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Abstract

Despite improved outcomes in the past 30 years, less than half of all women diagnosed with epithelial ovarian cancer live
five years beyond their diagnosis. Although typically treated as a single disease, epithelial ovarian cancer includes several
distinct histological subtypes, such as papillary serous and endometrioid carcinomas. To address whether the morphological
differences seen in these carcinomas represent distinct characteristics at the molecular level we analyzed DNA methylation
patterns in 11 papillary serous tumors, 9 endometrioid ovarian tumors, 4 normal fallopian tube samples and 6 normal
endometrial tissues, plus 8 normal fallopian tube and 4 serous samples from TCGA. For comparison within the endometrioid
subtype we added 6 primary uterine endometrioid tumors and 5 endometrioid metastases from uterus to ovary. Data was
obtained from 27,578 CpG dinucleotides occurring in or near promoter regions of 14,495 genes. We identified 36 locations
with significant increases or decreases in methylation in comparisons of serous tumors and normal fallopian tube samples.
Moreover, unsupervised clustering techniques applied to all samples showed three major profiles comprising mostly normal
samples, serous tumors, and endometrioid tumors including ovarian, uterine and metastatic origins. The clustering analysis
identified 60 differentially methylated sites between the serous group and the normal group. An unrelated set of 25 serous
tumors validated the reproducibility of the methylation patterns. In contrast, .1,000 genes were differentially methylated
between endometrioid tumors and normal samples. This finding is consistent with a generalized regulatory disruption
caused by a methylator phenotype. Through DNA methylation analyses we have identified genes with known roles in
ovarian carcinoma etiology, whereas pathway analyses provided biological insight to the role of novel genes. Our finding of
differences between serous and endometrioid ovarian tumors indicates that intervention strategies could be developed to
specifically address subtypes of epithelial ovarian cancer.
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Introduction

Ovarian cancer has an incidence of 21,500 cases per year in the

United States and 204,000 worldwide, with an estimated annual

mortality of 125,000 women. The condition ranks as the 5th

leading cause of cancer-related deaths for women in the United

States; the high mortality rate is a consequence of the

asymptomatic nature of early-stage disease and the absence of a

reliable screening test. The majority of cases (75%) are diagnosed

at an advanced stage (III or IV) wherein the 5-year survival rate is

less than 30% [1].

Of the four major histopathologic subtypes, serous is the most

common, followed by endometrioid, mucinous and clear cell

types. These subtypes have distinctive gene expression profiles [2]

and are classified by virtue of their morphologic resemblance to

normal fallopian tube, endometrium, endocervix and endometrial

clear cells, respectively [3]. The resemblance between tumor

subtypes and distant tissues is consistent with models that propose

migration of precursor lesions from disparate origins, such as the

fallopian tube [4] or the mesothelial covering of the peritoneal

cavity [5]. For this reason, ovarian serous tumors (which resemble

Mullerian epithelia) can be legitimately compared to normal

fallopian tube (which is derived from Mullerian epithelia).

Nevertheless, the ovarian surface epithelial (OSE) layer [6] shares

its origin with epithelia of the endometrium (known as celomic

epithelium [7]) and remains a plausible alternative explanation for

‘‘de novo’’ tumorigenesis.

Like serous tumors, the origin of endometrioid tumors is

controversial [8], and progenitor cells have been proposed to

originate from non-ovarian sources, such as endometriosis [9].

Tumors with endometrioid histopathology are diagnosed in both

the uterus and ovary. They frequently co-occur, as synchronous
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primary tumors or metastases from uterus to ovary [10]. Whereas

molecular differences have been reported for dual primary tumors,

metastatic tumors are clonally identical [11].

Gene expression studies of ovarian tumors intended to detect

cancer-specific profiles have yielded modest success and limited

reproducibility [12,13,14,15]. However, mutational profiling

studies have yielded more consistent results, showing that both

serous and endometrioid tumors have aggressive, high-grade

subtypes [16,17,18] with mutations in the TP53 gene [19,20,21]

despite their obvious histological differences [16,17,18]. Low-

grade subtypes are most common in endometrioid tumors with

mutations predominantly occurring in WNT and PIK3CA

pathways [2].

In concert with gene expression and mutational profiles,

delineating the epigenome of tumor cells should reveal relation-

ships among samples reflecting common embryological origins,

similar histopathological outcomes, or shared mutational events.

In ovarian tumors, DNA methylation silences expression of critical

genes [22,23], and creates genetic haploinsufficiency [24], while

hypomethylation at other sites enables expression of normally

silenced genes. As proof of principle, site-specific patterns of DNA

methylation were recently used to distinguish four subtypes of

epithelial ovarian cancers, using a total of 1,505 target CpG loci

[25,26].

We hypothesized that DNA methylation patterns in ovarian

tumors would resemble cells from their putative tissue of origin,

with a small number of changes representing events associated

with malignancy, that uniquely represent each tumor subtype.

