trends of transcription strand 
bias in diverse cancer types, which may shed light on the tumorigenesis 
mechanisms in under-investigated cancer types and catalyze the 
concomitant diagnosis and therapeutic strategies. 

As for the Cox survival analyses (Fig. 1B) that required a minimum of 
100 patients with concurrent mutation and survival data, 20 cancer 
cohorts met the sample size requirement and they were analyzed in 
altogether 86 cancer-SBS scenarios. As we expounded in Section 2.3, this 
component is considered an individual-level analysis, because the 
quantitative bias metric, LOR, was assessed for each cancer patient 
separately. The Cox prognostic model was built and solved at the cohort 
level, though. If a Cox model sees statistically significant contribution 
from the bias variable (LOR), the ultimate prognostic prediction can be 
made for a specific cancer patient based on his or her LOR value. 

Fig. 1. Workflow illustration. A) at the cohort level, somatic single base substitutions (SBSs) of one same mutational category were supplied to the published R 
application MutDens to enable analyses of mutation density patterns around lncRNA Transcription Start Sites (TSSs). B) at the individual subject level, somatic single 
base substitutions (SBSs) of one same mutational category were integrated with lncRNA gene body coordinates to calculate Log Odds Ratio (LOR) statistics as a per- 
individual transcription strand bias quantity; next, at the cohort level, a Cox model was built on LOR, age, and sex to fit overall survival of all patients. Of note, 
notation S in the illustration corresponds to SBS′ in Eq. 1. 
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3.2. Mutation density peaks and dips 

We conducted mutation density analysis using ICGC mutation data 
with lncRNA positions. For each ICGC cancer cohort, mutation density 
was summarized for each of three major genomic territories (protein 
exons, protein introns, intergenic regions) in human reference genome 
GRCh38 (Supplementary Table 2), with genomic territory segmentation 
inherited from our previous work AnnoGen [11]. Comparing among the 
three series of MPKM values across all cancer cohorts using Wilcoxon 
Signed-Rank test, we did not detect a significant cross-territory mutation 
density difference (p > 0.05). MutDens was employed to analyze each of 
80 ICGC cohorts separately. For a representative set of results, the 
graphical output for bladder urothelial carcinoma US cohort is displayed 
in Fig. 2. 

First, we tested whether a mutation density peak or dip exists in three 
regions (upstream, downstream, and center) with respect to lncRNA TSS 
position using Poisson distribution. The tests were conducted for each of 
the six mutation types as defined in Methods, and potential central peaks 
(Peak), upstream-flank peaks (PeakL), right-flank peaks (PeakR), and 
central dips (Dip) were identified if raw Wilcoxon test p < 1 × 10− 5. 
Considering that this round of analyses consist of 1920 tests in total 
(arising from 6 SBSs, 4 patterns (Peak, Dip, PeakL, PeakR), and 80 
cancer cohorts), the adjusted p-value for any mutation density pattern 
would be less than 0.02 post Bonferroni adjustment. As a result, totally 
178 significant results were identified, most of which (156) were central 
peaks (Supplementary Table 3). For C>A mutations, TSS-coincident and 
downstream peaks were observed for 29 and 2 cancer cohorts respec-
tively, and one dip in one cancer cohort; for C>G mutations, TSS- 
coincident, TSS-upstream, and TSS-downstream peaks were observed 
for 31, 1, and 2 cancer cohorts, respectively; For C>T mutations, peaks 

were observed around lncRNA TSSs for 46 cancer cohorts and down-
stream for 1 cancer cohort; for T > A mutations, peaks were observed for 
13 cancer cohorts (12 at TSS, 1 at downstream) and dip was identified 
for two cancer cohort; for T > C mutations, peaks were observed for 28 
cancer cohorts around lncRNA TSS, three peaks downstream, and two 
dips around lncRNA TSS; for T > G mutations, 10 central peaks, 3 up-
stream peaks, and 1 downstream peak were observed, and a dip was also 
observed. 

