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Although mounting evidence suggests that the microbiome has a tremendous influence on intractable disease, the relationship
between circulating microbial extracellular vesicles (EVs) and respiratory disease remains unexplored. Here, we developed
predictive diagnostic models for COPD, asthma, and lung cancer by applying machine learning to microbial EV metagenomes
isolated from patient serum and coded by their accumulated taxonomic hierarchy. All models demonstrated high predictive
strength with mean AUC values ranging from 0.93 to 0.99 with various important features at the genus and phylum levels.
Application of the clinical models in mice showed that various foods reduced high-fat diet-associated asthma and lung cancer risk,
while COPD was minimally affected. In conclusion, this study offers a novel methodology for respiratory disease prediction and
highlights the utility of serum microbial EVs as data-rich features for noninvasive diagnosis.
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INTRODUCTION
The incidence of chronic obstructive pulmonary disease (COPD)
has been steadily increasing, and the disease accounted for 3.0
million deaths in 2016, becoming the third most common global
cause of death according to the World Health Organization1.
COPD is a particularly urgent public health threat in countries such
as South Korea with long-term exposure to airborne particulate
matter and a high prevalence of smoking, especially among men2.
Asthma is one of the most common noncommunicable diseases in
the world, and although less deadly than COPD, asthma
contributed 24.8 million DALYs (disability adjusted life years) in
20163. Chronic respiratory tract inflammation can induce carcino-
genic activity, such as DNA damage, mutations, inactivation of
tumor suppressor genes, and apoptosis evasion, which leads to
increased lung cancer risk4–6. Therefore, it is imperative to
establish accurate predictive methods for COPD, asthma, and
lung cancer for the early treatment, prevention and reduction of
the respiratory disease burden.
The human microbiome accounts for over 99% of the genomic

material in our bodies, and microbial protein-encoding genes are
360 times more abundant than human protein-encoding genes7.
Massive global efforts have been launched in the past decade to
understand the underlying relationship between our bacterial
counterparts and human health. Mounting evidence supports the
tremendous influence our microbiome has on health and disease,
with roles in metabolism, immune modulation, and pathogen
protection among other functions8,9. However, dysbiotic

microbiota composition and activity have been associated with
a variety of diseases, including metabolic syndrome, immune
disorder, and cancer10–12.
Recently, interest has shifted from assessing the composition of

the microbiome to understanding the functional roles it plays in
human health. An emerging functional component of the
microbiome is the role of microbial extracellular vesicles (EVs) in
systemic microbiome activity. As awareness of the significant role
EVs play in interkingdom intercellular transport and communica-
tion has risen, recent attention has focused on the influence of
microbial EVs on health and disease. Microbial EVs are nanosized
vesicles approximately 100 nm in diameter that are involved in
cell-to-cell communication and deliver microbial components,
including DNA, RNA, proteins, and lipids, throughout the body13.
The influential role of microbial EVs on human health has

become increasingly apparent over the past decade, with recent
research highlighting the differentially protective and harmful
effects of microbial EVs on health. For example, while inhalation of
Staphylococcus aureus EVs has been shown to induce neutrophilic
pulmonary inflammation14, systemic injection of various bacterial
EVs was reported to induce a powerful antitumour response in the
lungs of mice injected with metastatic carcinoma and melanoma
cells15. Furthermore, metagenomic analysis of bacterial EVs has
revealed differential proportions of bacterial EVs between a variety
of diseases and healthy controls16–18. As microbial EVs can enter
the circulation through the epithelial cells lining the gut and other
barriers that bacteria are unable to bypass, circulating microbial
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EVs offer an ideal diagnostic target to holistically monitor systemic
microbiome activity.
Here, we sought to develop novel predictive models for COPD,

asthma, and lung cancer risk assessment through artificial
intelligence (AI) modeling of respiratory patient-derived serum
microbial EV metagenomic data. Furthermore, we tested these
diagnostic models in mice to determine any dietary supplements
capable of reducing high-fat diet (HFD)-associated COPD, asthma,
and lung cancer risk. The results of this study establish the strong
potential of serum microbial EVs as an accurate, noninvasive data
source for respiratory disease diagnosis.

