
Functional Interactions between the erupted/tsg101
Growth Suppressor Gene and the DaPKC and rbf1 Genes
in Drosophila Imaginal Disc Tumors
M. Melissa Gilbert, Brian S. Robinson, Kenneth H. Moberg*

Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America

Abstract

Background: The Drosophila gene erupted (ept) encodes the fly homolog of human Tumor Susceptibility Gene-101
(TSG101), which functions as part of the conserved ESCRT-1 complex to facilitate the movement of cargoes through the
endolysosomal pathway. Loss of ept or other genes that encode components of the endocytic machinery (e.g. synatxin7/
avalanche, rab5, and vps25) produces disorganized overgrowth of imaginal disc tissue. Excess cell division is postulated to
be a primary cause of these ‘neoplastic’ phenotypes, but the autonomous effect of these mutations on cell cycle control has
not been examined.

Principal Findings: Here we show that disc cells lacking ept function display an altered cell cycle profile indicative of
deregulated progression through the G1-to-S phase transition and express reduced levels of the tumor suppressor ortholog
and G1/S inhibitor Rbf1. Genetic reductions of the Drosophila aPKC kinase (DaPKC), which has been shown to promote
tumor growth in other fly tumor models, prevent both the ept neoplastic phenotype and the reduction in Rbf1 levels that
otherwise occurs in clones of ept mutant cells; this effect is coincident with changes in localization of Notch and Crumbs,
two proteins whose sorting is altered in ept mutant cells. The effect on Rbf1 can also be blocked by removal of the c-
secretase component presenilin, suggesting that cleavage of a c-secretase target influences Rbf1 levels in ept mutant cells.
Expression of exogenous rbf1 completely ablates ept mutant eye tissues but only mildly affects the development of discs
composed of cells with wild type ept.

Conclusions: Together, these data show that loss of ept alters nuclear cell cycle control in developing imaginal discs and
identify the DaPKC, presenilin, and rbf1 genes as modifiers of molecular and cellular phenotypes that result from loss of ept.
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Introduction

Genetic screens in Drosophila have identified a relatively small

group of mutations that disrupt normal epithelial architecture and

lead to neoplastic overgrowth of developing larval imaginal discs, a

set of polarized epithelial tissues that grow during larval stages and

develop into the majority of adult structures [reviewed in 1]. The

genes affected by these mutations encode proteins with conserved

human homologs and fall generally into two functional classes:

those involved in the establishment and maintenance of apicobasal

polarity [reviewed in 2], and those involved in vesicular trafficking

of transmembrane proteins [3–8]. Genes in this latter group have

been termed ‘endocytic tumor suppressor genes’ and include rab5,

syntaxin-7/avalanche (syx7/avl), erupted/tumor susceptibility gene-101 (ept/

tsg101 and referred to hereafter as ept), and vps25. Each of these

genes is required at distinct steps in the trafficking proteins from

the apical membrane to the lysosome. The latter two genes, ept and

vps25, respectively encode components of the ESCRT (endosomal

sorting complex required for transport)-I and ESCRT-II com-

plexes which promote maturation of late-endosomes into multi-

vesicular bodies (MVBs) prior to subsequent fusion with the

lysosome [9,10].

Though it is assumed that mutations in these vesicular

trafficking factors promote tissue growth in part by removing

developmental blocks to excess cell division, there is little direct

evidence that links ept, vps25, or syx7/avl mutations to specific cell

cycle transitions or to core components of the nuclear cell cycle

machinery. Mutations in ept are known to block the trafficking and

degradation of certain apically localized trans-membrane proteins,

including the apical membrane determinant Crumbs and the

transmembrane receptor Notch [3,5,6,8], but the effects these

molecules have on the cell division process in ept mutant cells is not

known. Notch has many context-specific links to the cell cycle

including controlling levels of the mitotic regulator Cyclin A [11],

activity of the dE2f1 transcription factor [11,12], and expression of

the dacapo, string, and fizzy related genes in ovarian follicle cells

[13,14]. Notch has also been reported to collaborate with

chromatin modifying factors to silence expression of the rbf1 gene

in eye imaginal disc tumors [15]. Thus, there are many pathways

through which Notch could potentially affect either the G2/M or
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G1/S cell cycle transitions in ept mutant cells. The ability of crb