3.3. Cohort-level transcription strand bias 

We employed False Discovery Rate less than 0.2 to affirm the exis-
tence of transcription strand bias at the cohort level. Overall, 65 sig-
nificant results were identified, including 26 for C>A, 6 for C>G, 13 for 
C >T, 6 for T > A, 12 for T > C, and 2 for T > G (Supplementary 
Table 4). A total of 38 cancer cohorts demonstrated transcription strand 
bias, and 16 cancer cohorts showed bias in more than one mutation type. 
Two liver cancer cohorts (LICA-CN and LICA-FR) and one lung cancer 
(LUAD-US) each showed transcription strand bias in four mutation 
types. It is a noteworthy fact that transcription strand bias trends were 
shown across mutation categories for many cancer types. This concurs 
with a phenomenon that DNA damages in some cancer types are 
pervasive, not restricting to one specific type of mutation category. Like 
in bladder urothelial carcinoma US cohort, three mutation categories 
presented in substantial proportion (Fig. 2A). Similarly, prevalent 
occurrence of both C>A and C>T mutations were reported recently for 
liver cancer [12]. 

As we reasoned in the previous work, a SBS-wise mutation density 
metric must be normalized against the base content of the specific 
original bases, namely G/C or A/T, and the normalization can be locally 

Fig. 2. Mutational pattern analysis graphical output for BLCA-US cohort. A. Pie chart that depicts the genome-wide mutation type’s distribution. B. Barplot that 
depicts the genome-wide mutation type symmetry. The expected symmetry is at 0.5. C. Pie chart that depicts mutation type’s distribution around the lncRNA TSS 
regions. D. Barplot that depicts the mutation type symmetry around the lncRNA TSS regions. (E-J). Density plot of six categories of mutations around TSS regions of 
lncRNA: C>A (E), C>G (F), C>T (G), T > A (H), T > C (I), and T > G (J). Solid grey boxes indicate existence of significant mutation density patterns, in this case 
central peaks for C>A, C>G, and C>T. 

T. Zhang et al.                                                                                                                                                                                                                                   



Computational and Structural Biotechnology Journal 21 (2023) 4887–4894

4891

dynamic or globally static [3]. Like mRNA TSS, lncRNA TSS has elevated 
G/C content in its bidirectional close proximity, but the highest G/C 
content in lncRNA reached only 48%, as compared to 62% for mRNA 
genes (Fig. 3, A and B). Given a much milder increase of GC content near 
lncRNA TSS and for the sake of minimal computational complexity, we 
applied a global normalization strategy by taking a constant G/C pro-
portion of 40%. Under the global normalization strategy, the mutable 
bases for categories C>A, C>G, and C>T were quantified as 40% of all 
bases in the considered genomic regions, while the mutable bases for 
categories T > A, T > C, T > G were multiplied with a coefficient of 
60%. The eventual mutation density value for a specific mutation 
category was calculated as the ratio of actual mutation counts over the 
percentage-adjusted mutable bases in the considered genomic regions. 

Generally, TSS-centered mutation density curves show comparable 
trends between lncRNA genes and protein-coding genes. Three repre-
sentative cancer cohorts were selected to illustrate such striking paral-
lelism between lncRNAs and mRNAs (Fig. 3, C-H). Looking at C>T 
mutations in MELA-AU, both lncRNA genes and mRNA genes clearly 
display a TSS-coincident peak and higher mutation density on the cod-
ing strand than the template strand in the TSS downstream (Fig. 3, C, 
and D). Still obvious divergence is seen in the coding/template strands 
for G>A (i.e., the C>T category) mutations in LICA-FR, with more 
mutations on the coding strand (Fig. 3, E, and F). The G>A (equiva-
lently, C>T) mutations in LICA-FR do not form a peak as sharp as in the 
case of C>T in MELA-AU. Lastly, the A>G (i.e., the T > C category) 
mutation density curves display dips rather than peaks around lncRNA/ 
mRNA TSS, and an obvious divergence between the coding strand and 
the template strand is clearly revealed for both lncRNA and mRNA 
(Fig. 3, G and H). 