Moreover, we also hypothesized that uterine and ovarian

endometrioid tumors were related by pathogenic mechanisms,

which would be observed in DNA methylation patterns. To

address these ideas, we examined methylation profiles of 27,578

target CpG sites representing 14,495 genes in the human genome,

using DNA derived from serous and endometrioid ovarian tumors,

normal fallopian tube and normal endometrium, and primary and

metastatic endometrioid endometrial tumors. This large dataset

was analyzed using a supervised analysis followed by de novo

classification using unsupervised computational clustering. To

improve the strength of the epigenetic profiling technique, we

included raw methylation data from serous tumors and normal

fallopian tube generated through The Cancer Genome Atlas

(TCGA). These samples were analyzed using the same methyla-

tion platform, and performed by independent research laborato-

ries using independent tumor specimens.

Results

Experimental assay and design
We analyzed the DNA methylation status of genomic samples

using the Illumina Infinium platform. DNA was treated with

bisulfite to convert unmethylated cytosines to uracil, leaving

methylated cytosines unchanged. The hybridization reaction on

the HumanMethylation27 Illumina BeadChip provided signal

specific to the methylated and unmethylated states, using the

Illumina single base extension assay protocol [27]. The differential

hybridization of probes to methylated and unmethylated target

sites was tabulated as the fraction of the total signal that

corresponded to the methylated state. The initial sample set

represented various tissue and tumor types including normal

fallopian tube, normal endometrium, ovarian papillary serous

carcinoma, ovarian endometrioid carcinoma, and primary and

metastatic endometrial endometrioid carcinoma from 42 patients

(Table 1). Technical replicates indicated highly reproducible

results for the assay (Figure S1). In addition, we included data

from the same Illumina methylation platform for 12 additional

samples from the public database of The Cancer Genome Atlas

project (TCGA). This set comprised 8 control samples (normal

fallopian tube) and 4 tumor samples (ovarian serous), contributed

in a single batch of samples examined under consistent

experimental conditions from one data provider.

Bulk methylation
To assess gross changes in degree of methylation, we examined

aggregate methylation levels of all samples. Assay values are

reported as the proportion of fluorescence arising from the probe

for the methylated state, from 0 (all DNA unmethylated) to 1 (all

DNA methylated). Comparing all samples, the vast majority

showed consistent methylation profiles. Across the genome, most

assayed sites had methylation levels between 0 and 0.2, small

numbers of sites had levels between 0.2 and 0.8, and a slightly

larger number had levels of 0.8 to 1 (Figure 1).

In contrast, considering only the X-chromosome, single-copy

silencing by random X-inactivation was expected to produce a

methylation level of 0.5. The observed pattern showed a broad

peak centered at 0.5 for most samples, even though the tumor

samples had more extensive heterogeneity. Five serous tumor

samples showed a distinct profile, with many loci being

unmethylated (i.e., methylation level ,0.2), indicating either a

failure to maintain X-inactivation or copy number alterations with

Table 1. Experimental samples for data clustering and validation testing.

Sample Type Non-cancerous
Stage
1

Stage
2

Stage
3–4

Fallopian tube 4

Endometrium 6

Serous tumor 3 4 5

Ovarian endometrioid tumor 5 2 2

Endometrial endometrioid tumor, validation set 6

Ovarian metastases of endometrial tumor 5

TCGA Fallopian tube normal 8

TCGA serous tumor 4

Serous tumor, validation set 25

doi:10.1371/journal.pone.0032941.t001
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relative excess of the active X [28]. To assess whether this

observed variation was simply due to the small number of loci on

the X-chromosome, we also considered methylation levels on

chromosome 10, which had a similar number of probes. The

pattern for chromosome 10 resembled the pattern across all

autosomal loci, with high levels of similarity from sample to

sample.

Supervised analysis
We first considered whether the tumor subtypes (defined by

histopathology) corresponded to specific methylation profiles.

With the inclusion of the TCGA samples, 12 normal fallopian

tube samples and 16 ovarian serous tumors yielded sufficient

statistical power for a direct comparison. Probes with poor quality

control, high variability in the controls, or located on X or Y-

chromosomes were not considered (see Methods). Using a

Wilcoxon summed-rank test to identify sites that consistently

associated with prior classification, 36 were significant at p,0.05

after multiple-testing correction (14 at p,0.01; Table 2). Three

genes were identified as members of the canonical pathway for

ovarian cancer in an Ingenuity Pathway Analysis (IPA) (Table 2;

[29] [30] [31] [32]). Supervised analysis of the ovarian

endometrioid tumors against the fallopian tube or endometrial

controls was not performed due to small numbers of samples.

Unsupervised clustering
To address whether other sample divisions with shared

molecular phenotypes existed and to gain a broader picture of

the relationships between the sample types, we moved to

unsupervised clustering. Utilizing the complete set of 31 primary

tumor samples and 18 normal tissues (and excluding the 5

metastatic samples used for secondary analysis), we limited this

analysis to probes that were in the top 500 when ranked by

variance, as reported by Houseman et al. [33] to reduce the

dimensionality of the data. Results of multiple clustering

algorithms converged on the same interpretation of distinct

phenotypic groups (Figure S2). K-means clustering and partition-

ing using a b-mixture model designed for the data from this

platform [33] both strongly supported the existence of 3 primary

groups, roughly corresponding to control-type samples, serous

tumor-type samples, and endometrioid samples. Additional

analysis with hierarchical clustering (across multiple distance

metrics and linkage methods) strongly supported the control-type

and endometrial type clusters, and indicated the serous tumor-type

samples were an outgroup from the control samples, but was

inconsistent as to whether these samples formed a distinct

subgroup (Figure S2).

