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ABSTRACT 32 

Influenza-associated pulmonary aspergillosis (IAPA) is a severe complication of influenza 33 

infection that occurs in critically ill patients and results in higher mortality compared to 34 

influenza infection alone.  Interleukin-17 (IL-17) and the Type 17 immune signaling pathway 35 

cytokine family are recognized for their pivotal role in fostering protective immunity against 36 

various pathogens. In this study, we investigate the role of IL-17 and Type 17 immune 37 

signaling components during IAPA. Wild-type mice were challenged with influenza A H1N1 38 

(Flu) and then exposed to Aspergillus fumigatus ATCC42202 resting conidia on day 6 post-39 

influenza infection, followed by the quantification of cytokines and chemokines at 48 hours 40 

post-fungal infection. Gene and protein expression levels revealed that IL-17 and Type 17 41 

immune cytokines and antimicrobial peptides are downregulated during IAPA compared to 42 

mice singularly infected solely with A. fumigatus. Restoration of Type 17 immunity was not 43 

sufficient to provide protection against the increased fungal burden observed during IAPA. 44 

These findings contrast those observed during post-influenza bacterial super-infection, in 45 

which restoration of Type 17 immune signaling protects against exacerbation seen during 46 

super-infection. Our study highlights the need for future studies to understand the immune 47 

mechanisms that increase susceptibility to fungal infection. 48 

 49 
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 51 

Importance 52 

IAPA significantly elevates the risk of mortality in patients with severe influenza. Type-17 53 

immunity is critical to host defense during fungal infections and, therefore, vital to 54 

understand its role during IAPA.  The observations in this study reveal that Type 17 immunity 55 

is impaired during IAPA, potentially increasing susceptibility to secondary infection with 56 
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Aspergillus fumigatus. However, restoration of IL-17 signaling alone is not sufficient to 57 

reduce fungal burden in our murine IAPA model. These observations differ from those 58 

observed in post-influenza bacterial super-infections, suggesting that the mechanisms 59 

underlying viral-fungal super-infection are different than those that underly viral-bacterial 60 

super-infection. By elucidating the complex interactions between the host immune system, 61 

influenza, and A. fumigatus, these findings are vital for developing strategies to enhance 62 

immune responses and improve survival rates during IAPA. 63 

 64 

INTRODUCTION 65 

Influenza-associated pulmonary aspergillosis (IAPA) is a severe complication of influenza 66 

infection that occurs in critically ill patients and results in higher mortality compared to 67 

influenza infection alone [1]. The pathology of IAPA manifests through invasive growth of  68 

Aspergillus fumigatus within the lungs during influenza infection [2]. Influenza virus 69 

damages the respiratory epithelium, compromising the barrier function and allowing 70 

opportunistic fungi such as A. fumigatus to invade and colonize the lung tissue. The 71 

dysregulated immune state of the host, caused by the viral infection, provides an optimal 72 

environment for fungal growth and dissemination. 73 

The interleukin-17 (IL-17) cytokine family is a pivotal component in mediating protective 74 

immunity against various pathogens [3]. IL-17, primarily produced by a subset of T helper 75 

cells known as Th17 cells, has been implicated in the immune response against extracellular 76 

pathogens. IL-17 exerts its immunomodulatory effects by promoting the synthesis of pro-77 

inflammatory molecules, including cytokines, chemokines, and antimicrobial peptides. These 78 

molecules collectively facilitate the recruitment and activation of neutrophils and other 79 

immune effectors to sites of infection, thereby augmenting the host defense against invading 80 

pathogens [4].  81 
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Despite the well-established role of IL-17 in immunity against various pathogens, its specific 82 

involvement in the context of IAPA remains understudied. Therefore, understanding the 83 

immune response in this context is vital for improving therapeutic strategies and patient 84 

outcomes. Our current study investigates the role of IL-17 and IL-17-related cytokines in 85 