3.4. Individual-level transcription strand bias and prognosis 

The DNA transcriptional-coupled repair mechanism predominantly 
engages in the repair of the template strand, commencing from the 
Transcription Start Site (TSS) to release the DNA-lesion-caused blockage 

of RNA polymerase. Consequently, lower mutation density is discernible 
in the template strand when compared to the coding strand. This 
observed transcriptional strand bias aligns with the conventional un-
derstanding of the transcription-coupled repair mechanism. It is plau-
sible to conjecture that the extent of transcriptional strand bias could 
serve as an indicator of transcription-coupled repair proficiency. In the 
context of chemotherapy, which often targets specific genes by inducing 
DNA damage, individuals with robust Transcription-coupled repair ca-
pabilities may potentially mitigate the effects of drug-induced damage, 
thereby potentially diminishing the efficacy of chemotherapy and 
resulting in poorer survival outcomes. 

Patients of the same cancer cohort displayed a spectrum of tran-
scription strand bias. For example, the bladder urothelial carcinoma US 
cohort carried C>G or C>T mutations most frequently (Fig. 2, A and C), 
and these two mutation categories showed higher variation in LOR than 
the least frequent category T > G, with standard deviations 1.3 and 1.2 
for C>G and C>T, and 0.14 for T > G. Less prevalent mutation cate-
gories may also display considerable variation in the transcription 
strand bias measure, as exemplified in T > A and T > C with sd= 1.6 
and 1.5 respectively (Fig. 4A, top). Another cancer cohort, CLLE-ES, 
carried the six mutation categories more evenly, and these six cate-
gories all showed moderate variation in LOR among the patients 
(Fig. 4A, bottom). Nevertheless, the two categories that had the highest 
LOR variation (sd=1.3 for C>G and sd=1.1 for T > G) had fewer mu-
tation sites than the other mutation categories. 

Given transcription strand bias quantified as LOR for each patient, 
we were able to assess the prognostic potential of biased SBS through a 
Cox survival model adjusted for age and sex. For all 86 cancer-SBS 
combinations that had ample sample size, 13 cancer-SBS combinations 
displayed potential prognostic value at nominal p < 0.05 and False 
Discovery Rate lower than 0.2, involving 10 cancer cohorts (Supple-
mentary Table 5; Fig. 4, B-G). All six mutation categories found prog-
nosis significance for transcription strand bias in certain cancer types; 
C>G and C>T were most noteworthy, reaching prognostic significance 
in four (Fig. 4F) and three (Fig. 4G) cancer cohorts, respectively. For the 

Fig. 3. Comparable mutation density patterns between mRNA TSS vicinity and lncRNA TSS vicinity. A) G/C content dynamics within upstream and downstream 2 kb 
of lncRNA TSS. B) G/C content dynamics within upstream and downstream 2 kb of mRNA TSS. C) mutation density curves for C>T SBS on coding strands and 
template strands of lncRNA genes, in MELA-AU. D) mutation density curves for C>T SBS on coding strands and template strands of protein-coding genes, in MELA- 
AU. E) mutation density curves for G>A SBS on coding strands and template strands of lncRNA genes, in LICA-FR. F) mutation density curves for G>A SBS on coding 
strands and template strands of protein-coding genes, in LICA-FR. G) mutation density curves for G>A SBS on coding strands and template strands of lncRNA genes, 
in LIRI-JP. H) mutation density curves for G>A SBS on coding strands and template strands of protein-coding genes, in LIRI-JP. Solid grey boxes indicate existence of 
significant mutation density patterns: central peaks (C, D, E, F) and central dips (G and H). 
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Fig. 4. Quantification of individual-level transcription strand bias and its association with cancer survival. A. Patients in one were each assessed for their prominence 
of transcription strand bias with respect to a mutation category. Shown were two example cohorts: BLCA-US (top) and CLLE-ES (bottom). B. MALY-DE and SKCA-BR 
showed prognosis significance for T > A transcription strand bias. C. MELA-AU and UCEC-US showed prognosis significance for T > C transcription strand bias. D. 
CLLE-DE showed prognosis significance for T > G transcription strand bias. E. SKCM-US showed prognosis significance for C>A transcription strand bias. F. BLCA- 
US, CLLE-ES, GACA-CN, and LUSC-KR showed prognosis significance for C>G transcription strand bias. G. CLLE-ES, SKCM-US, and STAD-US showed prognosis 
significance for C>T transcription strand bias. 
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total 13 scenarios, C>A in SKCM-US, C>G in BLCA-US, C>T in SKCM- 
US, and T > C in UCEC-US also demonstrated cohort-level significant 
transcription strand bias with Wilcoxon p < 0.05. 