The consensus groupings, as shown in Figure 2, are marked

with a colored bar to indicate the normal-type, serous-type or

endometrioid-type. Notably, the control group contained normal

fallopian tube and normal endometrium, indicating a consistent

phenotype across both tissues within the set of featured probes.

The TCGA samples clustered with their identified sample types,

confirming the reproducibility and robustness of the results as

these tumors were obtained and classified at various institutions.

Exclusion of the TCGA samples from the analysis had relatively

small impact on the results, in which a marked division remained

between the endometrioid and serous or control samples; however,

only weak support remained for a subdivision of the serous-type

tumors from the control samples.

The cluster of endometrioid samples, including tumors from

both ovarian and uterine sites, displays a remarkably altered

profile, with methylation at numerous sites that are normally

unmethylated CpG islands, and a loss of methylation at sites that

are normally methylated. The extent and reproducibility of these

changes is strongly reminiscent of the methylator phenotypes

noted in other cancers [34] [35]. A methylator phenotype has

previously been proposed for endometrial endometrioid carcino-

ma, based on methylation of promoters of a few target genes [36],

but has not to our knowledge been described in a genome-level

survey or in ovarian cancer.

These data confirm the hypothesis that endometrioid type

tumors, whether at ovarian or uterine sites, share similarities at the

molecular level. To further address this finding, we analyzed five

ovarian metastases derived from primary endometrial tumors

using a nested log-likelihood-ratio test. This test addressed

consistency of clustering with the primary endometrioid samples

versus the combined serous tumors and controls, and secondarily

enabled classification within the serous or control groups when

necessary. Four of the five samples were strongly identified as

endometrioid-type, whereas the fifth was more similar to the

control samples (sample 54; Figure 2). The fifth sample does not

Figure 1. Bulk methylation levels across genomic loci. Frequency of methylation at all loci for a given level of methylation (range 0 to 1). Each
biological sample is represented as a single line; all non-metastatic samples were plotted. Respectively, panels from left to right contain all loci
(N = 27,561), X chromosome only (N = 1038), or chromosome 10 only (N = 1044).
doi:10.1371/journal.pone.0032941.g001
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appear grossly altered from the methylation of normal endometrial

tissue, indicating that the majority tumor phenotype is not

universal. This outlier may represent an uncommon subdivision

of endometrioid tumors, resulting from different underlying

pathology, however it does not represent a low-grade tumor

(Figure 2).

Assessment of primary tumors of all histopathologies also

identified infrequent outliers. Examples included endometrial

endometrioid samples 47 and 49, which clustered with normal

tissues and contributed to the 15% of samples that showed

discordant placement relative to their assigned histopathology

(grade 1 and grade not available, respectively; Figure 2). Four

ovarian serous tumors also clustered with normal tissues, showing

very limited changes in methylation relative to controls (grades 2

and 3). Given the phenotypic similarity of these samples to normal

controls, the biological underpinning of this tumor subset requires

further investigation. Additionally, one ovarian endometrioid

sample grouped with the serous tumors (sample 36, grade 2),

suggesting either a rare endometrioid subtype with a more

aggressive, serous-like profile, or mistyping of a poorly differen-

tiated sample.

Differential analysis of clusters
Given the three primary groupings provided by the unsuper-

vised clustering analysis, we wished to identify methylation loci

most predictive of membership in a particular class. We repeated

the Wilcoxon summed-rank test used in the supervised analysis,

after removing from consideration the 500 probes used in

clustering. Comparing the serous-type cluster with the control-

type cluster, 35 probes remained significant at p,0.01 after

stringent Bonferroni correction for multiple tests and 60 remained

at p,0.05 (Table 3). The results showed a mixture of hyper- and

hypomethylation relative to the controls (Figure S3). An IPA

analysis identified known biomarkers for ovarian cancer among

this list (Figures S4 and S5). Two genes with recorded relevance to

DNA methylation were identified, including DNMT3A, a DNA

methyltransferase gene and RB1. APC (from the beta-catenin

pathway), RBAK1 (an RB1 interaction partner), MAPK15 and

MAP2K2 kinases, and histone deacetylase HDAC1 were also on the

list (Table 3). Although the supervised and unsupervised analyses

utilized different comparator sets, the gene lists contained 10

overlapping entries (Table 3).

Considering the endometrioid-cluster versus the control cluster,

we determined that the number and degree of differentially

methylated sites increased by more than an order of magnitude.

For example, 954 probes were significant at p,0.01. The sheer

number of hypermethylated sites suggests an underlying defect in

DNA methylation pathways, and limits the utility of considering

altered methylation of individual genes.

