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Mitochondrial dysfunction 
and epithelial to mesenchymal 
transition in head neck cancer cell 
lines
Maria do Carmo Greier1, Annette Runge1*, Jozsef Dudas1, Viktoria Pider1, 
Ira‑Ida Skvortsova2,3, Dragana Savic2,3 & Herbert Riechelmann1

Mitochondrial dysfunction promotes cancer aggressiveness, metastasis, and resistance to therapy. 
Similar traits are associated with epithelial mesenchymal transition (EMT). We questioned whether 
mitochondrial dysfunction induces EMT in head and neck cancer (HNC) cell lines. We induced 
mitochondrial dysfunction in four HNC cell lines with carbonyl cyanide-4(trifluoromethoxy)
phenylhydrazone (FCCP), a mitochondrial electron transport chain uncoupling agent, and oligomycin, 
a mitochondrial ATP synthase inhibitor. Extracellular flux analyses and expression of the cystine/
glutamate antiporter system xc (xCT) served to confirm mitochondrial dysfunction. Expression 
of the EMT-related transcription factor SNAI2, the mesenchymal marker vimentin and vimentin/
cytokeratin double positivity served to detect EMT. In addition, holotomographic microscopy was 
used to search for morphological features of EMT. Extracellular flux analysis and xCT expression 
confirmed that FCCP/oligomycin induced mitochondrial dysfunction in all cell lines. Across the four 
cell lines, mitochondrial dysfunction resulted in an increase in relative SNAI2 expression from 8.5 ± 0.8 
to 12.0 ± 1.1 (mean ± SEM; p = 0.007). This effect was predominantly caused by the CAL 27 cell line 
(increase from 2.2 ± 0.4 to 5.5 ± 1.0; p < 0.001). Similarly, only in CAL 27 cells vimentin expression 
increased from 2.2 ± 0.5 × 10–3 to 33.2 ± 10.2 × 10–3 (p = 0.002) and vimentin/cytokeratin double positive 
cells increased from 34.7 ± 5.1 to 67.5 ± 9.8% (p = 0.003), while the other 3 cell lines did not respond 
with EMT (all p > 0.1). Across all cell lines, FCCP/oligomycin had no effect on EMT characteristics in 
holotomographic microscopy. Mitochondrial dysfunction induced EMT in 1 of 4 HNC cell lines. Given 
the heterogeneity of HNC, mitochondrial dysfunction may be sporadically induced by EMT, but EMT 
does not explain the tumor promoting effects of mitochondrial dysfunction in general.

Abbreviations
EMT	� Epithelial-mesenchymal transition
TGF-ß	� Transforming growth factor beta
OXPHOS	� Oxidative phosphorylation
HNSCC	� Head and neck squamous cell carcinoma
xCT	� Cystine/glutamate transporter
FCCP	� Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone
OCR	� Oxygen consumption rate
ECAR​	� Extracellular acidification rate
FM	� Fibroblast-like-morphology

In cancer cells, mitochondrial structure and function are altered, resulting in mitochondrial dysfunction1. Mito-
chondrial dysfunction impairs cellular energy production, increases glycolysis and acidosis, and leads to deregu-
lation of cellular metabolism, a hallmark of cancer2–5. This process is associated with cancer aggressiveness, inva-
sion, metastasis, and drug resistance6,7. These traits are also characteristic of epithelial to mesenchymal transition 
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(EMT)8–10, a complex, variable, and context-specific cellular program that enables carcinoma cells to suppress 
epithelial characteristics in favour of mesenchymal differentiation11. In cancer, EMT is usually incomplete and 
reversible, resulting in coexpression of epithelial and mesenchymal markers12. EMT-associated reprogramming 
is regulated by various transcription factors, including SNAI1, SNAI2, ZEB, and TWIST13,14. In head and neck 
cancer, SNAI2 plays a dominant role13,15. Among others, the transforming growth factor beta (TGF-β1) regula-
tory pathway is a canonical trigger of EMT16,17.