IAPA, employing a murine model to delineate their impact on disease pathogenesis and 86 

immune responses. Our observation sheds light on the complex host immune system that 87 

occurs during IAPA, aiming to uncover novel therapeutic avenues and enhance patient 88 

outcomes in managing IAPA. 89 

MATERIALS AND METHODS 90 

Animals: Six to eight-week-old male C57BL/6 mice were purchased from Taconic Farms 91 

(Germantown, NY). The mice were kept in a pathogen-free environment and co-housed in the 92 

same facility before the commencement of the studies. All animal studies were performed 93 

according to the protocol for the care and use of animals sanctioned by the University of 94 

Pittsburgh Institutional Animal Care and Use Committee. All the studies used age- and sex- 95 

matched mice.  96 

 97 

Pathogens and superinfection model: Influenza A/PR/8/34 H1N1 was propagated in 98 

chicken eggs as previously described [5] or by using Madin-Darby canine kidney (MDCK) 99 

cells. The cells were maintained in DMEM with 10% FBS (Bio-Techne, Minneapolis, MN), 100 

penicillin (100 U/ml), streptomycin (100 ug/ml) (Invitrogen, Waltham, MA). The cells were 101 

washed with PBS, and infected 0.001 MOI of influenza virus A/Puerto Rico/8/1934 (H1N1) 102 

in DMEM with 0.2% bovine serum albumin (Invitrogen, Waltham, MA), and 2 μg/ml of L-103 

tosylamido-2-phenyl ethyl chloromethyl ketone (TPCK) (Sigma-Aldrich, MO). The virus 104 

containing supernatant was harvested after 72 hours and the viral titer was determined by 105 

standard plaque assay. Mice were infected with 100 PFU of influenza A/PR/8/34 H1N1 (in 50 106 
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μl sterile PBS) from a frozen stock or control PBS by oropharyngeal aspiration. Infected mice 107 

were incubated for 6 days, at which time mice received 2.5 × 107 conidia of A. fumigatus  108 

ATCC42202 inoculum or PBS control. At 48 hours post-fungal infection, all the mice were 109 

euthanized to harvest lungs for further studies. 110 

 111 
Lung inflammation analysis: After harvesting, mouse lungs were lavaged with 1 ml of 112 

sterile PBS to perform inflammatory cell differential counts. The upper lobe of the right lung 113 

was homogenized in sterile PBS for counting fungal colonies and cytokine analysis, 114 

conducted either with Lincoplex (Millipore, MO, USA) or ELISA assays (R&D Systems, 115 

MN, USA), following the manufacturer’s guidelines. The middle and lower lobes of the right 116 

lung were snap-frozen and then homogenized under liquid nitrogen for RNA extraction using 117 

the RNA isolation Kit (Agilent Technologies, TX, USA). The RNA analysis was carried out 118 

via standard RT-qPCR employing Bio-Rad SSO advanced Universal Probes Supermix (CA, 119 

USA). Gene expression analysis was performed from two replicate samples. It was calculated 120 

using the formula ΔCq=2Cq target gene-Cq reference gene, where the quantitation cycle (Cq) was the 121 

average Cq value of the target gene minus the HPRT reference gene's mean.  122 

 123 

Flow cytometry: Flow cytometry analysis was conducted on the whole left lung. After 124 

harvesting, the left lung underwent collagenase digestion, following a previously described 125 

protocol [6]. The resulting single-cell preparations were in vitro stimulated with PMA (50 126 

ng/ml) and ionomycin (750 ng/ml) for four h at 37 °C. Subsequently, cells were stained with 127 

antibodies, fixed and permeabilized, and stained with fluorescent-conjugated antibodies (BD 128 

Biosciences). The analysis used a Cytek Aurora™ CS System (Cytek® Biosciences 129 

Bethesda, MD, USA). 130 

 131 

RESULTS  132 
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Type 17 cytokines are inhibited during IAPA 133 

We have previously published a murine model of IAPA that demonstrates increased morbidity 134 

in mice co-infected with influenza and A. fumigatus [7]. Type 17 immunity plays a critical 135 

role in host defense against A. fumigatus and other fungal pathogens [8-12]. IL-17 and other 136 

