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Abstract: Sodium–glucose cotransporter 2 (SGLT2) inhibitors such as empagliflozin are known to
reduce the risk of hospitalizations related to heart failure irrespective of diabetic state. Meanwhile,
adverse cardiac remodeling remains the leading cause of heart failure and death in the USA. Thus,
understanding the mechanisms that are responsible for the beneficial effects of SGLT2 inhibitors is of
the utmost relevance and importance. Our previous work illustrated a connection between adverse
cardiac remodeling and the regulation of mitochondrial turnover and cellular energetics using a
short-acting glucagon-like peptide-1 receptor agonist (GLP1Ra). Here, we sought to determine if the
mechanism of the SGLT2 inhibitor empagliflozin (EMPA) in ameliorating adverse remodeling was
similar and/or to identify what differences exist, if any. To this end, we administered permanent
coronary artery ligation to induce adverse remodeling in wild-type and Parkin knockout mice and
examined the progression of adverse cardiac remodeling with or without EMPA treatment over time.
Like GLP1Ra, we found that EMPA affords a robust attenuation of PCAL-induced adverse remodeling.
Interestingly, unlike the GLP1Ra, EMPA does not require Parkin to improve/maintain mitochondria-
related cellular energetics and afford its benefits against developing adverse remodeling. These
findings suggests that further investigation of EMPA is warranted as a potential path for developing
therapy against adverse cardiac remodeling for patients that may have Parkin and/or mitophagy-
related deficiencies.
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1. Introduction

Adverse postinfarction left ventricular (LV) remodeling is a major cause of heart failure
(HF) in the United States today [1–3]. This is due in part to the welcomed increase in patient
survival due to early initiation of reperfusion therapies after acute myocardial infarction
(AMI). While angiotensin-converting enzyme inhibitors, angiotensin receptor blockers,
beta blockers and sacubitril/valsartan are the pillars of pharmacologic therapy for HF
with reduced ejection fraction (HFrEF), the benefits are most often seen in patients with
large infarcts and individuals who are not candidates for reperfusion therapies. Their
use, however, relates to no more than a 20–25% reduction in major adverse cardiac events
(MACE) [4]. Thus, there is clearly a need to develop additional therapeutic strategies.

One approach that holds considerable promise is the use of a relatively new class
of drugs used to treat type 2 diabetes mellitus (T2DM), specifically sodium–glucose co-
transporter 2 (SGLT-2) inhibitors (glifozin class). A major driver for the use of these drugs in
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the setting of HF is the EMPA-REG OUTCOME trial [5]. This was the first large randomized
clinical trial that showed empagliflozin (EMPA), a specific SGLT-2 inhibitor, was not only
effective in reducing MACE but that the outcome was driven primarily by a reduction
in cardiovascular deaths and hospitalization for heart failure [5–7]. Two additional car-
diovascular outcome trials (DAPA-HF (assessing dapagliflozin) and EMPEROR-Reduced
(assessing empagliflozin)) demonstrated similar outcomes [8–10]. These findings have
resulted in recent FDA approval of dapagliflozin and empagliflozin for the treatment of
HFrEF. This is despite the fact, however, that the mechanism(s) underlying their effective-
ness remains unknown [11]. If SGLT-2 inhibitors are to become a standard of care for heart
failure in nondiabetic patients, a much better understanding of their mechanism of action is
needed. This is particularly important given the growing evidence that the cardioprotective
effect of SGLT-2 inhibitors appears to be mediated independent of glycemic control [12].
Moreover, given that two SLGT2 inhibitors have received FDA approval for therapy and
many others are under development it is increasingly important to understand how and
why they work—assuming that selectivity among these inhibitors and their adverse side
effects will vary [13].

One mechanism that has been recently implicated but not fully explored is the benefi-
cial effect of SGLT2 inhibitors on cardiac mitophagy (autophagy selective for mitochondria),
mitochondrial biogenesis and improvements in mitochondrial function [14,15]. To further
explore these aspects in a preclinical setting, we assessed the effect of EMPA on postinfarc-
tion remodeling in wild-type and mitophagy-compromised Parkin knockout (PKO) mice.
Parkin is an E3 ubiquitin ligase found in several tissues including, but not limited to, heart,
brain, liver and kidneys [16,17]. A key role of Parkin is in selectively targeting damaged or
unwanted mitochondria for elimination through autophagy [18–21]. The effect of the drug
on bioenergetics was also assessed in differentiated H9C2 cardiomyocytes and mitochon-
dria isolated from the hearts of WT and PKO mice. Parkin-mediated mitophagy has been
shown to be an important aspect of cardioprotection under various settings [22–26]. An
important focus of this work was to evaluate the requirement of Parkin in the mechanism
of empagliflozin-mediated attenuation of adverse cardiac remodeling.