Mitochondrial dysfunction and EMT regulatory pathways are interrelated. Mitochondrial dysfunction can 
activate glycolytic pathways, which interact with EMT-related transcription factors such as Snail. Snail represses 
enzymes of the glycolytic pathway as well as enzymes of the gluconeogenesis pathway, such as fructose-1,6-bi-
sphosphatase, which leads to enhanced glycolytic flux18. Downregulation of the expression of mitochondrial 
proteins involved in oxidative phosphorylation (OXPHOS) was associated with EMT gene signatures and 
enhancement of EMT7,19. Induction of mitochondrial dysfunction via oligomycin A and antimycin A resulted 
in downregulation of E-cadherin expression, upregulation of vimentin expression, and increased migration and 
invasion, suggesting activation of the EMT cellular program20. Although these studies were not performed in 
head and neck cancer, they suggest a relationship between mitochondrial dysfunction and EMT.

Head and neck squamous cell carcinoma (HNSCC) is a common malignancy derived from mucosal surfaces 
of the oral cavity, sinonasal cavity, pharynx, and larynx. HPV-induced HNSCC differs substantially from HPV-
negative HNSCC; however, both entities show high inter- and intratumoral tumour cell heterogeneity21,22. In this 
study, we chose 4 different HPV-negative HNSCC cell lines for the experiments. Our aim was to examine whether 
induced mitochondrial dysfunction leads to EMT in different HPV-negative HNSCC cell lines. Mitochondrial 
dysfunction was induced by blocking mitochondrial OXPHOS and measured using extracellular flux analysis 
and expression of the cystine/glutamate transporter xCT (SLC7A11)23. In extracellular flux analysis, the oxygen 
consumption rate (OCR) serves as a measure of OXPHOS, and the extracellular acidification rate (ECAR) serves 
as a measure of glycolysis. A high OCR/ECAR ratio indicates a metabolic state driven by OXPHOS. Solute carrier 
family 7 member 11 (SLC7A11) is the coding gene for xCT, which is known to be overexpressed in cells with 
mitochondrial damage with low OXPHOS24. The OCR/ECAR ratio and xCT expression are inversely correlated. 
EMT was assessed by gene expression analysis of SNAI2 and vimentin, flow cytometric analysis of vimentin/
cytokeratin double-positive cells, and holotomographic microscopy12.

Methods
Cell lines.  The 4 HNSCC cell lines SCC-2523, UPCI-SCC-00325, HN26 and CAL 2727 were purchased from 
the German Collection of Microorganisms DSMZ, Braunschweig, Germany. Cells were thawed at 37 °C in 8 mL 
of medium in 15 mL Falcon tubes, centrifuged for 5 min at 290g/at 4 °C and cultivated in a 1:1 mixture of Dul-
becco’s modified Eagle’s medium and Ham’s F12 with additional 1% penicillin/streptomycin, 1% MEM with 
nonessential amino acids (NEAAs), 1 mM sodium pyruvate 100 mM (all from PAN-Biotech, Aidenbach, Ger-
many), 10% foetal bovine serum and 1% l-glutamine 200 mM (both from Gibco, Grand Island, NY, USA). The 
cells were stabilized by two passages and cultured for 2 weeks prior to the experiments at 5% CO2 and 37 °C.

Induction of mitochondrial dysfunction.  For induction of mitochondrial dysfunction, a mixture of car-
bonyl cyanide-4(trifluoromethoxy) phenylhydrazone (FCCP) and oligomycin was used (#103275-100, Agilent 
Bioscience, Sta. Clara, USA)28,29 or prepared analogously as described in Supplement 3. Cells were plated in XFp 
Cell Culture Miniplates (#103022-100, Agilent Bioscience, Sta. Clara, USA) in DMEM/F12 (0.3%) at a density of 
2 × 104 cells per mL, which created a confluence of approximately 70%. For TGF-β1 controls, 1 μL/mL TGF-β1 
(#P01137, R&D Systems, Minneapolis, USA) was added to the cell culture medium, and the cells were incubated 
overnight (5% CO2/37 °C) prior to the addition of FCCP/oligomycin.

