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Abstract: In multi-speaker environments, cochlear implant (CI) users may attend to a target sound
source in a different manner from normal hearing (NH) individuals during a conversation. This
study attempted to investigate the effect of conversational sound levels on the mechanisms adopted
by CI and NH listeners in selective auditory attention and how it affects their daily conversation.
Nine CI users (five bilateral, three unilateral, and one bimodal) and eight NH listeners participated
in this study. The behavioral speech recognition scores were collected using a matrix sentences test,
and neural tracking to speech envelope was recorded using electroencephalography (EEG). Speech
stimuli were presented at three different levels (75, 65, and 55 dB SPL) in the presence of two maskers
from three spatially separated speakers. Different combinations of assisted/impaired hearing modes
were evaluated for CI users, and the outcomes were analyzed in three categories: electric hearing
only, acoustic hearing only, and electric + acoustic hearing. Our results showed that increasing the
conversational sound level degraded the selective auditory attention in electrical hearing. On the
other hand, increasing the sound level improved the selective auditory attention for the acoustic
hearing group. In the NH listeners, however, increasing the sound level did not cause a significant
change in the auditory attention. Our result implies that the effect of the sound level on selective
auditory attention varies depending on the hearing modes, and the loudness control is necessary for
the ease of attending to the conversation by CI users.

Keywords: cochlear implant; cocktail party scenario; selective auditory attention; speech recognition

1. Introduction

Selective auditory attention is the ability of the auditory system to attend to a target
sound source and ignore the competing sounds in multi-speaker environments, known
as the cocktail party scenario. Spatial, temporal, and frequency cues help to identify and
separate the speech streams. If these cues are not accessible in the auditory pathway, this
may result in decreased spatial selective auditory attention and speech intelligibility [1,2].

Previous studies have shown that spatial selective auditory attention is degraded by
hearing loss [1–6]. Most hearing-impaired (HI) listeners suffer from poor spatial hearing,
especially when they encounter social settings where multiple people talk in a group. This
is particularly the case for cochlear implant (CI) listeners who have severe hearing loss, and
their performance falls much below that of the normal hearing (NH) listeners in spatial
hearing tasks [7–10]. Besides the intelligibility of the target stimulus, which is commonly
used to explain the degraded auditory selective attention, localizing the target speech
source among distractors can also concurrently contribute to the difficulty faced by CI
users in spatial hearing. Poor temporal resolution typically experienced by CI users [11]
prevents them from taking advantage of the interaural time difference (ITD) cues [12]. In
addition, CI users are also less sensitive to changes in levels [13], implying that they could
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not benefit as much as NH listeners from the interaural level difference (ILD) cues for
sound localization.

In the last few years, some studies [2,5,6,14–16] have examined the different factors that
affect the spatial selective auditory attention with hearing-impaired listeners. One way of
examining spatial hearing with headphones is to determine where a sound is coming from,
which is known as lateralization. Strelcyk and Dau [17] investigated the effect of stimuli
level on the sound lateralization for NH and HI listeners. They measured the lateralization
threshold for 750 Hz tones, fixed at 70 and 35 dB SPL. The results showed that generally,
the lateralization threshold improved at the higher stimulus level comparing to the lower
stimulus level. The difference between NH and HI listeners’ performance at the lower tone
level was smaller than that at the higher tone level. Consistent with this result, Smoski [18]
observed a smaller deficit in HI listeners’ lateralization (relative to NH) at a lower tone
level. However, HI listeners in the study by Hawkins and Wightman [19] showed a
smaller lateralization deficit at a higher stimulus level than that at a lower stimulus level,
when the narrow-band noise was used as stimulus in a quiet condition. The different
outcomes of these studies [18,19] may be attributed to the type of stimuli (tone/noise) used
in these studies. Strelcyk and Dau explained that at higher stimulus levels, lateralization
judgments could arise from the excitation of a larger area of the basilar membrane instead
of the local excitation area [17]. NH listeners may take advantage of the excitation spread,
particularly towards places corresponding to high frequencies, and integrate the additional
information placed in high-frequency areas. However, HI listeners with high frequency
sensory neural hearing loss may not benefit from this additional information, because it
falls in the sloping region of their hearing loss. Nevertheless, the excitation model may not
be directly applicable to the cochlear implant participants’ performance.

The spatial separation between the target speech and competing sounds also plays
an important role in spatial selective auditory attention. Spatial separation helps listeners
segregate sound sources and consequently improves speech intelligibility. The difference
between the speech reception threshold (SRT) in co-located and spatially separated sound
sources, which is known as spatial release from masking (SRM) [20], is commonly used to
measure the benefits of the spatial separation. Gallun et al. [21] compared the SRTs of HI
listeners when target sentence levels were presented at 19.5 dB SL and 39.5 dB SL in quiet.
In an adaptive approach, the levels of the maskers were adjusted relative to the level of the
target sentences to estimate the masked threshold (target-to-masker ratio (TMR) giving
50% correct). The results showed that the masked threshold and SRM improved with an
increase in SL, indicating that the listener’s spatial auditory selective attention covaries
with the audibility.