2. Results
2.1. The Effect of EMPA on Postinfarction Adverse LV Remodeling in WT Mice and Immune
Cell Infiltration

A schematic of our experimental procedure detailing our mouse model of permanent
coronary artery ligation (PCAL) and EMPA treatment scheme is shown in Figure 1A. The
timing of when we investigated for key features that occur in MI-induced adverse cardiac
remodeling in mouse was inspired by the work of Yang and colleagues [27]. Histological
analysis performed at 3 days after PCAL revealed substantially less infiltration of immune
cells in the border zone region compared to vehicle control (hydroxyethyl cellulose, HC,
Figure 1B). At 14 days post PCAL, treated mice had less fibrosis in the border zone region
compared to control vehicle-treated mice (Figure 1C). Correspondingly, vehicle-treated WT
mice exhibited greater ventricular wall thinning and were enlarged relative to the hearts of
EMPA-treated mice; likewise, the heart weight to body weight and heart weight to tibial
length ratios were greater in the control animals (see Figure 1D,E). The EF and FS obtained
by echocardiography performed 14 and 28 d post-MI in treated WT mice were significantly
better in the EMPA-treated cohort, although improvement did not reach baseline values
from naïve mice (EF ~60% and FS ~30%). No differences were observed in calculated
LV mass, diastolic and systolic LV volume, LVID and LVPW; however, there was a trend
towards improvement in these parameters in the EMPA-treated mice at 28 d (Table 1).
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of the border zone to highlight infiltration of immune cells; (C) representative 4× and 20× magnifi-
cation of heart sections with Masson Trichrome staining 14 days after PCAL showing fibrosis; (D) 
representative 20× magnification of heart sections with Masson Trichrome staining 28 days after 
PCAL showing fibrosis and LV dilation; (E) heart weight/body weight (mg/g); heart weight/tibia 
length (mg/cm), n ≥ 8. 
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 WT-VEH(7) WT-EMPA(8) p Value WT-VEH(6) WT-EMPA(7) p Value 
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LV Vol; d (μL)  93.87 ± 14.75 97.00 ± 25.34 0.78 119.96 ± 61.41 100.99 ± 36.56 0.51 
LV Vol; s (μL)  58.18 ± 14.61 48.65 ± 17.09 0.27 81.43 ± 51.59 54.54 ± 26.76 0.25 
LVID; d (mm) 4.52 ± 0.30 4.57 ± 0.48 0.83 4.93 ± 0.97 4.61 ± 0.72 0.51 
LVID; s (mm)   3.68 ± 0.38 3.40 ± 0.48 0.23 4.14 ± 0.99 3.52 ± 0.75 0.22 

LVPW; d (mm) 0.92 ± 0.10 0.88 ± 0.13 0.54 0.86 ± 0.20 0.95 ± 0.18 0.41 
LVPW; s (mm)  1.01 ± 0.12 1.15 ± 0.14 0.05 1.01 ± 0.21 1.20 ± 0.17 0.10 

Figure 1. EMPA limits infarct-mediated development of adverse remodeling in WT mice. Age-
matched WT mice underwent PCAL and 2 h later were given vehicle (0.5% w/w hydroxyethyl
cellulose) or EMPA (10 mg/kg/day) via oral gavage daily. (A) Schematic of the protocol; (B) represen-
tative 4× and 20× magnification of heart sections 3d after PCAL, stained with H&E; 20× enlargement
of the border zone to highlight infiltration of immune cells; (C) representative 4× and 20× mag-
nification of heart sections with Masson Trichrome staining 14 days after PCAL showing fibrosis;
(D) representative 20× magnification of heart sections with Masson Trichrome staining 28 days after
PCAL showing fibrosis and LV dilation; (E) heart weight/body weight (mg/g); heart weight/tibia
length (mg/cm), n ≥ 8.

Table 1. Assessment of cardiac function and post–infarction cardiac remodeling by echocardiography
14 and 28 days after MI in wild type mice treated with EMPA (10mg/kg/day) or vehicle.