overexpression to drive imaginal disc neoplasia [4] argues that Crb

can also directly or indirectly affect the cell division process. Yet

the potential links between Crb–an integral membrane scaffolding

molecule with no known intrinsic signaling activity – and the cell

division process are not well understood. crb indirectly regulates

Notch in the larval wing by modulating activity of the c-secretase

complex [16]. However, since mechanisms that deregulate cell

division in endocytic tumor suppressor mutants are poorly

understood, it is difficult to discern specific pathways through

which Notch, Crb, and the myriad of other receptors that are

candidate targets of the ESCRT pathway (for example those

shown to be affected by loss of the hrs gene [17]) might exert pro-

proliferative effects in these mutant backgrounds.

We have taken a dual approach to examine cell division control

in ept mutant eye-antennal tumors: we have sought to identify

genetic manipulations that suppress ept tumor growth, and in

parallel we have characterized the effect of ept loss on cell cycle

phasing and expression of core cell cycle regulatory factors. We

have found that genetic reduction of the DaPKC apical-

membrane kinase effectively suppress the growth of ept mutant

eye-antennal tumors. In parallel, we have found that ept mutant

eye and wing imaginal discs are enriched for cells in the G2/M

phase and depleted for those G1 phase, and this correlates with

reduced expression of the nuclear S-phase inhibitor and tumor

suppressor homolog Rbf1. These two phenotypes are linked by the

observation that expression of a dominant-negative DaPKC

transgene (DN-DaPKC) in ept eye cells is sufficient to prevent the

reduction in Rbf1 levels. It is also sufficient to prevent high-level

expression of the Upd protein, which is induced in a Notch-

dependent manner in vps25 mutant cells [3]. A similar rescue of

Rbf1 levels is observed following removal of the presenilin gene (psn)

from ept mutant clones, indicating that cleavage of a Psn

substrate(s) contributes to the effect of the ept genotype on Rbf1

levels. To test the physiologic significance of the Rbf1 reduction in

ept cells, we have re-expressed exogenous rbf1 in either wild type or

ept mutant eye-antennal tissue and found that excess rbf1 is able to

completely ablate mutant tissue while having little effect on normal

tissue. These data indicate that DaPKC- and psn-dependent loss of

Rbf1 from ept cells may be a significant factor in their overgrowth.

Results

DaPKC is required for ept tumor growth
Under normal circumstances, ept mutant eye-antennal tumors

created using the cell-lethal Minute (M) technique (the genotype

eyFLP;;ept2,FRT80B/P[m-w+]RpL141,FRT80B is hereafter referred

to as ept/M(3)) grow into large unstructured masses (Fig. 1A) that

fail to differentiate into recognizable eye tissue and kill the animal

bearing them during the late larval and pupal phases [6]. To test

the genetic requirements of this tumor-like phenotype, we

screened a small collection of alleles of signaling, polarity, and

growth regulatory genes (stat92E, crb, lgl, Drosophila aPKC, yki,

cyclinD, dMyc, s6k and others) for their ability to suppress size and/

or architectural phenotypes associated with loss of ept/tsg101.

Alleles of two of these genes had significant effects on the

morphology of ept/M(3) tumors: the DaPKC gene, which encodes

an apical-membrane kinase that controls epithelial polarity and

endocytosis [18–21], and the stat92E gene, which encodes the sole

fly homolog of the Stat family of mammalian transcription factors

[22,23]. Analysis of the effect of DaPKC on ept tumor growth is

presented here. Expression of a transgene encoding a dominant-

negative version of the DaPKC kinase (DN-DaPKC; [24]) in ept/

M(3) mutant discs caused these tissues to develop as enlarged eye/

antennal structures (Fig. 1B) that are morphologically similar to

normal eye discs (Fig. 1C) and contain differentiated photorecep-

tor neurons (data not shown). Most animals bearing these DN-

DaPKC;ept/M(3) discs survive to late-pupal and pharate adult

stages well beyond the point where animals bearing ept/M(3)

tumors normally die; a few survive to eclosion and emerge with

irregular heads and eyes (Fig. 1F) that are enlarged relative to

those expressing the DN-DaPKC transgene alone (Fig. 1G). To

confirm that this genetic interaction is not an artifact of the DN-

DaPKC transgene, ept/M(3) tumors were also generated in a

background heterozygous for the genomic DaPKCk06403 loss-of-

function allele [25]. This DaPKCk06403/+ genotype also shrank the

size of ept/M(3) tumors (Figs. 1D,E), confirming that DaPKC is

required for the ept tumor phenotype.