Validation of differential methylation
To explore whether our set of 60 differentially methylated sites

in serous tumors was reproducible, we assessed the methylation of

25 additional samples that were independent of the original

analysis set. All were typed as ovarian serous carcinoma and

analyzed independently (independent in ascertainment and in time

of analysis) from the originals. For each site and for each validation

sample, we assessed whether the methylation more closely

resembled the normal sample cluster or the serous tumor sample

cluster. Of the 25 tumor samples, 4 closely resembled the

methylation pattern of normal samples, seven were altered at 21

or more of the 60 loci, and 14 samples showed the altered pattern

at 40 or more of the 60 loci (Figure 3).

Evaluation of published methylation events
Our analysis of differential methylation focused on changes that

defined characteristics of each group and were shared among all or

nearly all samples. Many important changes in methylation state,

previously reported in the literature, have lower prevalence and

are not directly identified by our approach. When we assessed our

samples for patterns of known methylation, our data were

consistent with published results. For instance, BRCA1 was

hypermethylated in 2 of 16 (12.5%) of ovarian serous samples.

The tumor suppressor RASSF1A showed evidence of complete

methylation in 11 tumors, and single-copy methylation in 4 more

(31% of serous, and 60% of endometrioid). These changes, and

Table 2. Differential methylation of genes in supervised
analysis, p,0.05.

Gene Chr Pos
Control
Median

Serous
Median P-value Probe

HSPA2 14 64075923 0.25 0.08 0.0016 cg01520924

CLIC3 9 139010829 0.18 0.06 0.0016 cg02189785

CBFB 16 65620188 0.26 0.10 0.0016 cg06766367

FAM3C 7 120823965 0.31 0.17 0.0016 cg14175438

PIP5K2C 12 56270986 0.15 0.07 0.0016 cg25133016

CHAC1 15 39032145 0.86 0.77 0.0016 cg26065841

XLF 2 219733988 0.26 0.16 0.0033 cg04587910

SPINT2* 19 43446608 0.14 0.06 0.0033 cg13301014

SNTB1 8 121894651 0.83 0.36 0.0033 cg14992108

LOC387882 12 104249242 0.13 0.06 0.0033 cg26940261

PARP3 3 51951707 0.71 0.43 0.0066 cg12554573

DSCR6 21 37299808 0.83 0.91 0.0066 cg12564962

EIF4E 4 100070234 0.29 0.10 0.0066 cg15633390

MRGPRX4 11 18149936 0.59 0.36 0.0066 cg16446783

LGP1 17 37600206 0.25 0.10 0.012 cg08468689

PDPK1 16 2527081 0.80 0.44 0.012 cg14444710

PTGES* 9 131555630 0.76 0.59 0.012 cg17683775

MGC4399 1 9521654 0.82 0.73 0.012 cg18783781

CD58 1 116914377 0.27 0.09 0.012 cg21039631

FLJ00060 19 59739533 0.80 0.51 0.02 cg03602500

CDKN3 14 53933994 0.13 0.05 0.02 cg03724882

GIT1 17 24941283 0.31 0.17 0.02 cg05379350

PLEKHF1 19 34847706 0.49 0.26 0.02 cg05512099

DPP8 15 63597257 0.11 0.04 0.02 cg06993413

FLJ22555 2 200527315 0.77 0.56 0.02 cg15761233

CSRP3 11 19180211 0.72 0.43 0.02 cg19216731

HDAC1* 1 32529881 0.37 0.20 0.02 cg24468890

HUNK 21 32166623 0.16 0.07 0.02 cg25048564

SOCS3 17 73866797 0.25 0.02 0.02 cg27637521

ZNF154 19 62912474 0.09 0.56 0.031 cg08668790

FGF18* 5 170778215 0.62 0.47 0.031 cg15699524

S100A8 1 151630204 0.44 0.15 0.031 cg24898863

TLCD1 17 24076955 0.14 0.05 0.049 cg07195577

C7orf34 7 142346962 0.25 0.13 0.049 cg10896774

NFYB 12 103056507 0.21 0.12 0.049 cg10954182

DNAJC14 12 54509148 0.22 0.12 0.049 cg11380624

*appears in IPA canonical pathway for ovarian cancer.
doi:10.1371/journal.pone.0032941.t002
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others, are likely to be important transformative events, but are

restricted to smaller subsets of the samples.

Gene ontology & pathway analyses
To tie these results to the literature on ovarian cancer, we

performed a gene ontology (GO) analysis and an IPA analysis of

the differentially methylated genes from the cluster-based

comparison of serous tumors versus controls. The genes

corresponding to the methylated loci in our list showed a

statistically significant enrichment for GO terms involving

regulation of cell cycle (Table 4). The top two networks identified

by IPA included ‘‘Cell Cycle and Cell Morphology’’ and

‘‘Inflammatory Response’’ with network scores of 24 and 23,

respectively. The network score is based on a hypergeometric

distribution and is calculated with the right-tailed Fisher’s Exact

Test, implying that there is a 1 in 1023 or 1024 probability of either

network occurring from a random list of genes (Table 4, Figure

S4,S5). Notably, differentially methylated genes had a large

Figure 2. Methylation status at top 500 most variable probes. Heatmap of methylation levels; blue = 0.0, black = 0.5, yellow = 1.0. At left, a
representative sample of hierarchical clustering, and color blocks giving the consensus groups. Six columns on the right give sample characteristics:
number; tumor (T) or normal (N); location in ovary (O), fallopian tube (F), or endometrium (E); histology of serous (S) or endometrioid (O); grade (1–3;
where symbols used are ‘-’ for normals and ‘NA’ for information not available.) and at far right, dots for public TCGA data. Five samples at bottom are
ovarian metastases from endometrial endometrioid tumors, excluded from the initial analysis and clustering.
doi:10.1371/journal.pone.0032941.g002
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Table 3. Differential methylation of genes in cluster-based analysis, p,0.05.