Assessment of mitochondrial dysfunction.  Extracellular flux analysis29 with the Seahorse XFp Ana-
lyzer (Agilent Bioscience, Sta. Clara, USA) and cystine/glutamate transporter (xCT) expression served to 
confirm mitochondrial dysfunction. The FCCP/oligomycin mixture (XFp Cell Energy Phenotype Stress Kit; 
#103275-100, Agilent Bioscience, Sta. Clara, USA) was assembled as described in the manufacturer’s protocol 
and added immediately before the measurement. The Seahorse XFp Analyzer was used for measurement 4× dur-
ing baseline and 4× during FCCP/oligomycin conditions in a 5 min interval (Supplement 1). Parameters were 
normalized to 104 cells/well (Supplement 2).

For cystine/glutamate transporter (xCT) expression, 2 × 105 cells/mL were plated in four petri dishes in 10 mL 
of DMEM/F12 (0.3% FBS) each, two of them with an additional 1 ng/mL TGF-β1 (positive control for EMT). 
After 24 h, two dishes (one with TGF-β1 and one without) were exposed to 1 µM FCCP/oligomycin (Supplement 
3) for 50 min in a CO2-free incubator at 37 °C to mimic the XFp Seahorse measurement. The other two dishes 
were incubated the same way without FCCP/oligomycin.

After FCCP/oligomycin treatments, cells were cultivated for one additional day without any further treat-
ments. On this day, cells were allowed to adapt and react prior to RNA and protein isolation. For RNA and 
protein measurement, cells were lysed as described in the “RNA isolation, reverse transcription and RT-PCR” 
section below. For qPCR, the primer sequences for xCT (SLC7A11) were downloaded from the PrimerBank of 
the Massachusetts General Hospital, Boston, MA, USA28. Primer sequences are listed in Suppl. Table 1. Primers 
were synthesized by Invitrogen (Darmstadt, Germany) and were used together with the Sensifast Sybr Fluores-
cein Kit of Bioline (Labconsulting, Vienna, Austria) in a Bio-Rad MyiQ™ (Bio-Rad, Laboratories, Inc., Hercules, 
CA, USA) cycler according to the manufacturer’s protocol. GAPDH was used as a housekeeping gene, and the 
relative quantities of SLC7A11 were calculated as described above.
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Assessment of epithelial mesenchymal transition (EMT).  EMT was assessed by gene expression 
of vimentin and SNAI2 using quantitative PCR and by vimentin/cytokeratin coexpression with flow cytom-
etry in the FCCP/oligomycin-treated cells (see FCCP/oligomycin treatment above). In addition, all cell lines 
were examined under a holotomographic microscope to detect EMT-typical morphological changes. Primer 
sequences for vimentin and SNAI2 were downloaded from PrimerBank at Massachusetts General Hospital, 
Boston, MA, USA (Suppl. Table 1). After FCCP/oligomycin treatment and one additional cultivation day, the 
cells were lysed, and RT-PCR was performed as described for xCT. GAPDH was used as a housekeeping gene, 
and the relative amounts of vimentin and SNAI2 transcripts were calculated as described above.