14 Day 28 Day

WT-VEH(7) WT-EMPA(8) p Value WT-VEH(6) WT-EMPA(7) p Value

HR (bpm) 451 ± 70.48 429 ± 49.65 0.49 440 ± 71.57 397 ± 35.10 0.19

EF (%) 38.71 ± 5.76 50.42 ± 8.34 0.01 34.40 ± 8.32 47.85 ± 11.16 0.03

FS (%) 18.70 ± 3.02 25.74 ± 5.21 0.01 16.51 ± 4.37 24.26 ± 6.53 0.03

LV Mass (mg) 152.52 ± 21.22 156.42 ± 57.44 0.87 136.15 ± 34.31 127.01 ± 32.33 0.63

LV Mass (Corrected) (mg) 122.02 ± 16.98 125.13 ± 45.95 0.87 136.15 ± 34.31 127.01 ± 32.33 0.63

LV Vol; d (µL) 93.87 ± 14.75 97.00 ± 25.34 0.78 119.96 ± 61.41 100.99 ± 36.56 0.51

LV Vol; s (µL) 58.18 ± 14.61 48.65 ± 17.09 0.27 81.43 ± 51.59 54.54 ± 26.76 0.25

LVID; d (mm) 4.52 ± 0.30 4.57 ± 0.48 0.83 4.93 ± 0.97 4.61 ± 0.72 0.51

LVID; s (mm) 3.68 ± 0.38 3.40 ± 0.48 0.23 4.14 ± 0.99 3.52 ± 0.75 0.22

LVPW; d (mm) 0.92 ± 0.10 0.88 ± 0.13 0.54 0.86 ± 0.20 0.95 ± 0.18 0.41

LVPW; s (mm) 1.01 ± 0.12 1.15 ± 0.14 0.05 1.01 ± 0.21 1.20 ± 0.17 0.10
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2.2. The Effect of EMPA on Mitochondrial Energetics and Content in H9C2 Cardiac Cells

To test the hypothesis that the beneficial effects of EMPA on LV remodeling and
cardiac function were due to a direct effect on the cardiomyocytes and improvement in
mitochondrial quality, we incubated differentiated H9C2 cells for 24 h with 0.01% v/v
DMSO or EMPA (0.1 or 1 µM). Both doses of EMPA were associated with an improvement
in the basal and maximal respiratory capacity of H9C2 cardiomyocytes (Figure 2A–C).
Western blot analysis revealed that EMPA was also associated with a marked increase
in the surrogate markers for mitochondrial content, such as COX-IV, COX-V subunit A,
TOM40 and TOM70 during cotreatment with bafilomycin A1 (to block autophagic flux),
suggestive of increased mitochondrial turnover (Figure 2D). The findings also demonstrate
that EMPA acts directly on cardiac cells to induce mitochondrial turnover, leading to
improved mitochondrial energetics.
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Figure 2. EMPA directly improves mitochondrial quality in H9C2 cells. H9C2 cells were pretreated
with DMSO (0.01% v/v), 0.1 µM or 1 µM EMPA for 24 h, then oxygen consumption rates were
measured with seahorse mito stress test. (A) Mito stress test respirometry profile of DMSO or EMPA-
treated cells; (B) quantification of basal respiration; (C) quantification of maximal respiration capacity
(n = 3). (D) Western blot analysis and quantification of mitochondria biogenesis markers COX IV,
CV-ATP5A and TOM40 in whole cell lysates (n = 3).
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2.3. Effect of EMPA on Postinfarction Adverse LV Remodeling and Immune Cell Infiltration in
Mitophagy-Impaired PKO Mice

A schematic of our experimental procedures detailing our mouse model of PCAL and
EMPA treatment in Parkin-knockout mice (PKO) is shown in Figure 3A. Echocardiographic
findings obtained 14 days after PCAL are shown in Table 2. EMPA treatment was associated
with markedly better EF and FS when compared to their respective vehicle control. Like WT
mice, EMPA-treated PKO mice also exhibited less infiltration of immune cells (Figure 3B)
in the border zone region compared to vehicle controls. EMPA-treated mice exhibited less
fibrosis 14 days after PCAL (Figure 3C).
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 PKO-VEH(7) PKO-EMPA(9) p Value 
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Figure 3. EMPA limits infarct-mediated development of adverse remodeling in Parkin knockout mice.
Age-matched WT mice underwent PCAL and 2 h later were given vehicle (0.5% w/v hydroxyethyl
cellulose) or EMPA (10 mg/kg/day) via oral gavage daily. (A) Schematic of the protocol; (B) repre-
sentative 4× and 20× magnification of heart sections stained with H&E of infarct border zone from
3 days after PCAL to show infiltration of immune cells; (C) representative 4× and 20× magnification
of heart sections with Masson Trichrome staining 14 days after PCAL showing fibrosis.