MATERIALS AND METHODS
Subjects and serum sample collection
A total of 1825 Korean COPD patients (n= 93), asthma patients (n= 454),
lung cancer patients (n= 283), and healthy control subjects (n= 995) were
enrolled from Konkuk University Medical Center (Seoul), Asan Medical
Center (Seoul), Samsung Medical Center (Seoul), Dankook University
Hospital (Cheonan) and Inje University Haeundae Paik Hospital (Busan)
from 2017 to 2020. Each COPD and asthma clinical subject showed severe
COPD or asthma symptoms, respectively, leading them to visit the Konkuk
University Medical Center or Asan Medical Center for treatment. Lung
cancer patients enrolled from Dankook University Hospital and Samsung
Medical Center were verified to be currently diagnosed with lung cancer.
Control subjects were screened through a general health examination at
Haeundae Paik Hospital. The present study was approved by the
Institutional Review Boards of Asan Medical Center (IRB No. 2014-0360),
Dankook University Hospital (IRB No. 2014-01-002-016), Inje University
Haeundae Paik Hospital (IRB No. 129792-2015-064), Konkuk University
Medical Center (IRB No. KUH1010338), and Samsung Medical Center (IRB
No. 2013-10-112-001 and 2018-03-130-001). All methods were conducted
in accordance with the approved guidelines, and informed consent was
obtained from all clinical subjects.

Microbial EV DNA extraction and sequencing
All collected human serum samples were transferred to serum separator
tubes (SSTs), and EVs in the serum were extracted using a DNeasy Blood &
Tissue Kit (QIAGEN, Germany) after centrifugation, filtering, and boiling as
previously described19. The extracted EV DNA in each sample was
quantified using QIAxpert (QIAGEN, Germany). Isolated microbial genomic
DNA was amplified as previously described by targeting the V3-V4
hypervariable regions of the 16S rDNA gene19. The libraries were prepared
using PCR products and quantified using a QIAxpert system (QIAGEN,
Germany). After quantification, all amplicons were sequenced using a
MiSeq (Illumina, USA) instrument.

Taxonomic assignment of microbial EVs
Taxonomic assignment was performed by the profiling program MDx-Pro ver.
2 (MD Healthcare, Korea). Briefly, paired-end reads were trimmed and merged
using Cutadapt version 1.1.6 and CASPER, respectively. High-quality sequen-
cing reads were obtained by discarding sequences with read lengths below
350 and above 550 bp and with Phred quality scores below 20. Operational
taxonomic units (OTUs) were clustered using the VSEARCH de novo clustering
method with a 97% similarity threshold. Subsequently, taxonomic assignment
was conducted against the Silva 132 sequence database under default
parameters. If clusters could not be assigned at the genus level due to
insufficient taxonomic information in the database, the taxon was assigned at
the next highest level, as indicated in parentheses. Brackets around the taxon
name represent an unverified, suggested taxonomic assignment based
primarily on whole-genome phylogeny. Finally, samples were filtered to
remove those with fewer than 1000 OTUs for use in downstream analysis.

Data coding through taxonomic hierarchal accumulation
Prior to use as features for the AI models, we employed a novel taxonomic
hierarchal accumulation method to give weight to imprecisely classified
genera through their verified higher-level taxonomy while simultaneously
reducing the influence of zero-inflation in the microbiome relative
abundance data. First, assigned species were summarized to their
respective genus levels, and all abundance values were scaled by log2.
Next, the sum of taxa abundance values in each sample was set to one to
represent the relative abundance of each OTU. Finally, the taxonomic

values from the genus to kingdom levels were accumulated from all
samples using the following formula:
VACCUMULATION= VG+ (k1*VF)+ (k2*VO)+ (k3*VC)+ (k4*VP)+ (k5*VK)
VACCUMULATION: Accumulated value of a genus
VG: Relative abundance of a genus
VO/C/P/K: Sum of VG for genus’s higher taxonomy (order, class, phylum,
kingdom)
ki= 10–(1+ i)

The accumulated taxonomic values of the sequences obtained from the
microbial EVs in all patient serum samples were calculated by the above
formula and used for downstream disease-predictive analysis.