ept mutant cells exhibit G1/S cell cycle deregulation
Because excess cell proliferation is a key factor in tissue

hypertrophy, we examined the effect of ept loss on the cell cycling

properties of cells in eye-antennal discs and whether DaPKC might

influence this effect. Fluorescence-activated cell sorting (FACS)

analysis of ept/M(3) eye-antennal discs shows that the population

of cells within them is under-represented for 2N G1-phase cells

and enriched for S- and G2/M-phase cells relative to control

FRT/M(3) discs (Fig. 2A). Cell size is also increased in ept/M(3)

tumors relative to control cells (Fig. 2A, see inset). ept/M(3) eye-

antennal discs show widespread BrdU incorporation relative to

control discs (Figs. 2C–D) and lack cells that express the neuronal

marker Elav (Figs. 2E–F). FACS analysis of ept mutant wing disc

tumors [genotype UbxFlp;;M(3),FRT80B/ept2,FRT80B] show sim-

ilar cell cycle and cell size shifts as ept/M(3) eye-antennal disc cells

(Fig. 2B), although the G2/M-shift is less pronounced in the wing.

Thus cell cycling changes associated with loss of ept function are

not solely due to a block in progression of the eye-specific

morphogenetic furrow [26], indicating that loss of ept affects G1/S

progression in multiple larval discs.

Expression of DN-DaPKC in the background of ept/M(3) eye-

antennal discs led to a reproducible shift of a fraction of cells back

into the G1-phase (dotted line, Fig. 2C). The cell cycle shift

induced by the DN-DaPKC transgene only partially restored cell

cycle phasing and had no discernable effect on the enlarged size of

ept cells, suggesting that additional factors contribute to each of

these phenotypes. Consistent with this hypothesis, a reduction in

the dose of the stat92E gene affects both cell cycle phasing and cell

size in ept/M(3) tumors (see accompanying paper by Gilbert et al.).

We next examined the levels of G1/S regulatory proteins in

clones of eye disc cells doubly mutant for ept and the H99

chromosomal deletion, which removes the genes rpr, grim, and hid

[27] and prevents activation of the pro-death caspase enzymes

[28–33] that are otherwise detected at high levels in ept mutant

clones of cells (Figure S1); their removal thus allows recovery of

larger ept mutant clones and permits molecular analysis of protein

epitopes that might otherwise be degraded. The expression of two

key regulators of G1/S, the pro-division protein Cyclin E (CycE)

and Rbf1, the Drosophila homolog of the retinoblastoma (Rb)

tumor suppressor protein [34], were found to be affected by the ept

genotype. Compared to H99 control clones (Fig. 3A–A0), some

ept,H99 mutant clones express elevated levels of CycE protein

(Fig. 3B–B0, see arrows). CycE is also slightly elevated in some

normal cells that surround mutant clones, which is likely a

reflection of the previously described non-autonomous mitogenic

effect of ept mutant cells [6]. Neither of these effects on CycE are

not apparent in all clones, and are thus not a strongly penetrant

part of the ept,H99 phenotype. By contrast, immunostaining with a

monoclonal antibody specific to Rbf1 [34] shows that levels of this
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protein are clearly reduced in ept,H99 disc cells compared to

surrounding control cells (Fig. 3C–C0). Clones of H99 mutant cells

do not show the same effect (Figure S2), indicating that ept is

required to maintain normal levels of Rbf1 protein in eye-antennal

disc cells.