Gene Chr Pos
Control
Median

Serous
Median P-value Probe

IPA
Network

RBAK 7 5051647 0.27 0.51 5.6e-05 cg06914598 1

MOS 8 57188855 0.10 0.34 9.9e-05 cg22411207 1

GSTP1 11 67107075 0.81 0.41 0.00016 cg05244766 1

PLEKHF1* 19 34847706 0.49 0.24 0.00027 cg05512099

MAPK15 8 144869951 0.74 0.46 0.00027 cg11695358 2

FLJ22555* 2 200527315 0.73 0.52 0.00027 cg15761233

HTATIP2 11 20341661 0.53 0.29 0.00027 cg18788940

S100A8* 1 151630113 0.51 0.20 0.00027 cg20070090 2

AHR 7 17304501 0.55 0.24 0.00042 cg13676215 1

NNAT 20 35583164 0.65 0.86 0.00042 cg23566503

IL6 7 22732680 0.20 0.10 0.00063 cg01770232 2

LGP1* 17 37600206 0.22 0.08 0.00063 cg08468689

OR10J1 1 157675831 0.52 0.25 0.00065 cg15700197

PDPK1* 16 2527081 0.77 0.36 0.00094 cg14444710 1

GPR123 10 134734167 0.54 0.28 0.00094 cg21607649 2

CCT6A 7 56085732 0.56 0.25 0.00094 cg23839680 1

FLJ00060* 19 59739533 0.82 0.43 0.0014 cg03602500

BTNL2 6 32482732 0.68 0.32 0.0014 cg25391023 2

S100A8 1 151630204 0.43 0.12 0.002 cg24898863 2

ZNF540 19 42733963 0.23 0.47 0.002 cg27389185

LILRA5 19 59516087 0.40 0.26 0.0027 cg06392096

PARP3* 3 51951707 0.67 0.39 0.0027 cg12554573

MAP2K2 19 4074852 0.16 0.30 0.0027 cg24748945 1

AIF1 6 31691437 0.16 0.34 0.0038 cg21440587 2

WBP11 12 14848787 0.65 0.43 0.0038 cg22833175

CYP4F11 19 15906788 0.39 0.18 0.0053 cg03190825

FLJ44674 16 47935998 0.78 0.40 0.0053 cg13897627

DPP6 7 154059965 0.69 0.40 0.0053 cg26738880

MGC15523 17 76884479 0.46 0.22 0.0071 cg00466249

PRAME 22 21231596 0.47 0.27 0.0071 cg05208878 2

RB1 13 47793174 0.51 0.65 0.0071 cg19254235 1

DCAKD 17 40495243 0.53 0.31 0.0096 cg09214551

MRGPRX4* 11 18149936 0.59 0.33 0.0096 cg16446783

KPNA1 3 123716824 0.15 0.05 0.0096 cg25564800

LOC126248 19 38314931 0.58 0.84 0.0096 cg26687173

M-RIP 17 16886972 0.35 0.53 0.013 cg02889982

CACNG3 16 24173204 0.68 0.40 0.013 cg04721098

CBFB* 16 65620188 0.26 0.10 0.013 cg06766367

C1QC 1 22841927 0.33 0.11 0.013 cg11393848

INSL4 9 5221360 0.81 0.55 0.013 cg19297688 2

APC 5 112101585 0.07 0.10 0.013 cg24332422

MYH1 17 10360224 0.74 0.49 0.017 cg00134787

LUC7L 16 220047 0.70 0.49 0.017 cg07080946

KRTAP13-4 21 30724700 0.71 0.47 0.017 cg14062083

C18orf37 18 31332717 0.85 0.76 0.017 cg27318281

C11orf38 11 125154608 0.53 0.30 0.022 cg07747336

CCDC47 17 59203744 0.44 0.18 0.022 cg20131968

DNAJC14* 12 54509148 0.21 0.09 0.029 cg11380624

NFS1 20 33752164 0.90 0.85 0.029 cg14963897
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presence in these networks, interacting with important genes in

ovarian tumor development including AKT, PI3K, VEGF, and

estrogen receptor.

Discussion

This work represents one of the largest studies of methylation

using several normal and tumor subtypes of gynecologic cancers.

We initially examined the methylation status of 27,578 sites for 49

samples including normal fallopian tube and endometrium, serous

ovarian cancer, endometrioid ovarian cancer, primary endome-

trioid endometrial cancer, and ovarian metastasis of endometrial

cancer. Regardless of tumor or normal status, all samples showed

similar profiles in the overall distribution of methylated sites.