Machine-learning (ML) algorithm for the prediction of
respiratory diseases
After sample filtering, 1513 serum microbial EV taxa were selected as
features for respiratory disease model development. Five ML methods
were applied to the control and disease group samples for asthma, COPD,
and lung cancer: a generalized linear model (GLM) without feature
selection, a GLM with feature selection, a gradient boosting machine
(GBM), an artificial neural network (ANN), and a GBM+ ANN ensemble
model. The GLM without feature selection incorporated all 1513 serum
microbial EV taxa features in the model and was created using the stats
basic package in R (version 3.6.3). The GLM with feature selection
implemented a Wilcoxon test to filter out features with Bonferroni adjusted
p values lower than 0.05. For the GBM, we set the GradientBoostingRe-
gressor of the scikit-learn package (version 0.21.3) to learning_rate= 0.01,
n_estimators= 3000, max_depth= 10. For the ANN model, the loss
function=mean square error (MSE) function, activation function= relu,
optimizer= RMSProp, and epoch= 200 were set using the Keras package,
to which the 5-layer modeling algorithm applied with L1 regularization
was applied. All 1513 data features were incorporated in the GBM and ANN
methods, and the ensemble method incorporated the average value of
outputs from the GBM and ANN methods. To overcome the limitations
caused by overfitting, cross-validation was applied with the data randomly
split into train-test sets at a 7:3 ratio for 30 iterations. The training datasets
were used for model training, and the test sets were used for validation.
Finally, feature importance was determined by implementing permutative
feature importance analysis for 30 iterations using the eli5 package
(version 0.10.1) in Python.

In vivo animal study
A total of 180 female C57BL/6 mice were obtained from OrientBio Korea
(Sungnam, Korea) at the age of 6 weeks. Mice were housed at a constant
temperature (22° ± 2°), humidity (50% ± 5%), and photoperiod (08:00 to
20:00) with 5 mice per individually ventilated cage (IVC). After the
allowance of 1 week for the mice to adjust to their new environment, each
cage was randomly assigned to one of 36 dietary groups: normal chow diet
(NCD), HFD, and HFD plus lotus root flower, sesame oil, balloon flower root
extract, rich soybean paste powder, mungbean powder, glutinous rice
flour, rice grain syrup, black garlic extract, Korean pancake powder,
colovita, Rubus schizostylus Leveille, Safflower extract, onion extract,
Kakadu plum powder, brown rice oil, ginger powder, pear extract, rice
powder, propolis spray, MSG, black herbal tea, propolis, honey, sorghum
powder, acacia honey, oriental raisin nut extract, red ginseng extract,
buckwheat powder, kelp powder, shark cartilage calcium, shiitake powder,
turmeric powder, mealworm oil, and policosanol. The NCD consisted of
normal laboratory rodent chow (Cat. No. 38057; Purina, Seongnam, Korea).
The HFD feed was obtained from Research Diets (Cat. No. D12492; New
Brunswick, NJ, USA) and was composed of 60% fat, 20% protein, and 20%
carbohydrates. Supplemental functional foods were all purchased from the
local market and added to the drinking water at a 2% ratio (2 g per 100mL
of water) and alternated with regular drinking water every 12 h. After
4 weeks of the HFD or HFD+ Supplement dietary conditions, mice were
sacrificed, and 0.5 mL of serum was collected from the heart. Mouse serum
samples were processed as described above for NGS sequencing of
circulating EVs, and respiratory disease prediction values for asthma, COPD,
and lung cancer were calculated based on the ensemble algorithms
developed in this study. All animal experiments were approved by the
Review Board of Chung-Ang University (Approval No. 2018-00057).

Statistical analysis
The alpha diversity of the variance within each clinical sample was
assessed using the a-diversity test in the phyloseq package in R for the
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total observed OTUs, richness estimates Chao1 and ACE (abundance-based
coverage estimator), and the Shannon and Simpson diversity indices.
Dimension reduction was conducted to assess the beta diversity between
clinical samples based on the UniFrac distance using principal component
analysis (PCA) and multiple dimension scale (MDS) in the stats package in
R. Additionally, t-distributed stochastic neighbor embedding (t-SNE), a
nonlinear machine-learning technique for visualization of high-
dimensional data, was conducted using the tsne package in R. The
permutation feature importance was determined for each coded feature
using the ELI5 package in Python 3.6. Significant differences between
groups were determined by either Pearson’s correlation, t-test, or Wilcoxon
test with significance established at p ≤ 0.05.