Type 17 immune cytokines also play a critical role in the development of bacterial super-137 

infection during influenza [13-14]. Therefore, we hypothesized that the Type 17 immune 138 

response would play an essential role during IAPA. To model this hypothesis, C57BL/6J male 139 

mice were challenged with a sublethal dose of influenza A PR/8/34 H1N1 (100 PFU) for 6 140 

days, followed by 2.5 × 107
�A. fumigatus (ATCC strain 42202) conidia, and after 48 hours, 141 

fungal burden was assessed. Mice super-infected with influenza and A. fumigatus had 142 

decreased expression of IL-17, IL-22, IL-23, and IL-1β compared to those infected with A. 143 

fumigatus alone (Fig 1A). This downregulation could potentially contribute to increased 144 

morbidity, mortality, and fungal burden compared to singular infection with A. fumigatus 145 

alone. In addition to the gene expression changes, protein expression analysis also showed a 146 

decreased production of IL-17, IL-22, IL-23, and IL-1β proteins in super-infected mice (Fig 147 

1B).  148 

 149 

Decreased IL-17-producing γδ T cells during IAPA 150 

Flow cytometry analysis was conducted to quantify IL-17-producing T cells in our model. We 151 

measured IL17+ CD4+ T and γδ T cells in our model due to their well-established role as 152 

primary producers of IL-17. We observed a notable decrease in the total number of IL-17 153 

producing γδ T cells in super-infected mice compared to singular A. fumigatus infection (Fig 154 

1C). Comparatively, we observed no difference in the abundance of IL17+ CD4+ T cells 155 

between the different groups (Fig 1C). When interpreting these results, it is important to 156 

consider the timing of mouse harvesting post- A. fumigatus infection. Specifically, the 157 
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analysis was conducted at a 48-hour time point post-infection. At this early stage, the immune 158 

response is still evolving, with distinct subsets of immune cells playing varying roles. In 159 

particular, it is noted that there were more innate γδ T cells present at this time point, with T 160 

cells potentially infiltrating at later stages of infection. 161 

 162 

Reduced expression of IL-17/IL-22 associated antimicrobial peptides in IAPA 163 

As IL-17 and IL-22 are distinct lineages of Type 17 cells [15], we studied their effector 164 

function by examining gene expression levels of IL-17- and IL-22- associated antimicrobial 165 

peptides in our model. The expression levels of Reg3β, Reg3γ, and Lcn2 were significantly 166 

reduced in super-infected mice compared to those infected solely with A. fumigatus (Fig 1D). 167 

This reduction of IL-17- and IL-22- associated antimicrobial peptides may play a role in 168 

fungal clearance during IAPA.  169 

 170 

Restoration of Type 17 immunity does not enhance fungal clearance during IAPA 171 

With the observation that Type 17 cytokines and antimicrobial peptides were significantly 172 

downregulated during IAPA compared to A. fumigatus alone, we hypothesized that their 173 

restoration could provide protection during IAPA. To test this hypothesis, we overexpressed 174 

IL-17 proposing that it would rescue Type-17 immunity and enhance fungal clearance. 175 

Overexpression of IL-17 significantly upregulated the levels of IL-17a mRNA (Fig 2B) and 176 

downstream inflammatory mediators TNF� and CXCL1 during IAPA (Fig 2C) [16,17]; 177 

however, fungal burden remained unchanged (Fig 2A). Interestingly, the total number of 178 

inflammatory cells in the bronchoalveolar lavage fluid and the total numbers of neutrophils 179 

and macrophages measured by cytospin differential also remained unchanged with 180 

upregulation of Type 17 immunity (Fig S1). Additionally, we administered murine 181 

recombinant IL-17 protein during IAPA and fungal burden was unchanged (Fig S2). Next, we 182 
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restored components of the Type 17 immune signaling pathway that are both upstream and 183 

downstream of IL-17 to determine effects on fungal clearance. Since both IL-1β and IL-23 184 

are known to induce IL-17 production from γδ T cell [18], and we observed decreased 185 