Although we did not find global shifts toward hyper- or

hypomethylation across the assayed samples, a subset of samples

showed drastically altered methylation for the X chromosome,

consistent with loss of the inactive X chromosome, amplification of

the remaining active X, or both [28]. Examples of aneuploidy,

including the autosomes, are common in high-grade serous

ovarian cancer and are not directly ascertained by this analysis,

but influence the proportional methylation levels at each locus.

Therefore we removed all probes on the X-chromosome from our

dataset.

Our data confirm that different histological subtypes have

distinct patterns of methylation. Moreover, ovarian serous tumors

are more similar to normal ovarian and endometrial tissues than to

ovarian or endometrial endometrioid tumors, which are highly

similar to each other and display drastic and consistent changes in

their methylation. This result is consistent with a methylator

phenotype and in agreement with a model of ovarian endome-

trioid tumors arising from endometriosis, where the cells ultimately

derive from a uterine lineage. Endometrioid tumors from the

ovary and uterus share several common somatic mutations [6],

and these data support a similar pathogenic mechanism. The

marked differences in methylation profiles between histological

subtypes underscore the importance of characterizing tumors at

the molecular level in order to develop tailored treatment

strategies.

For the identification of differentially methylated loci, we used

known labels and blinded (data-directed) subgroups. Known labels

identified a few dozen genes, some with characterized roles in

ovarian cancer. However, given the stringent bar for statistical

significance in testing very large numbers of sites, we found that a

few outliers within a group could obscure important patterns. By

clustering data in an unbiased approach, we found similar

methylation patterns among normal samples and some tumor

outliers, indicating that current histologic subtyping strategies may

miss important molecular distinctions between tumors. This point

was further supported in metastatic endometrioid tumors, which

also contained an outlier that looked like a normal sample in its

methylation patterns. Our clustering approach clearly identified a

set of 500 genes that could separate the majority of serous samples

from endometrioid samples and normal controls. Although the

clustering was distinctive for the three main classes of samples, its

use precluded a statistical evaluation of the significance of genes

within the set. Nevertheless, the increased power of clustering 49

samples identified an additional 60 loci that were independent of

the clustering set and segregated samples into normal or serous

Table 3. Cont.

Gene Chr Pos
Control
Median

Serous
Median P-value Probe

IPA
Network

DNMT3A 2 25419299 0.74 0.57 0.029 cg21629895 1

LOC284739 20 62139546 0.40 0.25 0.029 cg22940152

PTAFR 1 28375495 0.76 0.60 0.029 cg24354652 2

ANKMY2 7 16653296 0.38 0.17 0.037 cg25778479

TXNL4A 18 75850362 0.73 0.51 0.048 cg02955504

PCDHGA12 5 140790321 0.21 0.60 0.048 cg07730329

EDG4 19 19600820 0.34 0.13 0.048 cg10521852

STRN3 14 30566605 0.77 0.46 0.048 cg15301694 1

DCC 18 49292066 0.79 0.72 0.048 cg18572014 1

FGF22 19 591346 0.60 0.41 0.048 cg22189019

UNC5CL 6 41115500 0.78 0.56 0.048 cg22346765 1

1 = IPA network for Cell Cycle and Cell Morphology, 2 = IPA network for Inflammatory Response.
*appears in supervised and unsupervised lists.
doi:10.1371/journal.pone.0032941.t003

Figure 3. Classification of 25 additional serous tumors.
Methylation at 60 loci was used to evaluate an independent set of
serous tumors. Each row represents an individual sample; each column
corresponds to one of the previously identified differentially methylated
sites. An empty box indicates methylation more similar to the control
cluster (not necessarily unmethylated); a filled black box indicates
methylation more similar to the cluster of ovarian serous tumors.
Samples are ordered by the number of sites having methylation
resembling the serous tumor group.
doi:10.1371/journal.pone.0032941.g003

DNA Methylation in Ovarian and Endometrial Cancers

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e32941



subtypes with statistical significance. Several of these genes

correspond to networks implicated in the development of ovarian

cancer (Figures S4 and S5). We investigated the overlap between

gene lists of statistically significant genes identified in the

supervised and unsupervised approaches and found 10 genes.

Notably, the kinase PDPK1 is in the PI3K signaling pathway

involved in serous ovarian cancer [37]. PDPK1 and PLEKHF1

share a pleckstrin homology domain, capable of binding inositol

polyphosphates. PARP3 is involved in DNA repair and genome

stability. Given the reproducible signal from these genes regardless

of method, we conclude that uncharacterized genes in this list are

strongly implicated in ovarian tumor development and require

additional characterization.