The studies mentioned above collectively show evidence that the level of sound does
affect the spatial selective auditory attention in both normal-hearing and hearing-impaired
listeners. To the best of our knowledge, there is little existing work, but a growing effort in
examining the effect of sound level on spatial selective auditory attention in CI users.

Our team [22] has previously shown the effect of speech level on the speech quality as
perceived by normal-hearing listeners and CI users. The study showed that even at the
same signal-to-noise ratio (SNR), but at different conversational speech levels, different
patterns of perceived quality judgment were observed in NH listeners and CI users. While
NH listeners preferred higher speech levels, the CI listeners preferred lower speech levels,
suggesting that CI listeners choose lower noise levels at the expense of poorer speech
audibility. Such evidence of perceptual differences between the two groups inspired us to
examine the effect of speech level on the spatial selective auditory attention with NH and
CI listeners.

Spatial hearing is commonly assessed from behavioral responses, but it can also be
observed in the electrophysiological response. Some studies have also shown that spectral
and temporal features of attended speech can be extracted from the cortical response [23,24].
In [25], the electroencephalography (EEG) signal was recorded on the scalps of NH listeners,
while they engaged in a two speakers cocktail party scenario. The listeners were instructed
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to attend to one of the speakers and ignore the other one. A linear decoder was trained to
reconstruct the speech envelope using the EEG signal. Listeners’ locus of attention was
determined reliably based on the speech envelope reconstructed from the EEG signal. It
was shown in [26] that the Spearman correlation between the original speech envelope
and the speech envelope reconstructed from the EEG signal increased by increasing the
SNR. They demonstrated that the behaviorally measured speech intelligibility was highly
correlated with the congruence between the original and reconstructed envelopes. Such an
electrophysiological approach was thought to be another applicable measure that drives us
to a better understanding of the spatial hearing for NH and CI listeners in this study.

In the current study, we investigated the spatial selective auditory attention in the
speech-on-speech masking for NH and CI listeners at different stimulus levels and target
azimuths. In order to examine the effect of the speech level independently of the effect
of the TMR, target and masker stimuli were presented at different conversational levels
while keeping TMR the same. In addition to behavioral experiments, the accuracy of the
attended speech envelope reconstruction from the EEG signals was computed as a metric to
indirectly measure the selective auditory attention from cortical response in a three speaker
cocktail party problem. This study is a preliminary study examining the effect of speech
levels on spatial hearing ability, for NH and CI listeners, in both behavioral and neural
outcomes. CI listeners with different modes of hearing (bilateral, unilateral, and bimodal)
participated in this study. The results were categorized based on the patients’ hearing
modes. Due to the limited number of patients in each group and to avoid the biased results
due to the unbalanced sample size, the case-by-case results are reported as well.

2. Method
2.1. Participants

Eight NH listeners (four male; mean age: 24, range: 21–30, SD: 3.5 years) and nine CI
users (five male; mean age: 58, range: 24–77, SD: 22 years) participated in this study.
Recruitment was made by advertising at local CI patients’ events. CI patients with different
modes of impaired/assisted hearing volunteered to participate in the study. All participants
self-reported no history of cognitive deficits prior to participation. All NH subjects were
verified with 20 dB HL (Hearing Loss) or lower across all octave frequencies between 250 to
8000 Hz in their pure-tone audiograms. Unaided hearing thresholds were identified for
the CI group over the same octave frequency range. The demographic information for CI
users is shown in Table 1. All procedures were approved by the institutional review board
of University of Texas at Dallas. All subjects signed an informed consent form before the
experiments, and they were compensated for their participation in the experiments.

Table 1. Demographic information of CI listeners.

Subject
Num-

ber

Age
(years) Gender CI Ear CI Model CI Use

(years)

Speech
Processing

Strategy

Duration
of HL
(years)

Pure Tone Average
of 500, 1000, and
2000 Hz (dB HL)

Etiology

Bilateral CI

1 75 Male Both Medel/Sonnet 7 FS4 33 Right: NR
Left: NR

Meniere’s
Disease

2 40 Female Both Medel/Sonnet 4 FS4 38.5 Right: NR
Left: NR unknown

3 68 Male Both Medel/Sonnet 10 FS4 38 Right: NR
Left: NR unknown

4 25 Female Both Cochlear/Nucleus 6 21 ACE 25 Right: NR
Left: NR unknown

5 * 77 Female Both Medel/Sonnet 70 FS4 6 Right: NR
Left: NR meningitis
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Table 1. Cont.