production during IAPA (Fig 1A-B), we administered IL-1β and IL-23+IL-1β together for 186 

synergistic effects during IAPA. There was a significant increase of IL-17 mRNA in the mice 187 

that received exogenous IL-1β and IL-23/IL-1β (Fig 2E); however, fungal burden remained 188 

unchanged (Fig 2D). Additionally, IL-1β and IL-23+IL-1β did not alter IL-22 mRNA 189 

expression (Fig 2E). Super-infected mice were administered either with Reg3β or Reg3γ to 190 

explore potential therapeutic interventions. Although both these peptide levels have been 191 

reduced in super-infected mice, neither changed fungal clearance during IAPA (Fig 2F). 192 

Additionally, we observed no difference in the total cell count of immune cells in 193 

bronchoalveolar lavage fluid (Fig S3). Collectively, these results indicate that restoration of 194 

IL-17 signaling is not sufficient to restore fungal clearance during IAPA. These findings 195 

suggest the involvement of mechanisms beyond Type 17 inhibition causing decreased fungal 196 

clearance during IAPA and highlight the complexity of IAPA pathogenesis. 197 

 198 

DISCUSSION 199 

Although viral-fungal co-infections are associated with high mortality, limited data exists 200 

regarding pathophysiology and lung immunology. Influenza and A. fumigatus have 201 

individually been studied due to their clinical significance; however, the synergy and 202 

complexities that arise when these pathogens co-exist within the same host remain poorly 203 

understood. Invasive pulmonary aspergillosis was classically considered a disease of 204 

immunocompromised patients; however, recent clinical observations have reported invasive 205 

pulmonary aspergillosis following influenza infection (IAPA) in immunocompetent patients 206 

[19]. The increased risk of developing aspergillosis in patients with preceding influenza can 207 
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be partially attributed to viral-induced epithelial disruption, the first line of host defense 208 

against fungal infections. However, recent evidence suggests that second (phagocytosis and 209 

the killing of Aspergillus conidia by phagocytes) and third lines (extracellular mechanisms, 210 

mediated by neutrophils, to kill the Aspergillus) of the antifungal host responses are also 211 

impaired in patients with IAPA [1,20]. IAPA has also been documented to provoke a severe 212 

inflammatory response, resulting in a cytokine storm within lung tissue [21]. IAPA has been 213 

described for decades and has been increasingly recognized since the 2009 H1N1 influenza 214 

pandemic. Notably, Aspergillus species are also implicated in causing super-infection during 215 

SARS-CoV-2 (COVID-19) infections [22,23], underscoring the importance of studying viral-216 

fungal super-infections. Additionally, studies suggest that the hyperinflammatory responses 217 

driven by systemic cytokines in COVID-19 patients also contribute to CAPA [24].  218 

The Type 17 cytokine family is recognized for its pivotal role in fostering protective 219 

immunity against a spectrum of pathogens [25]. Previous research has substantiated the 220 

involvement of IL-17 in the context of viral-bacterial superinfections [13]. The IL-17 221 

pathway has also promoted Aspergillus clearance within pulmonary tissues [8-10]. 222 

Mechanistically, the protective role for IL-17 is mediated by the recruitment of neutrophils 223 

through chemokine signaling and the production of antimicrobial peptides (AMP) production 224 

[26].  This study aims to delineate the specific roles of IL-17 and Type 17 immune-associated 225 

cytokines and chemokines in IAPA.  226 

Our results demonstrate that preceding influenza infection impairs Type17 immunity 227 

during IAPA. Both gene expression and protein quantification of key Type 17 immune 228 

cytokines, particularly IL-17 and IL-22, are decreased during IAPA compared to singular 229 

infection. IL-17, a pro-inflammatory cytokine, plays an essential role in fungal infections by 230 

recruiting neutrophils and other immune cells to the site of infection and by inducing the 231 

production of antimicrobial peptides [27]. Additionally, IL-17 synergistically collaborates 232 
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with IL-22 for a robust immune response against fungal infection [28]. The synergistic action 233 