The percent of vimentin-cytokeratin double-positive cells was determined in a CytoFLEX flow cytometer 
(Beckman Coulter). Therefore, 2 × 105 cells/ml were plated in Petri dishes with 10 ml of DMEM/F12 (0.3% FBS) 
and treated as described for xCT analyses. After FCCP/oligomycin treatment and an extra cultivation day to 
allow the cells to respond, the cells were collected by trypsinization, counted and suspended in FBS (#26140087, 
Gibco, MA, USA). Then, the cell suspensions were incubated with antibodies against cytokeratin and vimentin 
(Suppl. Table 2) for 20 min at room temperature using the Perfix NC kit from Beckman Coulter (Marseille, 
France) according to the manufacturer’s instructions. One reaction was set for 2 × 106 cells. Negative event gates 
were set by the isotype controls containing 99% of the isotype events. Positive events were defined as events with 
higher signals than the negative control gates. At least 2 replicates were analysed, and all samples were measured 
in duplicate.

For holotomographic microscopy, the same conditions and media were used as for extracellular flux analysis. 
The only difference was that 2 × 105 cells/mL were plated in IbiDi dishes (IbiDi, Ltd., Planegg, Germany) instead 
of Agilent XFp cell culture miniplates, and FCCP/oligomycin was added manually. After the same treatment 
time as for the flux analyses in a CO2-free incubator, the XFp measurement medium was replaced with DMEM/
F12 (0.3% FBS), and the cells were immediately analysed under a 3D Cell Explorer Holotomography microscope 
(Nanolive SA, Switzerland) with an air objective at 60× magnification. Three typical histomorphologic features 
of EMT were assessed and semiquantitatively scored from 0 to 3: fibroblast-like morphology (FM), cell indi-
vidualization, and cell detachment. For these 3 features, a score of 0 indicates 0–10% of cells have this feature; 1 
indicates 11–50%; 2 indicates 51–80%; and 3 indicates ≥ 80% of cells have this feature (Fig. 1).

RNA isolation, reverse transcription and RT‑PCR.  For gene expression analyses, cells were lysed in 
1 mL of TRIzol® Reagent (Ambion®, Life TechnologiesTM, Carlsbad, CA, USA), and RNA was isolated following 
the instructions of the manufacturer. RNA concentrations were determined by absorption at 260 nm and fluo-
rometric measurements (Qubit, Invitrogen, Darmstadt, Germany), and RNA quality and integrity were evalu-
ated by a Qubit RNA IQ kit (Invitrogen). The proportion of intact RNA in the total RNA isolates was at least 
70%. Two micrograms of total RNA was reverse transcribed by M-MuLV Reverse Transcriptase with 2 µg of 
oligo dT15 (GeneON, Ludwigshafen am Rhein, Germany) in a ThermoQ heating and cooling block (Biozym, 
Hessisch Oldendorf, Germany). cDNA samples representing 10 ng of original total RNA were subjected to real-
time qPCR. GAPDH was used as a housekeeping gene, and relative quantities of the transcripts were calculated 
by pairwise differences of threshold cycles (δCT) of the gene of interest and the loading control housekeeping 
gene30. For the final analysis, we used the relative quantification and related the PCR signal in the cells to a 
control reference gene expression level12. The identity of the PCR products of genes was confirmed by Sanger 
sequencing by Microsynth Austria (Vienna, Austria)12.

Data analysis.  The full factorial experimental design with 2 (with/without FCCP/oligomycin) × 2 (with/
without TGF-ß1) × 4 (cell lines) × 4 replicates = 64 experiments was analysed with a generalized linear model. 
The results of PCR, flow cytometry, and extracellular flux analysis revealed a right-skewed distribution. There-
fore, a gamma distribution with a log linkage function was modelled. The estimated marginal means (EMM) and 
their standard errors (SEM) are reported. Holotomography scores for EMT-typical cellular responses, ranging 
from 0 to 9, were compared with and without FCCP/oligomycin using the Fisher-Freeman-Halton exact test. 
Calculations were performed with SPSS Ver. 27 (IBM, Armonk, NY).