Subject
Num-

ber

Age
(years) Gender CI Ear CI Model CI Use

(years)

Speech
Processing

Strategy

Duration
of HL
(years)

Pure Tone Average
of 500, 1000, and
2000 Hz (dB HL)

Etiology

Unilateral CI

6 67 Male Right Cochlear/Nucleus 6 11 ACE 11 Right: NR
Left: 70

Noise
induced

7 67 Male Right Medel/Sonnet 10 FS4 24 Right: NR
Left: 71.6

Meniere’s
Disease

8 * 24 Female Right Cochlear/Nucleus 7 1 ACE 23 Right: NR
Left: NR Genetic

Bimodal hearing

9 77 Male Right Medel/Sonnet 2 FS4 20 Right: 82.5
Left: 66.6

Noise
induced

* Subject 5 and 8 from CI listeners and two of the NH listeners were not able to participate in EEG recording.

2.2. Behavioral Experiment
2.2.1. Stimuli

We adopted a matrix sentence test [27] for the behavioral spatial hearing test. On each
trial, three spatially separated sentences (one target and two maskers) were presented to
the subjects via different loudspeakers. The sentences were formed by concatenating the
words, with one word from each of the five categories of the words (name, verb, number,
adjective, and noun). Each category consisted of 8 words that were repeatedly spoken by
18 female and 18 male talkers. Table 2 shows the eight words in each of the five categories.
The sentences are grammatically correct and sound natural, but conceptually unpredictable
to minimize the effect of higher-order language processing.

Table 2. Matrix sentences.

Name Verb Number Adjective Noun

Jane Took Two New Toys
Gene Gave Three Old Hats
Pat Lost Four Big Shoes
Bob Found Five Small Cards
Sue Bought Six Red Pens

Mike Sold Seven Blue Socks
Lynn Held Eight Cold Bags

Jill Saw Nine Hot Gloves

2.2.2. Procedure

The experiments were conducted in a double-wall soundproof booth. Five speakers
placed at −90◦, −45◦, 0◦, 45◦, and 90◦ azimuth were used to present the stimuli. The
speakers were located at a radius of 1 m from subjects at the height of the subjects’ heads.
A touchscreen monitor was located in front of the subjects.

In each trial, three different talkers were randomly selected to present the target and
masker sentences. Three different sentences were selected from the words listed in Table 2,
one as a target and two as maskers. Speech recognition performance for five speaker
configurations was examined (Figure 1). To explore the effect of the speech level on spatial
selective auditory attention, three different levels at fixed TMR were examined as follows.
For CI listeners, the target stimuli were presented at 75, 65, and 55 dB SPL and two maskers
each at 65, 55, and 45 dB SPL, respectively. For NH listeners, to avoid ceiling effect, each
masker was presented at the same dB SPL level as the target, which means presenting
the target at 75, 65, and 55 dB SPL and each of the two maskers at 75, 65, and 55 dB
SPL, respectively.
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At the beginning of each trial, an arrow appeared on the monitor indicating the
location of the target speaker that the subject should attend to. After the subject pressed a
start button, stimuli were presented, and the application waited until the subject completed
the answer. Once the speech stimuli were presented, the subject had to select the words
uttered by the target speaker from a table similar to Table 2 that appeared on the monitor.
Subjects were instructed to guess a word if they were not able to identify the word.

The experiment was conducted in three sessions associated with three different stimuli
levels, which stretches over a one day visit. At each session, 50 trials (five target speaker
configurations × 10 repetitions) were randomly presented to the subject. As mentioned
earlier, sentences, words, and talkers were selected randomly for each trial. Before the main
experiments, each subject participated in one training session to become familiar with the
procedure. At the training session, target stimuli were presented at 65 dB SPL. The maskers
were presented at 55 dB SPL for CI listeners and 65 dB SPL for NH listeners.

For bilateral CI users, the experiment was repeated three times; one with both CIs
turned on, one with only the left CI turned on, and one with only the right CI turned
on. For unilateral CI users who had residual hearing in the contralateral ear, the same
experiment was repeated twice; one with CI turned on, and one with CI turned off. For the
bimodal CI listener (with hearing aid (HA) in the contralateral ear), the experiment was
again repeated three times; one with both CI and HA turned on, one with only CI turned
on and HA turned off, and one with CI turned off and only HA turned on.

2.3. Electrophysiological Experiment
2.3.1. EEG Recording Setup

The BrainVision system (actiCHamp amplifier) was used to obtain EEG signals via
a 64-channel actiCAP Electrode Cap. Scalp electrode placement was set in accordance
with the international 10–20 system. The ground electrode was placed at FPz, and the
reference electrode was placed at FCz of subject’s head. Horizontal and vertical ocular
artifacts were recorded using additional electrodes connected to two bipolar adaptors
(BIP2AUX). All electrodes were kept at an impedance lower than 10 kΩ. The EEG signal
was digitally recorded using a sampling rate of 1 kHz. The data were stored for offline
analysis. Participants were seated in the middle of the sound booth wearing a scalp
electrode cap on their heads. They were asked to keep calm, look at a fixed point on the
monitor, and minimize eye blinking and muscle movement while the sound was presented.