RESULTS
Demographic characteristics of the study subjects
Of the 1821 samples collected, a total of 1727 samples met the
criteria for downstream analysis as described above, including 92
COPD patients, 428 asthma patients, 279 lung cancer patients, and
928 healthy control subjects (Supplementary Table 1). The mean

ages of the four groups ranged from 51.53 to 69.68 years with an
SD of 7.33 to 15.59 years. The sex ratio of the study participants
varied widely among the four groups. The control and asthma
groups were skewed toward female subjects with male-to-female
sex ratios of 0.35 and 0.69, respectively. Meanwhile, male COPD
samples were dramatically higher in number than female COPD
samples, with a male-to-female ratio of 22.00, and lung cancer
skewed males at a lower ratio of 1.68. Despite these disparities, no
significant correlation was determined between either age or sex
and the serum microbial EV samples (Supplementary Fig. 1).

16S rDNA metagenomic sequence data assessment
After metagenomic sequencing of the clinical serum EV samples
was conducted, the basic characteristics of the 1727 samples
selected for downstream analysis were assessed. Generally, the
read count frequency of the serum samples ranged from 4- to 5-
log, while OTUs hovered approximately 4-log (Fig. 1a, b). While
COPD and lung cancer slightly lagged behind the control and
asthma sample distribution of the total read counts, evaluation of

Fig. 1 Raw NGS read counts, profiled OTU counts, and alpha diversity of serum clinical samples. Frequency distribution of a all clinical
serum samples and b the samples in the control, lung cancer, COPD, and asthma groups based on their read counts and number of OTUs. A
box-plot was also constructed to visualize the read counts and number of OTUs in c all samples and d the individual clinical groups. Alpha
diversity was assessed between the four clinical groups through e species richness (observed, Chao1, and ACE), and f species diversity
(Shannon and Simpson indices) within each sample in a given group expressed as a box-plot.
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the OTUs yielded a generally similar region of peak frequency in
all groups (Fig. 1c, d). The mean read count of the total filtered
samples was 55,993, while the mean number of OTUs was 10,384
(Supplementary Table 2). Sequencing yielded varying mean read
counts in the control (57,252), COPD (29,441), asthma (71,328), and
lung cancer (35,409) groups. However, the mean number of OTUs
in the obtained serum samples was relatively similar between the
control (9,589), COPD (13,039), asthma (9,736), and lung cancer
(13,345) groups.

Differential serum microbial EV alpha diversity between
clinical groups
Observed OTUs, species richness estimates (Chao1 and ACE), and
diversity indices (Simpson and Shannon) were used to calculate
the alpha diversity of the microbial composition of COPD, lung
cancer, asthma, and healthy subjects. The observed OTUs and
Chao1 and ACE indices yielded the same pattern of clinical group
richness values. The trend observed in ascending order of species
richness was as follows: the COPD group, the healthy control
group, the asthma group, and the lung cancer group (Fig. 1e). The
Simpson and Shannon diversity indices also indicated similar
intergroup differences in diversity, in which the COPD group had
the lowest diversity with the control, asthma, and lung cancer
groups, followed in ascending order of diversity (Fig. 1f).

Taxonomic variation in serum microbial EV composition
between clinical groups
The taxonomic composition of the microbial EVs isolated from
healthy control, lung cancer, COPD, and asthma patient serum
samples was determined, and the most prevalent taxa at the

phylum and genus levels were plotted prior to taxonomic
accumulation (Fig. 2a, b). At the phylum level, Firmicutes,
Proteobacteria, Actinobacteria, and Bacteroidetes were the most
abundant phyla detected in the clinical groups (Fig. 2a). A wide
variety of genera were detected in the serum clinical samples, with
Acinetobacter being the dominant genus, followed by Cutibacter-
ium, Pseudomonas, Bacteroides, Staphylococcus, Sphingomonas,
and Lactobacillus (Fig. 2b). The prominent taxa at the class, order,
and family levels can be found in Supplementary Fig. 2. After
taxonomic accumulation was performed as described above, the
coded relative abundance of the taxa detected in each clinical
sample was evaluated (Fig. 2c, d). Similar to the genus-level
compositional analysis conducted prior to taxonomic accumula-
tion, each sample possessed a wide variety of accumulated taxa,
with Acinetobacter, Cutibacterium, Pseudomonas, Bacteroides,
Staphylococcus, Sphingomonas, and Corynebacterium 1 being the
most predominant coded genera (Fig. 2c). Heat plot analysis of the
accumulated taxa grouped by their root phylum and clinical group
revealed that Proteobacteria, Firmicutes, Actinobacteria, and
Bacteroidetes comprised the main portion of the coded taxa
(Fig. 2d). While Proteobacteria contributed a wider variety of
accumulated taxa, Firmicutes showed the most taxa with relatively
high abundance in the majority of samples across all clinical
groups.