Results
Effect of FCCP/oligomycin on EMT.  The effects of FCCP/oligomycin on EMT depended on the experi-
mental cell line. Considering all four cell lines together, the addition of FCCP/oligomycin increased the relative 
expression of SNAI2 from 8.5 ± 0.8 to 12.0 ± 1.1 (p = 0.007). When we separately examined the effect of FCCP/
oligomycin on each cell line, only CAL 27 cells showed increased SNAI2 expression (p < 0.001; Fig. 2A), while 
the effect was not significant in the other 3 cell lines (all p > 0.1). The addition of FCCP/oligomycin had no effect 
on the overall relative expression of vimentin (p = 0.137). For the effect of FCCP/oligomycin on vimentin expres-
sion in individual cell lines, an increase was observed for CAL 27 cells from 2.2 ± 0.5 × 10–3 to 33.2 ± 10.2 × 10–3 
(p = 0.002; Fig. 2B). Finally, the percentage of vimentin-cytokeratin double-positive cells in flow cytometry did 
not change in the overall analysis of all cell lines; however, at the cell line level, it decreased in SCC03 cells 
(p = 0.009) and increased in CAL 27 cells (p = 0.003) following FCCP/oligomycin administration (Fig. 2C). Pos-
sible EMT scores in holotomographic microscopy ranged from 0 (no EMT) to 9. Holotomographic EMT scores 
in 32 experimental sets were mostly below five, indicating generally few cells with EMT-typical morphological 
changes (Table 1). In particular, no significant effects of FCCP/oligomycin on EMT-typical morphological cell 
characteristics were observed (Fischer-Freeman-Halton p = 0.9). Occasionally, FCCP/oligomycin induced EMT-
typical changes in cell morphology (Fig. 3A).
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Cell line heterogeneity.  Consistent with the heterogeneity of head and neck cancer, the four HNSCC 
cell lines used differed markedly in all parameters investigated (Fig. 2A–C, control). The baseline expression of 
SNAI2 differed by up to fivefold among the four cell lines (p < 0.001; Fig. 2A) SCC25 cells had a baseline relative 
SNAI2 expression of 17.7 ± 2.2, and CAL 27 cells had a baseline relative expression of 3.5 ± 0.4. Marked differ-
ences between cell lines were also observed for baseline vimentin expression (p < 0.001). Again, SCC25 cells had 
the highest expression at 4.7 ± 1.1, and CAL 27 cells had the lowest expression at 2.2 ± 0.5 × 10–3 (Fig. 2B). Flow 
cytometry results also yielded different baseline percentages of vimentin/cytokeratin double positivity in the 
four cell lines (p < 0.001; Fig. 2C). Here, SCC25 and CAL 27 cells had the highest values. SCC03 and HN had 
similarly low values (Fig. 2C).

Evidence of successful induction of mitochondrial dysfunction.  A high OCR/ECAR ratio indicates 
a metabolic phenotype driven by OXPHOS, whereas lower OCR/ECAR ratios indicate glycolysis due to mito-
chondrial dysfunction. The observed decrease in the OCR/ECAR ratio confirmed FCCP/oligomycin-induced 
mitochondrial dysfunction in all cell lines except SCC25 cells (Fig. 4A; Suppl. Table 3). Moreover, FCCP/oligo-
mycin addition increased xCT values in all cell lines (Fig. 4B; Suppl. Table 4). As with the markers for EMT, the 
baseline OCR/ECAR ratio (p < 0.001) and baseline xCT expression (p < 0.001) revealed significant differences 
between the cell lines studied (Suppl. Fig. 1).

Evidence that cell lines were EMT‑competent.  TGF-ß1 is a key mediator of EMT in cancer cells; how-
ever, not all HNSCC cell lines are capable of EMT. The responses of SNAI2 and vimentin to TGF-ß1 stimulation 
indicate that the four cell lines used can respond to an appropriate stimulus with EMT (Suppl. Fig. 2; Suppl. 
Table 5). Double positivity of vimentin and cytokeratin in flow cytometry did not significantly increase after 