Considering both the cohort-level LOR bias direction and the coef-
ficient sign of LOR in the Cox risk model, we could investigate if a more 
extreme LOR value indeed predicts poorer survival. To ascertain the 
initiative mutation form in context of strand bias, one must examine the 
relative predominance of the two mutation density curves at TSS 
downstream. For example, C>T is the initiative mutation form in mel-
anoma (MELA-AU), and accordingly the “coding” mutation density is 
higher than the “template” mutation density (Figs. 3C and 3D). In such a 
straightforward case, a large positive LOR value indicates a strong 
transcription bias. In a flipped scenario, as exemplified in the liver 
cancer cohort LICA-FR (Figs. 3E and 3F), the counter-intuitive pre-
dominance of “template” over “coding” simply indicates the comple-
mentary G>A mutations are the genuine initiative mutation form, rather 
than the form of C>T. In such a mutation-form-flipped case, a large 
negative LOR value indicates a strong transcription bias. 

Combining the bias direction at the cohort level and the coefficient 
sign for LOR in the Cox model, the data showedthat the strength of 
transcription strand bias in SKCM-US (C>A), BLCA-US (C>G), or UCEC- 
US (T > C) was a risk factor for overall survival. Only SKCM-US (C>T) 
was an exception, with a stronger bias associated with a higher survival 
chance. This reversal, counter-intuitive trend may caution the existence 
of false positive observation at either the cohort-level analyses or at the 
individual-level analyses, or may signify involvement of additional, 
complicating biological mechanisms other than the sole Transcription- 
coupled repair effect. The other nine scenarios did not reveal cohort- 
level significant transcription strand bias, involving CLLE-ES in C>T, 
C>G, and T > G mutations, GACA-CN and LUSC-KR in C>G mutation, 
STAD-US in C>T mutation, MALY-DE and SKCA-BR in T > A mutation, 
and MELA-AU in T > C mutation. 

4. Discussion 

By September 2023, there have been 86 clinical trials based on 
lncRNA, of which 30 were related to cancer. Even though the results of 
non-coding RNA based clinical trials have been ambivalent [13], the 
importance and necessity of lncRNA in cancer research have been 
recognized throughout the research community. Over the last decade, 
even though the majority of the lncRNA study have been focused on the 
expression of lncRNA potentially due to the abundant availaibity of 
RNAseq data, some studies also highlighted the importance of mutations 
in lncRNAs. For example, mutations in lncRNA MALAT1 was shown to 
cause alternative splicing in cancers [14]; mutations in lncRNA RMRP 
impair mouse and human T cell activation [15]; mutations in lncRNA 
TCL6 is predicted to affect binding afficacy of RNA-binding proteins 
[16]. As a natural follow-up to our previous mutational pattern study on 
protein-coding RNA, a.k.a. mRNA [3], we designed a follow-up study 
with the focus shifted to lncRNA. This lncRNA study utilized the same 
mutation datasets used in the preceeding mRNA study, thus enabling 
proper comparison between lncRNA and mRNA. 

While lncRNAs do not serve as templates for protein synthesis, 
lncRNAs do exhibit many similar characteristics to protein-coding RNAs. 
For example, both lncRNA and protein-coding RNA are transcribed from 
DNA and can be processed post-transcriptionally. Like mRNAs, most 
annotated lncRNAs are RNA polymerase II transcribed and the lncRNA 
transcripts may share some structural similarity with mRNA [17]. After 
transcription, both lncRNA and mRNA undergo processing to produce 
mature functional RNA molecules. In the case of mRNA, this includes 
splicing, capping, and polyadenylation. In the case of lncRNA, process-
ing can involve alternative splicing, RNA editing, and 
post-transcriptional modifications. Furthermore, both lncRNA and 
mRNA can be involved in gene expression regulation: while mRNA 
carries the genetic information required to synthesize proteins, lncRNA 
plays a role in the regulation of gene expression by various mechanisms, 

including transcriptional, post-transcriptional, and epigenetic regula-
tion. Our findings indicate that particular cancer types exhibit tran-
scriptional strand bias for specific types of mutations, typically linked to 
the cancer’s etiology. For instance, skin cancer predominantly features 
C>T mutations owing to exposure to ultra violet light, while lung cancer 
is often characterized by C>A mutations attributed to tobacco smoking 
[18]. 