of IL-17 and IL-22 is crucial for a robust immune response, and their inhibition can lead to a 234 

compromised ability to control fungal infections. Decreased IL-17 production was also seen 235 

by Lee et al., using a similar murine model of IAPA; however, we also show a reduction in 236 

other Type 17-immune associated cytokines and antimicrobial peptides [29]. IL-1β, a pro-237 

inflammatory cytokine critical to Type 17 immunity, is reduced in super-infection compared 238 

to singular A. fumigatus challenge. IL-1β has also been reported to induce neutrophils and 239 

macrophages recruitment to lungs during microbial invasion [7] and stimulates endothelial 240 

adhesion molecules, different cytokines and chemokines, and the Th17 adaptive immune 241 

response [30]. Our results align with the previous findings of downregulation of IL1B that 242 

was observed in humans during IAPA [20]. Furthermore, in our murine model of IAPA, the 243 

impaired production of IL-17 and IL-22 is also associated with reduced levels of 244 

antimicrobial peptides, weakening the host's defense mechanisms. These findings highlight 245 

that the downregulation of Type 17 immunity during IAPA compromises the host's defense 246 

mechanisms and thereby increasing susceptibility to Aspergillus infections. 247 

Despite the observed reduction in Type 17 immunity during IAPA, restoration of 248 

various components of the IL-17 signaling pathway, both upstream and downstream of IL-17, 249 

did not lead to improved fungal clearance. In contrast to prior studies that showed restoration 250 

of Type 17 immune pathway components rescued bacterial clearance during post-influenza 251 

bacterial super-infection [13,14,31], the current study indicates that restoration of IL-17 252 

signaling alone is not sufficient to reduce fungal burden in a murine IAPA model. IL-17 may 253 

play a protective role but not a restorative role during IAPA. Notably, the immune response is 254 

dynamic during infection and augmentation of Type 17 signaling at other time points during 255 

IAPA may produce different results. Interestingly, downregulation of IL-1β in our mouse 256 

model is consistent with the findings in human patients with IAPA versus influenza alone 257 
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[20]. This consistency between our findings in mice and human patients strengthens the 258 

validity of our results and suggests that the observed decrease in cytokines is a robust effect 259 

that is relevant across species. Importantly, these studies show that immune regulation during 260 

post-influenza fungal super-infection and post-influenza bacterial super-infection are not 261 

driven by the same mechanisms. It underscores the need for additional studies to understand 262 

the immune mechanisms that increase susceptibility to fungal infection during influenza and 263 

how delineation of the specific cell types and immune pathways that are necessary for fungal 264 

host defense during viral infection may lead to future therapeutics.  265 
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FIGURE LEGENDS 408 

Figure 1: Type 17 immune pathway is downregulated during influenza-associated 409 

pulmonary aspergillosis (IAPA). WT mice were infected with influenza A H1N1 PR/8/34 on 410 

day 0 and subsequently challenged with 2.5 × 107 aspergillus fumigatus (AF) at 6 dpii. Lung 411 

samples were collected at 48 h post-AF challenge. (A) IL-17 and related pro-inflammatory 412 

cytokine gene expression quantified by RT-qPCR, (B) Protein levels of IL-17-related cytokines 413 

quantified using Lincoplex assay or ELISA, (C) Flow cytometry analysis of IL-17-producing 414 

cells, CD4+ IL-17+ T cells and γδ T cells, (D) IL-17/IL-22-associated antimicrobial peptide gene 415 

expression quantified by RT-qPCR. Data were compiled from two independent experiments and 416 

are presented as means ± SEM, with statistical significance marked as *p < 0.05, ** p < 0.005, 417 

and *** p < 0.0005 by unpaired student’s T-test. 418 

 419 

Figure 2: Restoration of Type 17 immune signaling is not sufficient to provide protection 420 

during IAPA. WT mice were infected with influenza A H1N1 PR/8/34 on day 0 and 421 

subsequently challenged with 2.5 × 107 aspergillus fumigatus (AF) at 6 dpii. Lung samples were 422 

collected at 48 h post-AF challenge. (A-C) Mice were administered IL-17 expressing adenovirus 423 