A limitation of our analysis is that we did not screen the tumor

DNA for gene mutations or ascertain gene expression levels;

nevertheless, we found that RB1 and RBAK are differentially

methylated between the papillary serous and normal fallopian tube

samples. RB1 was recently reported by TCGA to be involved in

serous tumor etiology, through mutation or deletion in 67% of

tumors [38]. The involvement of the RB1 pathway is consistent

with concurrent Rb1 and Tp53 mutation in mice, which simulates

characteristics of aggressive serous ovarian cancers, including

formation of ascites and metastasis [39]. Although we did not find

significant overlap with the list of methylated genes in serous

tumors published by TCGA, this discordance may be due to

methodological issues. For example, we do not limit the gene list to

candidates that become hypermethylated and found many that

lose methylation. Furthermore, we required that scoring be

consistent among all tumors. TCGA limits scoring to the top

10% of tumors. Additionally, we did not limit results to genes that

become silenced, as methylation has been shown to cause both

positive and negative regulatory outcomes [40].

Our analysis of methylation profiles in ovarian and endometrial

tumors indicates value in characterizing tumors at the molecular

level. The methylator phenotype indicates an aberration in the

molecular function of enzymes regulating DNA methylation levels

and suggests that a molecule acting upstream of the candidate genes

is responsible for the cascade of events leading to tumor

development. Studies in hepatocellular carcinoma have identified

mutations in the beta-catenin gene in association with a methylator

phenotype. Mutations in beta-catenin are also common in

endometrial tumors [1], and suggest follow-up experiments to

assess a direct relationship to DNA methylation in endometrioid

tumors. Moreover, therapeutic strategies aimed at preventing

extensive methylation (such as 5-aza-29-deoxycytidine) should be

evaluated in the context of tumors with a methylator phenotype.

The consistency of the methylation profiles, despite independent

sample preparation and data collection for TCGA samples, was

used to validate and extend our results. These data show that

sample batch effects are minimal and do not disrupt data

consistency. Our data provide a foundation for future genomic

and genetic analyses of endometrial and serous tumors for

diagnostic and treatment applications. Notably, our results show

that methylation levels in serous tumors are less consistent than

endometrioid tumors, but increase and decrease in a target-

dependent way. In contrast endometrioid tumors show extensive

changes that are likely linked to a common upstream mechanism

gone awry.

Materials and Methods

Sample collection
Ovarian, endometrial and fallopian tube tissues were received

from the Magee-Womens Hospital Tissue Procurement Program

(Pittsburgh, PA). The tissues were snap frozen after surgery and

stored at 280uC. Genomic DNA was isolated using the Puregene

Blood Kit (Qiagen) following the manufacturer’s instructions.

DNA quality was assessed using a SmartSpec Plus spectropho-

tometer (BioRad, Hercules, CA).

Endometrial normal samples
Tissue samples were provided by the Cooperative Human

Tissue Network, which is funded by the National Cancer Institute.

Samples are from post-menopausal individuals with atrophic

endometrium and were obtained from routine hysterectomy or

pelvic resection for non-endometrial cancers. DNA was isolated

following the protocol of Trizol reagent (Invitrogen).

The use of human subject material was approved by the

University of Pittsburgh and the Office of Human Subjects

Research at the NIH.

TCGA data
TCGA data were downloaded at the time of this analysis from

the data portal (http://tcga-data.nci.nih.gov/tcga/dataAccess

Table 4. Gene ontology analysis, genes with differential methylation.

Molecular Function Gene Count
Total
Genes P-value Overlapping Gene set

GO:0005515 – protein binding 29 9005 0.00129 AHR APC CBFB CCT6A CDC47 DCC DNAJC14
EDG4 FGF22 GSTP1 HTATIP2 IL6 INSL4 KPNA1
LUC7L M-RIP MAP2K2 MAPK15 MYH1 NFS1
PARP3 PCDHGA12 PDPK1 PRAME RB1 S100A8
STRN3 UNC5CL WBP11

GO:0045786 – negative regulation of progression
through cell cycle

5 225 0.00486 AIFL APC DCC HTATIP2 RB1

GO:0007049 – cell cycle 8 839 0.00527 AHR AIFL APC DCC HTATIP2 RB1 STRN3
TXN14A

GO:0006954 –inflammatory response 6 291 0.0016 AIFL C1QC CYP4F11 IL6 PTAFR S100A8

GO:0009611 – response to wounding 6 423 0.00527 AIFL C1QC CYP4F11 IL6 PTAFR S100A8

GO:0006950 – response to stress 9 1222 0.0083 AHR AIFL APC C1QC CYP4F11 IL6 PARP3 PTAFR
S100A8

Uses Benjamini-Hochberg multiple testing correction.
doi:10.1371/journal.pone.0032941.t004
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Matrix.htm). Data from the same batch contained unmatched

serous tumors and normal fallopian tube samples. Normals:

TCGA-01-0639-11A-01D-0383-05, TCGA-01-0631-11A-01D-0383-

05, TCGA-01-0642-11A-02D-0383-05, TCGA-01-0628-11A-01D-

0383-05, TCGA-01-0637-11A-01D-0383-05, TCGA-01-0633-11A-

01D-0383-05, TCGA-01-0630-11A-01D-0383-05, TCGA-01-0636-

11A-01D-0383-05. Tumors: TCGA-09-0367-01A-01D-0359-05,

TCGA-09-0365-01A-02D-0359-05, TCGA-09-0366-01A-01D-0359-

05, TCGA-09-0369-01A-01D-0359-05.