Beta diversity of clinical samples coded for taxa accumulation
Beta diversity was measured based on PCA, MDS, and T-SNE to
determine the segregation of the clinical samples based on age,
sex, and clinical group (Fig. 3). The PCA and MDS methods were
unable to clearly differentiate the age, sex, and clinical groups of

Fig. 2 Serum microbiome compositional profiles between clinical groups. Composition of the most abundant taxa of the serum EV
microbiome in healthy control, COPD, and lung cancer clinical groups at the a phylum and b genus levels was expressed as bar plots based on
the relative abundance of taxa within each sample. Composition of the taxa accumulated into their respective coded taxonomies (process
detailed in Methods section) was visualized by a c bar plot and d heatmap showing the relative abundance of the accumulated taxa in each
clinical sample with the horizontal axis representing each clinical group and the vertical axis grouping the root phyla of the accumulated taxa.
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the serum EV samples (Fig. 3a–f). However, application of the
machine-learning algorithm T-SNE yielded distinct clustering
between the clinical groups (Fig. 3i). The healthy control group
samples were distributed throughout the V1 and V2 axes, whereas
the asthma, COPD, and lung cancer samples were generally
clustered separately along the V2 axis.

Performance of serum microbial EV metagenomics-based
diagnostic models
Diagnostic model sets were developed to determine asthma,
COPD, and lung cancer risk by applying various ML methods to
the coded serum EV metagenomic data. Using the five different
methods (all-feature GLM, selected-feature GLM, ANN, GBM, and
ANN/GBM ensemble) previously outlined, prediction models for
each respiratory disease were developed. Model performance was
evaluated based on the resulting receiver operating characteristic
(ROC) curve of each respective methodology, and the AUC values
of the test iterations for each model were plotted as a box-whisker
plot (Fig. 4a). A similar pattern of model performance for each of
the five models was observed in all three respiratory disease
models. The all-feature GLM method showed the poorest
performance, while incorporation of feature selection greatly
boosted the mean AUC values of each disease model. GBM
performed slightly better than ANN, with both methods out-
performing the GLM-based models. The ANN/GBM ensemble
yielded the highest performance in all three disease models, with
mean AUC values of 0.93, 0.99, and 0.94 in the COPD, asthma, and
lung cancer models, respectively (Table 1). Furthermore, there was
low variation between the 30 test iterations of the ANN/GBM
ensemble models with SD below 0.01 and high consistency
observed between the ROC curves of the ensemble method
compared to the ANN and GBM methods in all three respiratory
models (Fig. 4b).

Feature importance variation between respiratory disease
models
Permutation feature importance analysis was subsequently
performed on the three respiratory disease models to determine
which coded serum microbial EV taxa had the most impact on
disease prediction outcomes. In asthma and lung cancer, the
phylum Proteobacteria accounted for the most features important
to the model, while in COPD, Firmicutes was the most prevalent
phylum for feature importance (Supplementary Table 3). When
comparing feature importance between asthma and COPD,
several features identified to be a part of the Fimbriimonadaceae
family, represented solely by the genus Fimbriimonas, were highly
associated with asthma, while Megamonas was most associated
with COPD. Several features were mildly associated with both
asthma and COPD, including Ralstonia (Fig. 5a). Curvibacter and
Helicobacter were the most important features in the lung cancer
model, while several features of slight to moderate importance
were shared between the asthma and lung cancer models,
including Stenotrophomonas, Acinetobacter, and Ralstonia (Fig. 5b).
Finally, a genus identified as Burkholderia-Caballeronia-
Paraburkholderia and Ralstonia shared mild to moderate impor-
tance between the COPD and lung cancer models (Fig. 5c).