DaPKC and psn are required for the effect on Rbf1 levels
in ept mutant cells

Given the effect of the DaPKC alleles on ept/M(3) tumor

growth, we next examined whether DaPKC activity might affect

Rbf1 levels in ept mutant cells. To do this, the DN-DaPKC

transgene was expressed specifically in ept,H99 mutant cells using

the MARCM technique [35]. Although this led to a significant

reduction in the size of ept,H99 clones (paralleling the effect of the

DN-DaPKC transgene on ept tumor size), close examination of

DN-DaPKC+ept,H99 clones stained with the anti-Rbf1 antibody

revealed no obvious difference in Rbf1 levels relative to

surrounding normal cells (Fig 3D–D0). By this measure, DaPKC

activity is required for the effect of the ept,H99 genotype on Rbf1

levels. Because of the somewhat variable effect of the ept,H99

Figure 1. DaPKC is required for ept tumor growth. Bright-field images of ept/M(3) mutant (A), ept/M(3) mutant expressing DN-DaPKC (B), or
FRT80B/M(3) (C) eye-antennal discs dissected from wandering 3rd instar larvae. (D,E) Side-by-side image of an ept/M(3) mutant eye antennal disc and
an ept/M(3) disc that is heterozygous for the DaPKCk06403 allele. (F,G) Heads from surviving ept/M(3)+DN-DaPKC adults or DN-aPKC control animals.
Grouped images are to scale.
doi:10.1371/journal.pone.0007039.g001
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genotype on CycE, CycE levels were not examined in this

MARCM DN-DaPKC background. DaPKC is known to regulate a

number of cellular processes and pathways ([18] and reviewed in

[19]), including the Notch pathway in larval brain neuroblasts

[36]. To test whether an allele of a Notch pathway component

might also alter the effect of the ept,H99 genotype on Rbf1, a

strong loss-of-function allele of the presenilin gene (psn227;[37]) was

recombined onto the ept,H99 chromosome. psn encodes a

required component of the c-secretase that cleaves and releases

the Notch intracellular domain and it’s activity is needed for

Notch activation in vivo [38,39], Because all three loci are on the

left arm of chromosome 3, this ept,H99,psn mutant chromosome

allows for the production of somatic clones of triple mutant cells.

These cells are deficient in ept function and Psn activity, but give

rise to easily detectable clones due to their inability to die.

Immunostaining with the anti-Rbf1 antibody indicates that the

level of Rbf1 in these ept,H99,psn cells (arrows in Fig. 3E–E0) is

similar to that in surrounding normal cells. Thus, loss of psn has a

similar effect on levels of the anti-Rbf1 epitope in the ept,H99

genotype as does expression of the DN-DaPKC allele.

Figure 2. Cell cycle deregulation in ept mutant imaginal discs. (A–B) Flow cytometric analysis of cells in control FRT80B/M(3) (grey fill), ept
mutant (black line), or DN-DaPKC,ept/M(3) (dotted line) wing or eye imaginal discs. Percent of cells in each cell cycle phase is indicated. Inset images in
(B) show a normal wing disc and one composed of cells homozygous for the ept2 allele. Forward scatter (FSC) plot of cell size is also included for each
sample. Patterns of BrdU incorporation (C–D) and Elav expression (E–F) in control FRT80B/M(3) (C,E) and ept mutant (D,F) eye-antennal disc tumors
dissected from wandering-stage larvae. Inset in (F) shows expression of Elav (red) only in surviving GFP-positive Min/+ cells (green).
doi:10.1371/journal.pone.0007039.g002
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Figure 3. ept mutations reduce levels of the Drosophila Rb ortholog Rbf1. Confocal images of larval eye discs containing clones of H99
mutant cells (A–A0), ept,H99 double-mutant cells (B–C0) or ept,H99,psn triple mutant cells (E–E0) marked by the absence of GFP (green) co-stained for
CycE (red in A–B0), or Rbf1 (red in C–C0, and E–E0). Tracing in A0 and B0 outlines H99 and eptH99 mutant clones respectively. The anti-CycE signal was
recorded at the same optical settings in panels A0 and B0. Arrowheads in panels B and B0 denote ept,H99 double mutant clones that express CycE. (D–
D0) MARCM-mediated expression of DN-DaPKC (blue) in ept,H99 double-mutant cells marked by GFP (green) restores levels of Rbf1 (red). Arrows in
panel E denote clones of ept,H99,psn cells that express normal levels of Rbf1 relative to adjacent control cells.
doi:10.1371/journal.pone.0007039.g003
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Effect of DN-DaPKC on Notch and Upd in ept cells
The similar effect of the psn227 allele and the DN-DaPKC

transgene on the Rbf1 epitope in ept mutant cells led us to examine

Notch protein in ept mutant cells in backgrounds in which DaPKC

activity is reduced. ept/M(3) tumors grow as disorganized masses

that lack ‘landmarks’ normally associated with the eye disc (e.g.