This study attempted to extract the cortical activities that are entrained to the speech
envelope using a decoder. Our EEG experiment consisted of two recording sessions.
One session was for collecting data on the speech in quiet to train the decoder, which
extracts the speech envelope from the EEG signal. The other session was for measuring
the EEG associated with different spatial configuration and sound level conditions in a
three-speaker cocktail party scenario. To avoid human fatigue for each participant, the
EEG data collection was limited to about 3–4 h over the experiment day.
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2.3.2. Recording the Data for Training the Decoder

First, the EEG was recorded with a continuous speech passage and used as the data to
train the decoder. The subjects listened to two short story narrations. The first story was
“lady or tiger”, narrated by a female speaker (duration = 632.734 s), and the second story
was “ambitious guest”, narrated by a male speaker (duration 615.285 s). Both speakers
were native American English speakers. Silent gaps (more than 300 ms in duration) were
removed from the recordings. The stories were presented at 65 dB SPL from the front
speaker without any noise. No question was asked before or after presenting these stimuli.
The EEG data were recorded while the subject was listening to the stimuli.

2.3.3. Recording the Data for Testing in the Three-Speaker Cocktail Party Scenario

We presented one target and two maskers to emulate a cocktail party scenario. The
stimuli were short passages with a duration of 38 to 45 s. Target and masker passages were
selected randomly from the Connected Speech Test (CST) [28] and Speech Intelligibility
Rating (SIR) [29] dataset. To remove the effect of the speaker gender, half of the trials had
a female target speaker and the other half had a male target speaker. For the trials with
a female target, maskers were male, and for the trials with a male target, maskers were
female. Three speaker configurations were examined for different permutations of targets
and masker locations using the speakers at −90, 0, and 90 azimuths. The stimuli were
presented at three different levels with fixed TMR. Targets were presented at 75, 65, and
55 dB SPL and maskers at 65, 55, and 45 dB SPL, respectively. A total of 18 combinations
(3 speaker configurations × 2 target genders × 3 speech levels) were randomly presented
to each subject as separate trials. At the beginning of each trial, an arrow appeared on the
monitor showing the location of the target speech that the subject should attend to. After
a one-second pause, the stimuli were presented. After finishing the presentation of each
trial, subjects had to respond to two questions about the target passage. The aim of these
questions was to keep the subject’s attention to the target speech.

2.3.4. EEG Based Speech Detection Accuracy

The details of the procedure for decoding the attended speech from the EEG signal
are presented in Appendix A. With the individualized linear decoder designed for each
subject, the speech envelope of the attended speech in the three speaker cocktail party test
was reconstructed from the EEG signal. Pearson correlation between reconstructed speech
envelope ŝ(t) and each stimulus envelope, target sT(t), two maskers sM1(t) and sM2(t),
was calculated and referred to as rT , rM1, and rM2, respectively. The stimulus with the
higher correlation with the reconstructed speech envelope was detected as the attended
speech. For example, if rT was greater than rM1 and rM2, the target speech was detected
as the attended speech. The number of trials in which the target stimulus was detected
as the attended speech over the total number of trials is referred to as EEG-based speech
detection accuracy. Figure 2 summarizes this procedure.
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3. Results
3.1. Behavioral Speech Recognition Score

As one of our goals was to investigate the spatial selective auditory attention in
electrical and acoustic hearing, we grouped our CI data into three hearing categories:
1. electrical hearing only (bilateral CIs + unilateral CI with no residual hearing in the
contralateral ear + bimodal CI when the HA is off), 2. acoustic hearing only (unilateral CIs
with residual hearing in the contralateral ear when CI is off + bimodal CI when CI is off),
and 3. electric + acoustic hearing (unilateral CIs with residual hearing in the contralateral
ear + bimodal CI). Moving forward, we use EH for the group of electrical hearing only,
AH for the group of acoustic hearing only, and EAH for the group of electric + acoustic
hearing. Among nine CI subjects, six subjects were in the EH group (five bilateral CI users,
one unilateral CI user who had CI in the right ear, and no residual hearing in the left ear),
but three subjects were in the EH and EAH group (two unilateral CIs and one bimodal CI).