DNA preparation
DNA was treated with bisulfite according to the protocol of

Zymo Research (Irvine, CA), with slight modification. One half

microgram of DNA was used for each conversion reaction. The

hybridization reaction was performed according to the Human-

Methylation27 Illumina BeadChip protocol and scanned using an

Illumina iScan System.

Methylation analysis
Experimental confidence levels were recorded as p-value

estimates for each methylation ratio measurement; all readings

with a corresponding p-value .0.05 were censored. These low-

confidence values were not uniformly distributed in the data,

therefore a few loci had an unusually large number of exclusions;

we chose to completely eliminate from consideration any probe

location at which values for ten or more samples were unavailable.

This step eliminated 61 loci.

Supervised analysis
We performed a comparison between normal fallopian tube

(control) and ovarian serous tumors. We excluded probes with

poor quality control metrics from the Illumina analysis software

(61 probes), and probes that had high variability within the control

samples (those with variance in the top 5%, 1,379 probes). We also

censored all data from the X and Y chromosomes (1,092 probes).

Some overlap in these sets resulted in eliminating a total of

2,489 loci. Differential analysis by Wilcoxon summed-rank test

was performed with the R function wilcox.test, followed by

Bonferroni correction for the 25,102 loci tested.

Clustering
Unsupervised clustering was performed in R. To select a subset

of loci to use, all primary samples were pooled, and the loci were

ranked by sample variance. The number of probes considered was

determined empirically, based on bootstrap support for clustering

results obtained for data sets of 50, 100, 250, or 500 probes. Based

on apparent stability of results with 250 or more probes, the top

500 probes were used for all clustering analyses. Model-based top-

down clustering was conducted with the b-mixture model

described in Houseman, 2008 [33]. K-means analysis was done

with the kmeans function, using within-group sum-of-squares to

select the number of clusters. Hierarchical clustering analysis used

the pvclust package, with the average and complete linkage

methods, and the Euclidean, Manhattan, and correlation distance

metrics.

To create a classifier from the clustering results, a beta

distribution was estimated for each of the 500 loci used for

clustering. These distributions were estimated separately for each

of four groups of samples: the endometrioid-type tumor cluster,

the serous-type tumor cluster, the control-type cluster, and a

cluster including both the control-type and serous-type tumor

samples. These groupings allowed a nested binary decision first

between endometrioid-type and all other samples, and then a

second division between the serous tumor and control clusters.

The test metric was calculated as the log of the ratio of probability

densities at the observed methylation level for the new sample,

summed over all 500 loci.

Differential analysis
In a pairwise comparison of a tumor cluster versus the control-

type cluster, we selected cases showing consistent signal in the

controls and alteration in the tumors. We again excluded probes

with poor quality, high variability in controls, and sex chromo-

some location; we also excluded all probes used in clustering for

the definition of classes (total: 2812). Differential analysis was again

done with Wilcoxon summed-rank test, correction for 24,766

independent tests.

Validation of differential methylation
For each probe in the set of differentially methylated sites, a

threshold was chosen that maximized the discrimination between

the previously identified control and serous clusters, minimizing

the total number of classification errors (false positives and false

negatives). 25 additional samples from ovarian serous tumors were

analyzed for DNA methylation as described above, and were

assessed for which group they were classified with at each of the

differential sites.

Supporting Information

Figure S1 Comparison of methylation intensity plots
from independent replicates and samples. Technical

replicates of methylation signals in normal fallopian tube,

endometrial tumors or ovarian metastases from primary endome-

trial samples, with best linear fit.

(TIF)

Figure S2 Clustering results for hierarchical and non-
hierarchical methods. At top, the tree shows the result of top-

down partitioning under a beta-mixture model. Below, the six

trees show results of hierarchical clustering under either complete

linkage (middle row) or average linkage (bottom row), for each of 3

distance metrics. For each method, color bocks beneath the tree

show the correspondence to the consensus clusters, with the

control-type cluster in blue, the serous-type cluster in black, and

the endometrioid cluster in red. For hierarchical methods, black

dots on tree nodes indicate $95% confidence in that grouping

under bootstrap analysis.

(EPS)

Figure S3 Box plot graph of differentially methylated
loci. Each differentially methylated gene, listed from top to

bottom by p-value is represented by a box plot for the methylation

in the control cluster (black) and the methylation in the serous

tumor cluster (red).

(EPS)

Figure S4 IPA network for Cell Cycle and Cell Mor-
phology. Differentially methylated genes participating in the

network are colored red with increasing intensity representing

smaller p-values. Shapes of molecules indicate distinct molecular

functions. Arrows represent direct and indirect interactions.

Designations for biomarkers are highlighted in green.

(TIFF)

Figure S5 IPA network for Inflammatory Response.
Differentially methylated genes participating in the network are

colored red with increasing intensity representing smaller p-values.

Shapes of molecules indicate distinct molecular functions. Arrows
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represent direct and indirect interactions. Designations for

biomarkers are highlighted in green.

(TIFF)
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