morphogenetic furrow, optic stalk, eye-antennal boundary, etc)

thus depriving the tissue of any A/P or D/V reference points. We

have therefore used the sole remaining disc feature, the overlying

peripodial membrane, to orient each image. As shown in a prior

study [6], loss of ept causes the eye disc proper (DP) to grow as

disorganized groups of cells surrounded by a layer of peripodial

cells (PP) in which the Notch protein shows increased co-staining

with the endosomal protein Hrs (Fig. 4A–A9). This co-localization

of Notch and Hrs is most apparent in PP cells and in more cortical

regions of the DP (upper portion of image in Fig. 4A), suggesting

that Notch/Hrs-positive endosomes may accumulate in more

apical regions of DP cells. Notch-Hrs co-localization has also been

observed in cells lacking the ESCRT-II subunit gene vps25 [3,5]

and has been interpreted as an indication that Notch normally

traffics through ESCRT-I and -II vesicular compartments on its

way to the lysosome. Interestingly reducing DaPKC activity, either

by expression of the DN-DaPKC transgene (Fig. 4B–B9) or

heterozygosity for the DaPKCk06403 loss-of-function allele

(Fig. 4C–C9), alters the pattern of Notch protein localization in

ept/M(3): a larger proportion of the anti-Notch signal is detected

on outer surface of the DP and on the apical face of PP cells

(arrows in Fig. 4B), with a corresponding drop in the proportion

detected in Hrs-positive structures in cytoplasm of cells in the DP.

DaPKC alleles have a similar effect DP and PP populations of

Crumbs (Fig. 4D–F), a protein that is normally trapped in

cytoplasmic puncta in ept mutant cells [6] and that is known to be

regulated by DaPKC [24]. As recent studies have suggested that

Notch cleavage and activation requires internalization of Notch

protein into specific endosomal compartments [40], we sought to

determine if changes in Notch localization following expression

DN-DaPKC might correlate with changes in expression of a

validated Notch target. It has previously been shown that

expression of a Notch RNA interference ‘knock-down’ construct

in vps25 mutant eye disc cells is sufficient to block overproduction

of the Unpaired protein (Upd), which is otherwise expressed at

very high levels in vps25 mutant cells [3]. The overexpression of

Upd in ept mutant cells has also been shown to occur by a Notch-

dependent mechanism [6]. We find that expression of the DN-

Figure 4. DaPKC is required for cytoplasmic accumulation of Crb and Notch in ept mutant tissues. Confocal images of ept/M(3) (A–A9 and
D–D9), ept/M(3)+DN-DaPKC (B–B9 and E–E9), or ept/M(3),DaPKCk06403/+ (C–C9 and F–F9) tumors stained for Notch and Hrs (green and red respectively in
A–C) or Crb and Hrs (red and blue respectively in D–F). Dashed boxes in panels D and E are enlarged in panels D9 and E9. Arrows in panels B and C
mark membrane-associated Notch in disc and peripodial cells. Arrows in panels E and F mark membrane-associated and apical junctional Crb
staining. Peripodial cell layer (PP) and disc proper (DP) are labeled in panels A9, B9, C9, and F9 so as to orient the image relative to overall disc structure.
Image in panel D9 is of ept mutant DP cells; image in E9 is structured lobes of ept mutant DP cells that are able to form the presence of the DN-DaPKC
transgene. (G) Western blot analysis of Upd levels in FRT80B/M(3) (lane 1), ept/M(3) (lane 2), and ept/M(3)+DN-DaPKC (lane 3) larval eye-antennal discs.
The blot was stripped and re-probed with an anti-b2gal antibody as a loading control.
doi:10.1371/journal.pone.0007039.g004
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DaPKC is sufficient to substantially blunt the elevation in Upd

levels as measured by immunoblotting for total Upd protein

present in ept/M(3) eye-antennal discs (Fig. 4G). Thus, in addition

to its effect on ept/M(3) tumor growth, Rbf1 levels, and Notch

localization, DaPKC is also required for Notch-dependent hyper-

accumulation of Upd in ept/M(3) tumors.