Modulation of HFD-induced respiratory disease risk by dietary
supplements
An in vivo animal study was conducted to determine the ability of
various dietary proteins, vegetables, lipids, and grains to modify
HFD-associated respiratory disease risk in mice. Alpha diversity
was analyzed and compared between the four human clinical
groups (healthy control, lung cancer, COPD, and asthma) and
samples collected from the mice used in the in vivo dietary study
(Fig. 6a). All matrices used to calculate alpha diversity, observed
OTUs, Chao1, Shannon, Simpson, and ACE, demonstrated that the
mouse samples had slightly higher diversity than the clinical

samples. The UniFrac distance between the 180 mouse samples
and the 1727 clinical samples used in the development of the
COPD, asthma, and lung cancer diagnostic models was assessed.
PCoA analysis showed a slightly tighter clustering of most mouse
samples within the broader distribution of human samples (Fig.
6b). The ANN/GBM ensemble respiratory disease models were
applied to the serum samples obtained from the 36 dietary
groups, and the resulting disease model prediction values were
plotted (Fig. 7). HFD influenced asthma prediction the most, with a
mean prediction value of 0.31 compared to 0.09 in the NCD group.
Meanwhile, application of the lung cancer model to HFD-fed mice
yielded a mean prediction value of 0.23 compared to 0.18 in the
NCD group. COPD risk was impacted the least by a HFD, with a
mean prediction value of 0.09 in both the HFD and NCD groups.
Comparison of disease prediction values between the dietary

groups revealed that the asthma model yielded the highest
number of foods that minimized HFD-associated disease risk,
including glutinous rice flour, lotus root powder, mungbean
powder, and sesame oil (Fig. 7a). Conversely, foods such as
policosanol and mealworm oil increased asthma prediction values.
HFD-associated lung cancer prediction values were also lowered
by multiple food supplements, such as mungbean powder,
glutinous rice flour, and Kakadu plum powder (Fig. 7b). However,
honey and propolis spray drastically boosted lung cancer
prediction values. COPD prediction values were not dramatically
altered by diet (Fig. 7c). Several food items, including brown rice
oil, pear extract, and sesame oil, lowered the COPD prediction
values below those of the NCD and HFD groups, while safflower
extract slightly increased COPD risk.

DISCUSSION
Serum microbial EVs have potential as diagnostic markers for a
wide range of diseases, as they systemically interact with our
immune and organ systems. Here, we determined the serum EV
microbiome composition of healthy subjects, COPD patients,
asthma patients, and lung cancer patients. After coding serum
EV metagenomic data with a novel taxonomic hierarchal
clustering method, we developed powerful asthma, COPD,
and lung cancer predictive diagnostic models using an ANN/
GBM ensemble method. The results of this study highlight the
diagnostic capability of serum microbial EVs as features for
respiratory disease prediction and serve as a steppingstone for
the development of a novel, accurate and noninvasive
diagnostic method for chronic diseases lacking a diagnostic
gold standard.
Although researchers have previously used serum as a

biomarker source for asthma, COPD, and lung cancer, this is the
first study to use a serum microbial EV metagenomic approach for
all three respiratory diseases. Standard lung cancer diagnostic
methods are rarely suitable for early detection, tend to be highly
invasive, and yield low sensitivity through noninvasive methods20.
Systemic reviews of asthma and COPD diagnostic methods
showed that tests commonly used in primary care, such as
handheld flow meters and hyperresponsiveness testing, have
limited sensitivity and specificity21,22. Furthermore, asthma and
COPD can be difficult to differentiate due to symptom similarity
and can lead to fatality without proper treatment, particularly in
the case of COPD23. Therefore, recent efforts have focused on
using biomarkers for higher accuracy and sensitivity of respiratory
disease prediction. Several other serum biomarkers previously
targeted for COPD, asthma and lung cancer diagnosis include
metabolic profiling24,25, endothelial microparticles26 and serum
miRNA profiles27,28. Differential DNA methylation profiles have
also been utilized to develop lung cancer and COPD diagnostic
models with high accuracy in lung cancer but lower strength in
COPD29. Serum immunoglobulin E (IgE) levels have been used for
asthma diagnosis with varied success30,31.
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Fig. 3 Beta diversity of clinical serum microbial EV samples. Beta diversity between groups was determined through a–c PCA, d–fMDS, and
g–i T-SNE dimensional reduction methods and plotted to visualize dissimilarity of the serum samples based on age, sex, and disease group
based on the accumulated taxonomic EV microbiome of each sample.