Mutation density fluctuations manifest in numerous cancer types 
across diverse genomic features. Notably, mutation density peaks 
encircle mRNA gene transcription start sites (TSS) [3,19], while muta-
tional density dips manifest in the vicinity of retrotransposons [3]. These 
distinctive mutation density patterns typically arise from specific un-
derlying biological mechanisms. For instance, the mutation density peak 
is attributed to Transcription-coupled repair processes. Perera et al. [19] 
proposed that in highly transcribed promoters, the transcription 
pre-initiation complex hinders the recognition of DNA damage by repair 
machinery, including Xeroderma Pigmentosum C (XPC), thereby 
resulting in the frequently observed mutation peaks coinciding with 
TSS. The mutation density dip observed in retrotransposons implies the 
existence of an unidentified mechanism responsible for the diminished 
mutation rate within these elements, warranting further investigation. 
The above examples highlight the importance of mutation density, and 
how it uncover hidden biological mechanism. The aforementioned in-
stances underscore the significance of mutation density and its capacity 
to unveil concealed biological mechanisms. 

LncRNAs are transcribed from DNA using largely the same machin-
ery as mRNAs. Thus, if assuming mutations occur indiscriminately 
across the genome, observing similar mutation density patterns around 
TSS between mRNA and lncRNA is within reasonable expectation. Our 
analyses confirm this hypothesis: 55 cancer cohorts presented TSS- 
coincident mutation peaks in all six mutation types. While TSS- 
coincident mutation peaks tend to appear frequently in many cancer 
types for both mRNA and lncRNA, the contrary phenomenon of TSS- 
coincident mutation dip is rare. In screening 81 cancer cohorts on six 
mutation categories, we identified six statistically significant lncRNA- 
TSS mutation dips, including the cases for melanoma (MELA-AU) on 
T > A and liver cancer (LIRI-JP) on T > C. The two mutation dips were 
also observed at mRNA TCC vicinity. Previously, a C>T mutation dip 
was found for enhancer regions in the same Australian melanoma cohort 
[3]. Future studies are necessary to investigate and elucidate these 
intriguing mutation peaks and dips associated with TSS in various 
scenarios. 

Our results show that specific cancer type shows transcriptional 
strand bias for specific mutation types. This is usually related to the 
etiology of the cancer. For example, skin cancer is dominated by C>T 
mutations due to UV light exposure; lung cancer is usually dominated by 
C>A mutation due to tobacco smoking. Thus, it is not surprising that the 
mutation density patterns we observe are often associated with certain 
types of mutation. 

The transcription strand bias is a direct consequence of 
Transcription-coupled repair mechanisms. Strong Transcription- 
coupled repair capability may result in more severe bias. Based on this 
fact, we hypothesized that transcription strand bias may negatively 
affect the response rate of chemotherapy. We quantified transcription 
strand bias at the sample level and conducted survival analysis. Thirteen 
prognostic significant results were identified, which support our hy-
pothesis. A majority of the 13 scenarios did not show overall tran-
scription strand bias at the cohort level, meaning that a cancer type 
without a coherent bias may still show a considerable range of tran-
scription strand bias across patients and the individual-level bias 
strength can have prognostic value. Four of the 13 scenarios showed 
overall transcription strand bias, and three scenarios were consistent 
with our hypothesis in directional prognosis: the stronger the bias, the 
poorer the survival. Skin cancer, lymphoma, gastric cancer, lung cancer, 
and bladder cancer each possessed at least one mutation category as 
plausible patient-level prognostic marker. 
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Our research findings underscore the inherent association between 
transcriptional strand bias and survival outcomes, largely driven by its 
potential impact on the efficacy of chemotherapy. However, to conclu-
sively validate and integrate transcriptional strand bias as a clinical 
parameter, the acquisition of precise drug treatment data and the 
development of drug-specific predictive models are imperative pre-
requisites. Moreover, our study showcases the potential significance of 
exploring the role of lncRNA mutations in the context of cancer. This 
highlights the broader benefits of mutational density investigations, 
thereby encouraging further research into mutational density patterns 
across other RNA types, such as enhancer RNAs. 
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