Transgenic expression of rbf1 in ept/M(3) tumors
In light of the well-known role Rb family proteins play in

regulating the G1-to-S phase cell cycle transition [reviewed in 41],

reduced Rbf1 expression in ept mutant cells might be predicted to

impair the Rbf1-mediated block to unregulated S-phase entry. To

test what effect re-expression of rbf1 might then have on the ept

tumor phenotype, a UAS-rbf1 transgene was driven in the

background of either normal eye-antennal discs or ept mutant

eye/antennal tumors. rbf1 expression in control FRT80B/M(3)

eyes/heads leads to a moderate reduction in eye and head size

(Fig. 5A). In contrast, re-expression of rbf1 in ept eye/antennal

tumors completely blocks the growth of the mutant tissue and

results in headless pharate adults (Fig. 5B–C). A residual lump of

cuticle (arrow in Fig. 5C9) is all that remains of tumors that would

otherwise overgrow and kill the animal as an enlarged larva (e.g.

Fig. 5B–B0). Expression of rbf1 thus has a significant and specific

effect on the terminal organismal phenotype resulting from ept eye-

antennal tumors. To test if the effect of rbf1 on ept/M(3) tumor

growth is due to enhanced rates of apoptosis, the previous

experiment was repeated in ept,H99/M(3) tumors that express

UAS-GFP under control of the eyFLP and Actin5c.CD2.Gal4

transgenes [42], such that each ‘flip-out’ event creates a clone of

GFP-positive mutant cells. In the absence of the UAS-rbf1

transgene, these ept,H99 mutant tumors are uniformly green

(Fig. 5D–D0), indicating that clones of GFP-expressing ept,H99

mutant cells take over the majority of the organ. However, in the

presence of the UAS-rbf1 transgene, GFP-positive clones of ept,H99

mutant cells remain quite small (Fig. 5E9), indicating that

exogenously produced Rbf1 retains the ability to retard the

overgrowth of ept,H99 mutant cells. At an organ level, re-

expression of rbf1 in the apoptosis-compromised background of

eptH99/M(3) tumors results in pharate adults with small heads and

eyes (inset, Fig. 5E). Thus, the ability of rbf1 to block ept tumor

growth is only partly reduced in a background in which cell death

is compromised. These observations demonstrate that an eye-

antennal disc composed of ept mutant cells responds differently to

over-expression of rbf1 than a disc composed of normal cells eye

antennal cells, and suggests that re-introducing rbf1 either slows

proliferation of ept,H99 mutant cells or kills them by an H99-

Figure 5. Effect of re-expressing rbf1 in ept mutant eye-antennal discs. (A) Overexpression of rbf1 in the developing eye and head of control
animals results in a mild reduction in adult organ size. Overexpression of rbf1 in the developing eye and head tissue of animals bearing ept eye-
antennal tumors blocks the ept/M(3) giant larval phenotype (B) and results in headless adults (C) with small maxillary palps and a remnant of head
cuticle (indicated by arrowhead and arrow respectively in C9). Inset in B9 shows an ept mutant eye-antennal tumor to scale with respect to B and C.
Actin ‘Flp-out’ mediated overexpression of GFP (D–D9) or GFP and rbf1 (E–E9) in apoptosis-compromised ept,H99 mutant eye antennal discs reduces
clone size (D9 vs E9).
doi:10.1371/journal.pone.0007039.g005
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independent mechanism; alternatively, specification of early

progenitors of the head/eye fate may be defective in cells that

simultaneously overexpress rbf1 and lack ept.

Discussion

The data presented here indicate that the DaPKC kinase plays

a significant role in the growth of ept mutant imaginal disc tumors.

DaPKC is also required for tumor growth in other Drosophila

mutants [36,43–45], suggesting that DaPKC may be generally

required for excess proliferation in many different backgrounds.

The molecular mechanism through which reduced DaPKC

activity exerts these effects in ept/M(3) cells is not known, although

it correlates with increased apical membrane localization of two

membrane-bound proteins, Crumbs and Notch, that otherwise

aggregate in vesicle-associated structures in the cytoplasm of ept

mutant cells [6]. DaPKC directly phosphorylates Crumbs and the

endocytic adaptor Numb [36,44,46], which can in turn inhibit

Notch [reviewed in 47]. Thus the effect of reduced DaPKC

activity on ept tumor growth could be mediated exclusively

through effects on Notch and Crb. However two considerations

suggest this is unlikely: first, mutations in the hrs gene affect the

vesicular trafficking of many different receptors [17], suggesting

that signals transduced through many receptors may contribute to

the overall ept tumor phenotype; second, aPKC kinases appear to

play a general role in promoting endocytic internalization [18],

again suggesting that reduced DaPKC function may affect many

different pathways. In light of these considerations, it seems more

likely that DaPKC alleles partially rescue ept phenotypes not

because they specifically affect the endocytic uptake of one or two

apical-membrane proteins (e.g. Crb and Notch), but because they

generally lessen the endocytic uptake of a spectrum of proteins that

are otherwise trapped in the late-endosome of ept mutant cells.