The speech recognition scores were calculated as the number of correct words selected
by the subjects over the total number of words. The scores are represented in percentage
for the EH, AH, and EAH CI users in Figure 3a–c, respectively. In the EH category, the
speech recognition score decreased as the target sound level increased in a constant TMR.
In contrast, in the AH category, increasing the target speech level resulted in an increased
speech recognition score. In the EAH category, the speech recognition score decreased
by increasing the target level from 55 dB SPL to 65 dB SPL and increased by increasing
the target level from 65 dB SPL to 75 dB SPL. A one-way analysis of variance (ANOVA)
was conducted on the speech recognition score with a factor of the target level for each
group. The results showed that there was a significant main effect of the target level in EH
(F(2,2547) = 18.22, p < 0.01), AH (F(2,447) = 9.04, p < 0.01), and EAH (F(2,447) = 3.8, p = 0.02).
A pairwise comparison with Bonferroni adjustment showed that the speech recognition
score for the EH category was significantly higher when the target level was at 55 dB SPL
than that when the target level was at 65 and 75 dB SPL, and the speech recognition score
was significantly higher when the target level was at 65 dB SPL than that when the target
level was at 75 dB SPL. The pairwise comparison for the speech recognition score in the AH
category showed that the speech recognition score increased by increasing the target level.
The speech recognition score at 55 dB SPL target was significantly lower than the speech
recognition score at 65 and 75 dB SPL, but there was no significant difference between the
speech recognition score when the target level was 65 and 75 dB SPL. For the EAH category,
the speech recognition score at the 65 dB SPL target was significantly lower than that at the
75 dB SPL target. The asterisk (*) in Figure 3 shows the significant difference between the
speech recognition score at different target levels. The speech recognition scores for the
NH group were nearly equal across all three speech levels (Figure 3d). The ANOVA test
showed no significant effect of the target speech level on the speech recognition score for
NH subjects.
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3.2. EEG Based Speech Detection Accuracy

With the individualized decoder for each subject, the EEG data recorded in the three-
speaker cocktail party experiment was decoded to find the attended speech, as explained
in Section 2.3. The speech detection accuracy for different target speech levels is presented
in Figure 4a for CI subjects in the EH category, Figure 4b for AH category, and Figure 4c for
EAH category. The statistical analysis ANOVA showed a significant effect of the target level
on target detection accuracy in EH category. As Figure 4a depicts, by increasing the target
level (while keeping the TMR at a fixed level), the speech detection accuracy decreased.
The pairwise comparison with Bonferroni adjustment for the EH category showed that
the speech detection accuracy at 55 dB SPL target was significantly higher than that at
the 75 dB SPL target. The asterisk (*) in Figure 4 shows the significant difference in the
speech detection accuracy between different target levels. There was no effect of target
level on the speech detection accuracy in the AH and EAH categories. The speech detection
accuracy for different target levels is presented in Figure 4d for NH subjects. The results
show a decreasing pattern of the speech detection accuracy as the target level increased.
Despite the pattern, the ANOVA showed no significant effect of the target level on the
speech detection accuracy for NH subjects.
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3.3. Case Report for Individual Subjects

Considering significant variability in hearing modality and background among our CI
subjects and the small sample size, we are presenting the analysis outcome on a “case-by-
case” basis. Each CI subject’s level-dependent spatial hearing patterns were individually
demonstrated to be associated with their hearing characteristics. Subjects CI 5 and CI 8 did
not complete the physiological part of the experiment and are not included in the analysis.

3.3.1. Subject CI 1

CI 1 (75 years old male) is a bilateral CI user with no residual hearing in either ear
(Figure 5). He showed better speech recognition scores with bilateral hearing compared to
those with unilateral hearing with one of his CIs off. His scores were likely to be higher at the
lower target speech level (55 dB SPL) compared to the higher target speech level (75 dB SPL).
His spatial hearing scores were higher when speech was presented in the direction where his
CI was on.

Neural outcomes represented that higher neural tracking accuracy was associated
with a lower conversational level of the speech in both unilateral CI conditions. Speech
detection of neural tracking was the highest when the target speech was presented from 0◦

azimuth. This neural detection accuracy pattern is somewhat discrepant with his behavioral
outcome, where the evidence of directional benefits of CI is provided.
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3.3.2. Subject CI 2

CI 2 (40 years old female) is a prelingually deafened CI user in both ears (Figure 6). Her
speech recognition scores were nearly equal across the levels for bilateral conditions. On
the other hand, scores for the 75 dB SPL condition were significantly lower than scores for
55 and 65 dB SPL conditions when only one CI was used. A consistent trend of directional
benefits was observed when either left or right CI was on. In her overall neural outcomes,
clear patterns of level and directionality were not found.
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3.3.3. Subject CI 3

CI 3 (68 years old male) is a post-lingually deafened bilateral CI (Figure 7). In the
behavioral speech recognition test, he showed the advantage of bilateral hearing over
unilateral hearing. There was a level effect in which slightly higher scores were shown for
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the lower target speech level compared to the higher target speech level. A clear trend of
the directional benefit of CI is also observed.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 7. Speech recognition score and speech detection accuracy from EEG for CI 3. 

 
Figure 8. Speech recognition score and speech detection accuracy from EEG for CI 4. 

3.3.5. Subject CI 6 
CI 6 (67 years old male) was a unilateral (right) CI user with 70 dB HL of pure tone 

average (PTA) in his contralateral ear (Figure 9). The PTA is calculated by averaging the 

Figure 7. Speech recognition score and speech detection accuracy from EEG for CI 3.