Fig. 4 Evaluation of respiratory disease diagnostic models. a AUC values for 30 iterations of the lung cancer, COPD, and asthma models
developed using GLM without feature selection, GLM with feature selection, ANN, GBM, and ensemble methods were visualized in box plots.
b AUC-ROC curves of the 30 iterations were plotted against the false-positive rate and true-positive rate of the COPD, asthma, and lung cancer
diagnostic models developed through ANN, GBM, and Ensemble (ANN/GBM) methods.
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Several reliable ML classification methodologies were tested in
this study to determine an optimal method for diagnostic model
development using microbial EV metagenomic data as model
features. Microbiome studies have exploded in popularity over the
past decade, resulting in large amounts of data, a multitude of
conflicting findings, and the need for a higher-level analytical
technique for the classification of metagenomic data. As a result,
ML algorithms have been embraced as a powerful tool for
interpretation of the complex big data output of microbiome
profiling32,33. To overcome several challenges in microbiome
analysis, we also developed and applied a novel data-processing
method. Microbiome count data typically have a high abundance
of zero values, which creates a bias that must be corrected prior to
use as model input features. Additionally, taxonomic assignment is
often based on public databases in which many entries are loosely
specified at the genus level34. Rather than removal of all
imprecisely labeled taxa, resulting in diminished data resolution,
we employed a novel method in which taxonomic hierarchal
values of a given OTU were clustered into a single coded value.

Through this method, we aimed to address these biases and
improve the rationale of our diagnostic models. While further
validation is necessary, the consistently high diagnostic strength
shown through multiple iterations of the models trained with
coded metagenomic data supports the merit of our taxonomic
hierarchal coding method.
This study was the first systemic microbial EV metagenomic

approach to COPD, asthma, and lung cancer diagnosis and yielded
many microbiome features of respiratory disease that diverged
from those previously reported. Preceding studies that targeted
the microbiome for respiratory disease biomarkers primarily
assessed the lung, airway, and oral microbiota, with each area
yielding unique microbiota compositions. Here, feature impor-
tance analysis conducted for each respiratory disease model
revealed that genera derived from Firmicutes influenced the
distinction of COPD and healthy systemic microbiome activity the
most. A review of previous COPD microbiome studies showed that
while Firmicutes prevalence is often increased in COPD patients
across a variety of clinical samples, including lung tissue and
endotracheal aspirates, there is less consensus on how this
prevalence affects the overall diversity of COPD patients35.
Increased Firmicutes abundance is often associated with overall
increased diversity due to the abundance of human microbiome-
associated genera represented by the phylum. However, we found
that the COPD group was the only respiratory disease group to be
less diverse than the healthy control group.
Conversely, Proteobacteria emerged as the dominant phylum in

both the asthma and lung cancer disease groups. Increased
Proteobacteria prevalence in the airway has been a hallmark of
both cancerous and asthmatic lung microbiome studies36,37. At
the genus level, Stenotrophomonas, a member of the Proteobac-
teria phylum, was determined to be important to both the asthma
and lung cancer models. Stenotrophomonas maltophilia, the most
common Stenotrophomonas spp., has been previously identified
to have pathogenic potential in the lungs. The species can activate
host TLR5-mediated pro-inflammatory responses through flagellin,
which has also been detected in the EVs of flagellated
bacteria36,38. Helicobacter, a genus containing several well-known
pathogens, including the carcinogen Helicobacter pylori, was also
an important feature of the lung cancer model. While Helicobacter
spp. such as H. plyori have been previously associated with lung
cancer, the most important feature in the model, Curvibacter, has
been linked to COPD but not lung cancer39. Although Megamonas
was the genus with the most weight in the COPD group, to our
knowledge, there have been no previous reports of its association
with COPD or other respiratory diseases. Similarly, an unidentified
genus of the Fimbriimonadaceae family was shown to be the most
important feature of asthma; however, no publications were found
to mention Fimbriimonas, the sole genus of the family, in relation

Table 1. Respiratory disease diagnostic model performance across
methodologies.

Model Method Mean AUC SD of AUC

COPD All-feature GLM 0.49 0.054

Selected-
feature GLM

0.66 0.158

ANN 0.86 0.012

GBM 0.91 0.003

ANN/GBM ensemble 0.93 0.004

Asthma All-feature GLM 0.50 0.031

Selected-
feature GLM

0.80 0.057

ANN 0.97 0.007

GBM 0.98 0.001

ANN/GBM ensemble 0.99 0.002

Lung cancer All-feature GLM 0.50 0.040

Selected-
feature GLM

0.77 0.057

ANN 0.87 0.030

GBM 0.92 0.003

ANN/GBM ensemble 0.94 0.004

AUC area under the curve, SD standard deviation, COPD chronic obstructive
pulmonary disease, GLM general linearized model, ANN artificial neural
network; GBM gradient boosting machine.