Thus DaPKC might act as a ‘permissive factor’ in ept tumor

growth via a positive role in endosomal trafficking upstream of

ESCRT-1; in its absence a set of proteins that normally enter the

endolysosomal pathway and become trapped in ept mutant

endosomes are shunted toward an alternate fate that precludes

their accumulation in late endosomal compartments. Properly

testing this model will require a comprehensive analysis of the

requirement for DaPKC in sorting individual candidate proteins,

and in controlling the activity of specific polarity, signaling, and

proliferative pathways in which these proteins act.

The effect of ept loss on G1/S control in imaginal discs confirms

that one element of the ept tumor phenotype is deregulated cell

division. Additionally, the data show that this correlates with a

requirement for ept to maintain normal levels of the key S-phase

inhibitor Rbf1 in imaginal disc cells. Loss of Rb homlogs in

multiple species is sufficient to accelerate tumor progression

[reviewed in 48]. Thus the effect of ept on Rbf1 provides a link

between a member of the ‘neoplastic’ tumor suppressor genes and

an established cell cycle regulator and tumor suppressor protein.

Our experiments argue that this effect on Rbf1 is significant to the

physiology of ept mutant tissues and identify two factors, the

DaPKC kinase and the c-secretase subunit Psn, as required for the

reduction of Rbf1 in ept mutant cells. ept alleles do not affect on Psn

protein levels in the eye disc (data not shown), indicating that this

requirement for Psn is probably indirect via cleavage of another

factor whose activity controls Rbf1 levels. The Notch receptor is a

candidate for this role: it is trapped and hyper-activated in ept

mutant endosomes [6], and its activation mechanism requires a

cleavage event that studies have found correlates with Notch

endosomal localization [40]. Moreover, ectopic Notch activity has

been reported to facilitate transcriptional silencing of the rbf1 gene

in an eye disc tumor model [15]. Thus the effect of the psn allele on

Rbf1 levels in ept cells could indicate a role for Notch upstream of

Rbf1. Consistent with this, the ability of the dominant-negative

DaPKC allele to restore Rbf1 levels in ept cells correlates with its

ability to block overproduction of the Upd protein, a Notch-target

in ESCRT mutant cells. The ability of DaPKC to act as a pro-

growth ‘proliferation factor’ in larval brain neuroblasts (NBs) a cell

type that uses asymmetric divisions to regulate the fate and

proliferative potential of daughter cells, has also been genetically

linked to Notch activity [36,43,44]. Though these observations

suggest that the effect of DaPKC and psn on Rbf1 levels in ept

mutant cells may reflect a Notch-regulatory role for both genes, it

remains possible that psn and DaPKC are also involved in a Notch-

independent signaling pathway that is responsible for the drop in

Rbf1 levels in ept mutant disc cells. As certain endocytic tumor

suppressors activate Notch (e.g. ept and vps25) and others do so to a

much lesser extent (e.g. ayx7/avl), one way to begin to address this

question may be to examine the pattern of Rbf1 expression in each

of these mutant backgrounds.

As a component of the ESCRT-1 complex, ept developmental

phenotypes are expected to reflect the combined deregulation of

the myriad proteins that traffic through ESCRT-1 dependent

compartments of the endolysosomal pathway. Indeed certain

elements of the ept mutant phenotype (e.g. increased cell size) do

not appear to respond to reduced DaPKC activity. Many other

prominent signaling molecules are mislocalized in Drosophila wing

disc cells mutant for the endocytic regulator hrs [17], which acts at

a sorting step prior to the ESCRT-1 complex [49]. The pathways

in which these molecules act should thus be considered as

additional candidate effectors of ept mutations. This expanding

array of potential ESCRT targets raises the possibility that

inactivation of ept will have tissue- and stage-specific phenotypes

that reflect the changing pattern of proteins targeted for

endolysosomal degradation in various cell types. If targeted

endocytosis regulates a similar array of proteins in certain

mammalian epithelial cells as it does in Drosophila imaginal discs,

it may be that defects in this process will act via an aPKC- and

Psn-dependent pathway to produce neoplastic phenotypes similar

to those observed with alleles of Drosophila ept.