In neural detection accuracy, higher EEG-based speech detection accuracies with lower
speech levels and closer directions to the target speech azimuth were observed. There were
few exceptions including the left CI condition showing better neural accuracy at 90◦ (right),
and the right CI condition showing a 0 point of neural accuracy at 65 dB SPL.

3.3.4. Subject CI 4

CI 4 (25 years old female) showed the advantage of bilateral hearing over unilateral
hearing at all three sound levels (Figure 8). By increasing the sound level, the speech recog-
nition score decreased. The spatial speech recognition score was higher at the azimuths
closer to the direction of the activated CI.

EEG results showed that except for the bilateral condition, speech detection accuracy
decreased as the target level increased. The pattern of speech detection accuracy based on
different target azimuths is not consistent with behavioral results. We expected to have
higher speech detection accuracy at the azimuths closer to the amplification side, but the
results show a decreasing pattern of speech detection accuracy as the target went from 90◦

to the −90◦, in the bilateral and left CI condition. The speech detection accuracy is less
than chance level (33%) in the right CI condition at all target azimuths.

3.3.5. Subject CI 6

CI 6 (67 years old male) was a unilateral (right) CI user with 70 dB HL of pure tone
average (PTA) in his contralateral ear (Figure 9). The PTA is calculated by averaging
the hearing threshold at 500 Hz, 1 kHz, and 2 kHz frequencies. He receives a significant
amount of electrical energy via his right ear CI and receives some amount of acoustic energy
through his left ear in conditions where CI is either on or off. Unlike the EH group (e.g., CI
1, CI 2, CI 3, and CI 4), speech recognition scores for this subject increased by increasing
the speech level in both CI-on and CI-off conditions, which shows taking advantage of
residual hearing in higher sound levels. His spatial hearing outcomes in CI-on condition
clearly indicated CI benefits in the right ear showing higher scores at the conditions where
speeches were presented from azimuths closer to the CI side.
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The level effect shown in the results of the EEG test was different from that of the
behavioral test. Spatial hearing outcomes showed some indications of CI benefits for the
right ear in CI-on condition, but they were not very systematic in the CI-off condition.
In the CI-off condition (where he relies only on the left ear), we expected to have higher
speech detection accuracy at 0◦ compared to 90◦. However, in Figure 9, the speech detection
accuracy at 90◦ is higher than that at 0◦.
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3.3.6. Subject CI 7

CI 7 (67 years old male) was a unilateral (right) CI user with 71.6 dB HL of PTA in his
contralateral ear (Figure 10). Thus, both CI 6 and CI 7 are similar in terms of their degree
of residual hearing and hearing modality. His speech recognition score was higher at a
higher presentation level of 75 dB in the CI-on condition as well as the CI-off condition.
Consistent with other individuals’ spatial hearing patterns, his spatial hearing tends to be
better in the direction that provides him with better audibility.
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Overall, neural tracking of CI 7 appeared to be consistent with his behavioral pattern
when his CI was on. A few exceptions, however, were found in the CI-off condition (EEG-
based speech detection accuracy for 65 dB SPL was lower than that for 55 dB SPL, and at
−90◦ it was lower than that at either 0◦ or 90◦).

3.3.7. Subject CI 9

CI 9 (77 years old male) was the sole bimodal subject of our study who used CI in
his right ear and HA in his left ear (Figure 11). These types of subjects are known to
receive a great benefit from their acoustic hearing via HA as well as CI. Our behavioral
results showed that his perceptual performance was higher when using CI compared to
HA. Bimodal benefits were shown in 55 dB SPL and 75 dB SPL conditions, but not in
65 dB SPL conditions. When CI was on, higher score was obtained at the softer target
speech level, but this effect disappeared with the addition of acoustic hearing. His spatial
hearing performance followed the general trend, showing higher scores in the direction
the amplification was placed.
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EEG outcome was not consistent with behavioral outcomes showing some nonsys-
tematic patterns as a function of the speech level and target direction. In contrast with
the behavioral results, in HA-on condition, the speech recognition score increased by in-
creasing the sound level. There is a clear directional pattern in CI-on condition, in which
higher EEG-based speech detection accuracy was acquired at the azimuths closer to the
hearing side.

4. Discussion

Our behavioral test results presented no statistical difference in NHs’ speech recog-
nition score under different conversational sound levels. However, we found that sound
level significantly affected CIs’ speech recognition score. The electrical dynamic range of
CIs differs from the dynamic range of NH; thus, the loudness that CI listeners perceive may
be different from that which NH listeners perceive. It is reasonable to assume that input
dynamic range for NH would be approximately 120 dB, considering the loudness comfort
NH listeners generally show. However, CIs substantially compress the acoustic dynamic
range into a much narrower electrical dynamic range in the system. The electrical dynamic
range varies from 10 to 80 dB depending on the signal processing strategy and CI manufac-
turer [30]. We infer that the compression applied at higher levels may distort the speech
recognition in CI users, which negatively affects their spatial selective auditory attention.