Figure 1.   Holotomographic microscopy scoring example of EMT characteristics (SCC25). (A) Score 0 for 
fibroblast-like-morphology (FM). (B) Score 1 for FM. (C) Score 2 for FM and (D) score 3 for FM. (E) Score 0 for 
cell individualization. (F) Score 1 for cell individualization. (G) Score 2 for cell individualization and (H) score 
3 for cell individualization. (I) Score 0 for surface adhesion, (J) Score 1 for surface adhesion. (K) Score 2 for 
surface adhesion and (L) Score 3 for surface adhesion. Live cell imager (Nanolive, Switzerland); 20 μm.
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Figure 2.   Relative SNAI2 (A), vimentin (VIM; B) expression, and percentage of vimentin/cytokeratin double 
positive cells (C) in response to FCCP/oligomycin (EMM: Estimated marginal mean; Bars: SEM; *p < 0.05, 
**p < 0.01, ***p < 0.001).

Table 1.   Count of cell lines with EMT-scores in holotomographic microscopy of 4 HNSCC cell lines (range of 
possible scores from 0 to 9) with and without FCCP/oligomycin (p = 0.9).

EMT Score Count of cell lines without FCCP/oligomycin Count of cell lines with FCCP/oligomycin Total

2 3 3 6

3 6 8 14

4 6 5 11

5 1 0 1

Total 16 16 32
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TGF-ß1 stimulation (Suppl. Fig. 2, Suppl. Table 5), but a trend towards EMT-like histomorphological features 
was observed by holotomographic microscopy (p = 0.1; Fig. 3; Suppl. Table 6).

Discussion
EMT contributes to the aggressiveness and therapeutic resistance of head and neck carcinomas8. In addition to 
genetic reprogramming and external stimuli from the tumour microenvironment31, there is ample evidence that 
different kinds of cellular stress promote EMT in carcinomas32,33. Here, we investigated cellular stress induced by 
mitochondrial dysfunction, a particular form of cellular stress that is common in HNC2. We questioned whether 
cellular stress due to mitochondrial dysfunction is a significant EMT trigger. In 4 HNC cell lines, mitochondrial 
dysfunction was induced by FCCP/oligomycin, an established method to inhibit mitochondrial OXPHOS. This 
change leads to a metabolic state dominated by glycolysis, as is the case with HNC in vivo.

Clinically, HNC exhibits considerable cellular heterogeneity. Hence, we used several HNC cell lines for this 
study. To reduce variability, we used only HPV-negative cell lines. Consequently, the results are not applicable to 
HPV-positive cell lines. Different HNC cell lines might prefer different regulatory pathways and/or have a hetero-
geneous bioenergetic organization34,35. Indeed, some cell lines investigated were constitutively more glycolytic, 
and others depended more on OXPHOS. We also observed high variability among EMT parameters in the 4 cell 

Figure 3.   Holotomographic microscopy of HN cells (A) in response to FCCP/oligomycin addition (A1 + A2) 
and SCC25 cells (B) in response to TGF-ß1 (B1 + B2). Bars: 20 μm.

Figure 4.   OCR/ECAR ratio (A) and xCT expression (B) of 4 HNSCC cell lines in response to FCCP/
oligomycin (EMM: Estimated marginal mean; bars: SEM; *p < 0.05, **p < 0.01, ***p < 0.001).
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lines (Fig. 4). This finding may in part explain why the EMT response of the HNC cell lines to mitochondrial 
dysfunction in this study differed.

To determine whether mitochondrial dysfunction had actually been induced, we used extracellular flux 
analysis, a relatively precise method to measure metabolic activity and state in cells29. We also examined the 
expression of xCT, a reliable surrogate marker of mitochondrial dysfunction24. Both methods indicated the 
successful induction of mitochondrial dysfunction with the addition of FCCP/oligomycin. The OCR/ECAR 
ratio decreased significantly when FCCP/oligomycin was added (p < 0.001). This result is in line with a previous 
report showing that glycolytic rates increased after 1 h of oligomycin treatment in different cancer cell lines34. 
Only SCC25 cells showed no decrease in the OCR/ECAR ratio; however, xCT expression increased substantially 
(Suppl. Fig. 2). Wang and coauthors also reported increased xCT expression when cells were treated with oligo-
mycin and antimycin A, which was linked to proliferation and malignant progression24.