(IL-17) or control adenovirus during IAPA and (A) fungal burden measured by CFU, (B) IL-17a 424 

gene expression quantified by RT-qPCR, and (C) TNF� and CXCL1 cytokines measured by 425 

ELISA. (D-E) Mice were administered IL-1β or IL-1β+IL-23 murine recombinant protein during 426 

IAPA and (D) fungal burden measured by CFU, (E) IL-17a and IL-22 gene expression quantified 427 

by RT-qPCR. (F) Mice were administered Reg3β or Reg3γ murine recombinant proteins during 428 

IAPA and fungal burden measured by CFU. Data were compiled from two independent 429 

experiments and are presented as means ± SEM, with statistical significance marked as *p < 0.05, 430 

** p < 0.005, and **** p < 0.0001 by unpaired student’s T-test.  431 

 432 
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Figure 1: Type 17 immune pathway is downregulated during influenza-associated 
pulmonary aspergillosis (IAPA). WT mice were infected with influenza A H1N1 PR/8/34 on 
day 0 and subsequently challenged with 2.5 × 107 aspergillus fumigatus (AF) at 6 dpii. Lung 
samples were collected at 48 h post-AF challenge. (A) IL-17 and related pro-inflammatory 
cytokine gene expression quantified by RT-qPCR, (B) Protein levels of IL-17-related cytokines 
quantified using Lincoplex assay or ELISA, (C) Flow cytometry analysis of IL-17-producing 
cells, CD4+ IL-17+ T cells and γδ T cells, (D) IL-17/IL-22-associated antimicrobial peptide gene 
expression quantified by RT-qPCR. Data were compiled from two independent experiments and 
are presented as means ± SEM, with statistical significance marked as *p < 0.05, ** p < 0.005, 
and *** p < 0.0005 by unpaired student’s T-test. 
 

CD4
+ IL

17
+

γδ
T
+  IL

17
+

0.0

2.5

5.0

25

50

75

100

To
ta

l C
el

ls
 L

u
n

g
 

(1
 x

 1
0^

5/
m

l)

Flu

AF

Flu/AF

nsns

Reg
3β

Reg
3γ

LCN2

CAMP

S10
0A

8

S10
0A

9
0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
E

xp
re

ss
io

n Flu

AF

Flu/AF

ns

nsns nsns

nsns

IL-17 IL-22 IL-23 IL-1ß
0

10

20

30

40

R
el

at
iv

e 
E

xp
re

ss
io

n Flu

AF

Flu/AF

IL-17 IL-22 IL-23 IL-1ß
0

200

400

2500

5000

7500

10000

p
g

/m
l

Flu

AF

Flu/AF

ns

A B

C D

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.07.01.601559doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.01.601559
http://creativecommons.org/licenses/by-nd/4.0/


 
 
Figure 2: Restoration of Type 17 immune signaling is not sufficient to provide protection 
during IAPA. WT mice were infected with influenza A H1N1 PR/8/34 on day 0 and 
subsequently challenged with 2.5 × 107 aspergillus fumigatus (AF) at 6 dpii. Lung samples were 
collected at 48 h post-AF challenge. (A-C) Mice were administered IL-17 expressing adenovirus 
(IL-17) or control adenovirus during IAPA and (A) fungal burden measured by CFU, (B) IL-17a 
gene expression quantified by RT-qPCR, and (C) TNF� and CXCL1 cytokines measured by 
ELISA. (D-E) Mice were administered IL-1β or IL-1β+IL-23 murine recombinant protein during 
IAPA and (D) fungal burden measured by CFU, (E) IL-17a and IL-22 gene expression quantified 
by RT-qPCR. (F) Mice were administered Reg3β or Reg3γ murine recombinant proteins during 
IAPA and fungal burden measured by CFU. Data were compiled from two independent 
experiments and are presented as means ± SEM, with statistical significance marked as *p < 0.05, 
** p < 0.005, and **** p < 0.0001 by unpaired student’s T-test.  
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