In the case of electrical hearing only (EH), the speech recognition score decreased by
increasing the sound level. Some studies showed that in a quiet condition, CI listeners’
speech recognition improves by increasing the speech level [31]. However, our previous
studies showed that increasing the speech level in the presence of noise at a constant SNR
degrades the perceived quality of speech by CI listeners [32,33]. It is generally reported
that CI users are more susceptible to noise than NH listeners when recognizing speech. We
conclude that in spatial hearing, it is more difficult for CI listeners to suppress the higher
masker level accompanied with the increased target level, which resulted in reduced spatial
selective auditory attention in the CI group. The CI listeners’ data in the acoustic-hearing-
only (EH) category (unilateral CI users with residual hearing in their non-implanted ear and
bimodal CI user when their CI was off) showed an improvement in their spatial selective
auditory attention with an increase in the sound level. It can be speculated that the negative
effect of increased masker levels is less than the positive effect of increased target levels in
the less audible listening situation. The electrical hearing seems more vulnerable to the
amount of noise even at the same TMR. In other words, the negative effect of increased
maskers’ level is perceptually greater than the advantage of the higher audibility of the
target. In the case of electric + acoustic hearing (EAH), the results show that the spatial
selective auditory attention with target level at 55 dB SPL relies more on electrical hearing
(see Figure 3c). By increasing the target level to 65 dB SPL, electrical hearing degraded,
while the improvement in the acoustic hearing was not enough to compensate the electrical
hearing degradation. Therefore, it resulted in decreased spatial selective auditory attention.
Increasing the target level to 75 dB SPL improved the acoustic hearing, which resulted in
listeners relying on acoustic hearing rather than electrical hearing.

To see the overall trend of spatial hearing ability according to the different target
and masker azimuth, we also examined each individual CI listener results as shown in
Figures 5–11. As expected, the results showed higher speech recognition scores at the target
azimuths that were closer to the side of amplification.

The group mean average for the electrophysiological results was consistent with the
behavioral results. For NH listeners, although the EEG-based speech detection accuracy
decreased with increasing sound level, the effect of the sound level was not statistically
significant. The effect of the sound level was significant for CIs in the EH category and
consistent with their behavioral results. There was no significant effect of level on EEG-
based speech detection accuracy for CIs in the AH and EAH categories. We should mention
that the number of trials included in the electrophysiological experiment was much less
than the trials included in the behavioral experiment. Due to the time-demanding nature
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of the EEG test, we had less repetition in trials for each condition. In addition, only the
data from three subjects were included in the AH and EAH groups. Thus, we may argue
that the data collected for these groups were not enough to show any significant effect of
the sound level.

For both NH and CI listeners, the EEG-based speech detection accuracy at some
speech levels and azimuths was around the chance level (33%) in the electrophysiological
experiment. One reason may be the difficulty of the task, as subjects were required to
attend to the target passage and suppress two competing maskers. It also may suggest
that the auditory attention detection approach used in this study is not robust enough to
detect the attended speech in the presence of two competing speeches. In previous studies
conducted to detect the attended speech through neural response [14,23–25,34,35], the
target sound was detected in two speaker cocktail party scenarios (one speaker as a target
and one speaker as a masker). In real-world scenarios, NH listeners are able to focus on the
target speech in the presence of several sources of noise. In the current paper, we examined
the neural entrainment to the speech envelope in a three-speaker cocktail party scenario.
The linear model used in this study was not able to detect the auditory attention at some
of the sound levels, probably due to the increased number of maskers. Other methods,
including non-linear models, should be investigated to better understand the selective
auditory attention in the presence of multiple maskers.

Individual subjects’ outcomes were independently demonstrated in the case study
report to better present the limited sample size group analysis. Individual factors associated
with diverse hearing conditions have influenced the outcomes that were not uniform
across the subjects. This study would provide a preliminary outcome and become a
steppingstone to control such individual variabilities in typical CI users. The variability
control is necessary to facilitate the data analysis in future studies.

The major limitations of this study were the small sample size and unbalanced number
of subjects in each hearing mode group. These were caused by a small available local pool
of CI population with different kinds of assisted/impaired hearing modes. The results from
the small sample size in each group may not necessarily be generalized to the specific group.
Additionally, the unbalanced number of participants in each group may result in a biased
conclusion. More extensive investigations with multicenter studies should be conducted
in future research to provide more concrete conclusions. The other limitation that can be
improved in future studies is the lack of balance between the number of behavioral and
electrophysiological trials. As was mentioned in the Method section, the number of EEG
trials has been reduced to avoid human fatigue. For future studies, the electrophysiological
experiment should be extended to several days, which would allow more repetition for
each sound level and spatial configuration.