To confirm that the cells were all capable of epithelial mesenchymal transition, we examined the EMT 
response to TGF-β1, a canonical trigger of EMT12,17. EMT was determined by the gene expression of SNAI2, 
a master regulator of EMT in HNSCC, and the expression of vimentin, a mesenchymal marker not normally 
expressed in epithelial cells. In addition, the double positivity of vimentin and cytokeratin, a hallmark of EMT, 
was measured by flow cytometry and EMT-typical morphologic features were examined by holotomographic 
microscopy. TGF-β1 caused EMT in all cell lines and with all detection methods. Although not significant, hol-
otomographic microscopy also revealed EMT induction after TGF-β1 stimulation. This finding indicates that 
the cell lines used were capable of undergoing EMT and our results support observations of other studies that 
suggested the stabilization of a hybrid epithelial/mesenchymal phenotype through SNAI236. Furthermore, the 
equivocal role of SNAI2 in maintenance of stem cell pluripotency and DNA stability in healthy and malignant 
cells is underlined37 as simultaneous increase in SNAI2 and vimentin expression was only seen in one cell line.

Mitochondrial dysfunction and EMT regulatory pathways influence each other. EMT transcription factors can 
affect various metabolic pathways18. Downregulation of mitochondrial protein expression involved in OXPHOS 
was associated with enhanced EMT7 as well as oligomycin A administration, leading to downregulation of epi-
thelial factors, increased vimentin expression and subsequent invasion and migration20. This is in line with our 
results, where we could see an increased vimentin expression when cells were treated with oligomycin and FCCP.

Besides stress, several other inhibitors of EMT and its metastatic potential were recently reviewed elsewhere. 
Reduced proliferative potential after complete EMT and loss of epithelial characteristics has been observed in 
breast cancer cells38. In addition, feedback mechanisms, responsible for mesenchymal–epithelial transformation, 
were found to inhibit EMT in cells with epithelial characteristics39. Finally, stimulation with EMT promoting 
factors such as TGF-ß might require several days before actually inducing EMT40. Correlating these aspects with 
stress induced mitochondrial dysfunction might thus be an interesting subject of further research.

Thus, it can be assumed that mitochondrial dysfunction did indeed occur and that the cells were capable 
of EMT. However, the EMT response to mitochondrial dysfunction varied from cell line to cell line. An EMT 
response was consistently detectable in CAL 27 cells. This may be due to several reasons. One possible explanation 
could be the different cellular background of each cell line. SCC25 cells exhibit increased baseline expression of 
EMT proteins such as vimentin41. UPCI-SCC-03 cells contain wild-type p53, which is known to suppress EMT42. 
Therefore, it would be explanatory that it was not possible to induce EMT via mitochondrial dysfunction in 
these two cell lines. HN and CAL-27 cells contain a p53 mutation43. However, they cannot be directly compared 
because HN cells were isolated from a metastatic tumor, which is different from cell lines isolated from primary 
tumors, such as CAL-27 cells. Therefore, HN cells might have been exposed to other types of cellular stress before 
and therefore, we were unable to induce EMT with FCCP and oligomycin.

In summary, the study suggests that given the marked heterogeneity of head and neck carcinomas, EMT 
induced by mitochondrial dysfunction may occur in different clones of HNC in vivo. However, EMT does not 
appear to be a major or common mechanism of the cancer-promoting effects of mitochondrial dysfunction in 
HNC. Notwithstanding, other forms of cellular stress, such as hypoxic, nutritional, and heat stress, can trigger 
EMT in head and neck cancer44–46.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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