Fig. 5 Relatively important features of the respiratory disease models. The feature importance of the diagnostic models was assessed
based on permutation feature importance analysis of the coded serum microbial EV taxa. Individual features of highest importance were
compared between the a asthma and COPD models, b asthma and lung cancer models, and c COPD and lung cancer models.
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to respiratory disease. Therefore, further investigation into the role
of Fimbriimonas, Curvibacter, and Megamonas activity in asthma,
COPD, and lung cancer, respectively, may be warranted.
Consumption of Western diets, such as a HFD, has been

associated with an increased risk of various chronic diseases. It has
been known for decades that diets high in fat and processed
foods are associated with higher lung cancer risk40,41. Further-
more, HFD has been directly shown to promote lung cancer
progression in a mouse Lewis lung carcinoma (LLC) allograft
model through the modulation of cell signaling pathways
resulting in increased JAK, NF-κB, and STAT3 levels as well as
increased oxidative stress42. Aside from oncologic respiratory
consequences, HFD has also been associated with asthma
incidence. In a previous population study, it was found that, in
men, the intake of a HFD was more highly associated with asthma
than a smoking history was43. While a HFD has been closely
associated with lung cancer and asthma, the relationship between
HFD and COPD is less clear. A HFD has been suggested to be
beneficial to COPD patients due to the impact of fat on their
respiratory quotient (RQ) by lower production of CO2 following fat
metabolism. In a 1993 study, it was reported that a HFD yielded
lower values of carbon dioxide production, oxygen consumption
and RQ than a diet high in carbohydrates in COPD patients44.
Interestingly, several key results of the in vivo dietary

assessment conducted in this study were in general agreement
with the literature. Application of the human microbial EV
metagenomic disease models developed in this study to mice
fed a HFD demonstrated increased risk for asthma and lung
cancer while exerting a minimal effect on COPD risk.
Furthermore, the ability of various food items to modulate
HFD-associated disease risk was drastically lower in the COPD

model than in the asthma and lung cancer models. Mungbean
powder, Kakadu plum powder, and lotus root powder extract
showed particular promise as food items capable of offsetting
HFD-associated respiratory disease risk. Mungbean contains
various bioactive components, and numerous studies have
demonstrated its ability to reduce pro-inflammatory responses
in vitro and in vivo45. Recently, mungbean supplementation
was shown to normalize the gut microbiota of obese mice and
reduce obesity-associated metabolic disorder and symptoms46.
Terminalia ferdinandiana (Kakadu plum) contains antioxidant
phytochemicals and has demonstrated antimicrobial efficacy
against various foodborne and medical pathogens47. In this
study, lotus root powder showed an especially potent effect
against asthma disease risk and is known to have anti-
inflammatory properties. Lotus root powder reduces serum
inflammatory markers such as total IgE and leukotriene B4, both
of which play a role in airway hyperresponsiveness and pro-
inflammatory responses48,49. Altogether, the results of the
in vivo dietary assessment offer preliminary validation of our
serum microbial EV-based disease risk models and reveal foods
that may reduce the HFD-associated respiratory disease risk.
In conclusion, the results of this study highlight the utility of

serum microbial EVs as potent features for asthma, COPD, and
lung cancer prediction. While the models yielded high AUC
values, further study is necessary to clinically validate the
models in larger cohorts at specific stages of disease progres-
sion and with more control samples. Future studies should
include a wider range of patients in terms of age and
geographic region as well as their medication and smoking
history to enhance the strength and applicability of the
diagnostic models. Clinical validation must also be conducted

Fig. 6 Comparison of human and mouse serum microbial EV sample diversity. a Alpha diversity was calculated for the control, lung cancer,
COPD, and asthma patient sample groups in addition to the mouse samples obtained through the in vivo dietary study. b PCoA analysis of
mouse samples and human clinical samples used for respiratory disease diagnostic model development was conducted and plotted.

Fig. 7 Effect of diet on in vivo respiratory disease risk. The prediction values for a asthma, b lung cancer, and c COPD were plotted as box-
whisker plots for mice fed normal chow or a high-fat diet (HFD) followed by the HFD groups supplemented with different health foods in
ascending order of disease prediction values (n= 5).
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to verify dietary supplements capable of offsetting the HFD-
associated lung cancer or asthma risk.
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