5. Conclusions

This study examined the contribution of speech level on the spatial selective auditory
attention in acoustic and electrical hearing. The results for NH listeners showed that, at
a fixed TMR, changing the level of the target speech in the conversational-level range
will not affect selective auditory attention. However, the results for CI listeners with
“electrical hearing only” showed that increasing the speech level resulted in decreased
speech recognition scores. On the other hand, in the group of “acoustic hearing only”,
increasing the speech level resulted in the increased speech recognition score. Due to the
limited samples in each hearing group, the case-by-case results are reported. Our results
suggest that the loudness control should be ideally based on the listener’s hearing mode.
This work should be considered as a preliminary study attempting to investigate CI users’
selective auditory attention in the behavioral and electrophysiological approach and more
extensive and robust investigation should be made for future studies.
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Appendix A

To detect the auditory attention in the cocktail party scenario, we reconstructed the
attended speech envelope from an EEG signal. We needed a decoder that maps the speech
envelope to the corresponding EEG signal. Individualized decoder for each subject was
trained using the presented speech and recorded EEG signal in the training session. We
used mTRF toolbox (version 1.5) [36] to train the decoder and reconstruct the attended
speech envelope from the neural response.

The speech envelopes of the stimuli were extracted using the Hilbert transform, and
band pass was filtered to 0.3–30 Hz using MATLAB filtfilt function. To decrease the
processing time, speech envelopes were downsampled to 128 Hz and normalized to a
range of values between 0.0 and 1.0.

After preprocessing of the EEG signal recorded from 64 channels and removing the
artifacts using independent component analysis (ICA), EEG waves were band-pass filtered
to 0.3–30 Hz using Fieldtrip toolbox [37]. The filtered EEGs were downsampled to 128 Hz
and normalized to (0–1). All the implementations were in MATLAB 2018b.

Suppose that the linear mapping from the instantaneous neural response r(t, n),
sampled at times t = 1, . . . , T and at channel n, to the speech envelope s(t) is represented
as d(τ, n), which is the decoder that integrates the neural response over a range of time
lags τ. The linear convolution equation corresponding to this system can be expressed as:

ŝ(t) = ∑
n

∑
τ

r(t + τ, n)d(τ, n), (A1)

In Equation (A1), ŝ(t) is the reconstructed speech envelope. The cost function to
design the decoder is the MSE between s(t) and ŝ(t).

minε(t) = ∑
t
[s(t)− ŝ(t)]2, (A2)

which results in the following formula for decoder:

d =
(

RT R
)−1

RTs, (A3)

In the above equation, R represents the lagged time series of neural response matrix r.
If Rc contains all time lags [τmin, τmax] for channel c, then:

R = [R1 R2 · · · RN ], (A4)
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where:

Rc =



r(1− τmin, c) r(−τmin, c) · · · r(1, c) 0 · · · 0
...

... · · ·
... r(1, c) · · ·

...
...

... · · ·
...

... · · · 0
...

... · · ·
...

... · · · r(1, c)

r(T, c)
... · · ·

...
... · · ·

...

0 r(t, c) · · ·
...

... · · ·
...

... 0 · · ·
...

... · · ·
...

...
... · · ·

...
... · · ·

...
0 0 · · · r(T, c) r(T − 1, c) · · · r(T − τmax, c)



, (A5)

To avoid overfitting of the model to the training data, Tikhonov regularization is
applied on the optimization problem of Equation (A2), which results in:

d =
(

RT R + λI
)−1

RTs, (A6)

In the above equation, λ is the regularization parameter. To find the best λ, we
used leave-one-out cross-validation. The training data (speech stimuli and corresponding
EEG signal collected in training session) were split to K trials. The preliminary decoders

constructed from single trials would be d̃k =
(

RT
(k)R(k) + λI

)−1
RT
(k)S(k), where R(k) and

S(k) are the EEG response and stimuli of trial k (see Equation (A6)). The preliminary
decoders from all trials except trial k were averaged to define decoder dk, which decodes
trial k.

dk =
1

K− 1

K

∑
i = 1
i 6= k

d̃i k = 1, · · · , K (A7)

Using the decoders defined by Equation (A7) for each trial, the speech envelopes were
reconstructed. The Pearson correlation between the reconstructed speech envelope and
the original speech envelope is a criterion to evaluate the accuracy of the decoder. The λ
that resulted in maximum correlation averaged across K trials was selected to train the
decoder. Here, we split the training data of each subject into 20 trials and examined a range
of λ =

{
10−3, 10−2, · · · , 1011}.

Different CI users receive different signals from their CIs, based on the processing
strategies and specific artifacts caused by different RF transmission systems. Therefore, we
selected an individualized λ value for each CI user using each individual’s training data.
For NH listeners, we selected a common λ value of 105. The λ for each CI subject is shown
in Table 1.

Table 1. Selected λ for CI subjects.

Subject Number CI-1 CI-2 CI-3 CI-4 CI-6 CI-7 CI-9

λ 101 105 101 105 10−1 103 101
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