Materials and Methods

Genetics
Crosses were carried out at 25uC unless otherwise indicated.

DN-DaPKC-mediated rescue of ept tumor phenotypes was optimal

at 20uC. ept mutant eye clones were generated as described

previously [4,6]. ept,H99 and ept,H99,psn mutant eye clones were

generated by crossing either w;;eptX1,Df(3L)H99,FRT80B/TM6B

or w;;eptX1,Df(3L)H99,psn227,FRT80B/TM6B males to yweyFLP;;

P[m-w+;ubiGFP],FRT80B females. ept mutant eye-antennal tumors

were generated by crossing w;;ept2,FRT80B males and yweyFLP;;

P[m-w+]RpL141,FRT80B/TM6B females. ‘DN-DaPKC,ept/M(3)’

animals were generated by crossing the w;UAS-DN-aPK-

C;ept2,FRT80B/TM6B stock to the y,w,eyFLP; act.y+.Gal4/

CyO:twi-GFP;P[m-w+]RpL141,FRT80B/TM6B stock. Expression of

DN-DaPKC in ept,H99 clones was achieved by crossing w;UAS-DN-

DaPKC;eptX1,Df(3L)H99,FRT80B/TM6B males to eyFLP;tub-Gal4;-

tub-Gal80,FRT80B females. ‘rbf1,ept/M(3)’ and ‘rbf1,eptH99/M(3)’

animals were generated by crossing the w;UAS-rbf1/Cy-

O;ept2,FRT80B/TM6B or w;UAS-rbf1/CyO;eptX1,Df(3L)H99,FRT

80B/TM6B stocks to the y,w,eyFLP; act.y+.Gal4/CyO:twi-

GFP;P[m-w+]RpL141,FRT80B/TM6B stock. The DaPKCk06403

and psn227 were obtained from the Bloomington Drosophila Stock

Center (BDSC). The Df(3L)H99 stock was a gift of K. White.
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The UAS-DN-DaPKC chromosome 2 stock was a gift of D. Bilder.

DN-DaPKC-expressing ept mutant clones were generated by

crossing the yweyFLP;tub-Gal4/CyO;tub-Gal80,FRT80B stock (gift

of J. Treisman) to w;UAS-DN-DaPKC/CyO,twi-GFP;ept2,FRT80B/

TM6B.

Flow Cytometry
Eye or wings discs were dissociated in PBS Trypsin-EDTA and

stained with 20 mM DRAQ-5 (Biostatus Limited). Data were

acquired on a Becton Dickinson LSR II flow cytometer via a

755 nM Red laser with a 780/60 nM BP collection filter and were

analyzed with FACSDiva Software.

Microscopy & Immunohistochemistry
Immunostaining and confocal microscopy was performed as

described previously [50]. Antibodies used were: rat anti-Crb-

extra (gift of U. Tepass and E. Knust) 1:500; guinea pig anti-Hrs

(gift of H. Bellen) 1:1000; mouse anti-BrdU (Becton Dickinson)

1:100; mouse anti-CycE, 1:5 (gift of H. Richardson); mouse 9C6

anti-Notch (DSHB) 1:50; mouse anti-Rbf1 DX5 (gift of W. Du),

1:50; rat anti-ELAV (DSHB) 1:1000; goat anti-rabbit Cy5, goat

anti-mouse Cy3, goat anti-guinea pig Cy3, and goat anti-rat Cy3

(Jackson Laboratories) each at 1:50. BrdU incorporation assays

were performed as described previously [51].

Supporting Information

Figure S1 Levels of cleaved Caspase-3 are elevated in ept/tsg101

mutant eye clones. Clones of ept/tsg101 mutant cells marked by the

absence of GFP (green) contain many dying cells, as indicated by

staining for cleaved Caspase-3 (blue).

Found at: doi:10.1371/journal.pone.0007039.s001 (1.84 MB TIF)

Figure S2 Rbf1 levels are unaffected by the H99 deletion.

Confocal image of H99 clones (lacking GFP) in a mosaic 3rd instar

eye imaginal disc stained with the anti-Rbf1 antibody (red).

Found at: doi:10.1371/journal.pone.0007039.s002 (0.73 MB TIF)
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