Table 2. Assessment of cardiac function and post–infarction cardiac remodeling by echocardiography
14 after MI in PKO mice treated with EMPA (10mg/kg/day) or vehicle.

PKO-VEH(7) PKO-EMPA(9) p Value

HR (bpm) 410 ± 35.29 385 ± 12.65 0.24

EF (%) 36.28 ± 7.75 46.58 ± 10.78 0.04

FS (%) 17.70 ± 7.75 23.44 ± 6.34 0.05

LV Mass (mg) 144.52 ± 39.27 145.2 ± 42.29 0.60

LV Mass (Corrected) (mg) 115.62 ± 31.42 116.16 ± 33.83 0.60

LV Vol; d (µL) 98.53 ± 35.39 99.04 ± 39.54 0.60

LV Vol; s (µL) 64.84 ± 27.38 56.23 ± 33.19 0.29

LVID; d (mm) 4.56 ± 0.74 4.57 ± 0.75 0.56

LVID; s (mm) 3.78 ± 0.80 3.54 ± 0.86 0.26

LVPW; d (mm) 0.83 ± 0.27 0.79 ± 0.17 0.63

LVPW; s (mm) 1.04 ± 0.27 1.08 ± 0.26 0.77
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2.4. The Effect of EMPA on Isolated Mitochondria Obtained from WT Mice and PKO Mice with
Impaired Mitophagy

Respiratory analysis performed on freshly isolated mitochondria from vehicle- or
EMPA-treated WT or PKO mice 14 days post MI allowed for a direct comparison of the
respiratory performance between equal amounts of mitochondria between study groups.
EMPA increased baseline mitochondrial oxygen consumption and maximal respiratory
capacity in WT mice but not PKO mice (Figure 4A,B). Increased respiratory capacity is
typically due to an increase in mitochondrial content. Analysis of total heart lysates from
WT mice revealed an increase in mitochondrial proteins, including representative subunits
of each of the 5 OXPHOS complexes, as well as COX IV, TOM20 and Mfn2 (Figure 5A).
A similar increase in mitochondrial protein content was observed in PKO mice as well
(Figure 5B), although this was not reflected in a similar increase in mitochondrial respiration
(Figure 4C,D). When whole heart lysates were examined for mitochondrial markers as a
surrogate for mitochondria content, both WT and PKO mice exhibited a general increase in
most of these markers (Figure 5A,B).
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Figure 4. Post-infarction treatment with EMPA boosts mitochondria-linked cardiac energetics of WT
but not PKO mice. Mice were subjected to PCAL and treated with vehicle (0.5% w/w hydroxyethyl
cellulose VEH) or EMPA (10 mg/kg/day). Mitochondria isolated from heart tissue 14 days after
PCAL and oxygen consumption was measured using Seahorse mito stress test. (A) Respiration
profile of isolated mitochondria from WT mice treated with VEH or EMPA; (B) quantification of basal
respiration and maximal respiratory capacity of mitochondria from WT mice (n = 4); (C) respiration
profile of isolated mitochondria from PKO mice treated with VEH or EMPA; (D) quantification of
basal respiration and maximal respiration capacity of mitochondria from PKO mice (n ≥ 5).
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Figure 5. EMPA increases cardiac mitochondrial content in vivo. Mice were subjected to PCAL and
then treated with vehicle (0.5% w/v hydroxyethyl cellulose) or EMPA (10 mg/kg/day) for 14 d
followed by tissue harvest. (A) Cardiac lysates from WT mice were analyzed by Western blot analysis
and quantification of mitochondrial markers COX IV, Mfn2, Opa 1, TOM 40 and OXPHOS (n = 7);
(B) cardiac lysates from PKO mice were analyzed by Western blot analysis and quantification of
mitochondrial markers COX IV, Mfn2, TOM 40 and OXPHOS (n ≥ 5).

3. Materials and Methods
3.1. Animals

All animal procedures involving C57BL/6J wild-type male mice and Parkin gene
knockout male mice (Parkin−/−, PKO) were performed in accordance with institutional
guidelines and approved by the Institutional Animal Care and Use Committee of Cedars-
Sinai Medical Center. The C57BL/6J mice and PKO mice used in these studies were between
12–16 weeks old. At the end of the experimental procedures, mice were anesthetized by
isoflurane and euthanized by cervical dislocation.

3.2. Animal Protocol for In Vivo Wild-Type and PKO Mouse Studies

Animals were anesthetized with 2% isoflurane gas, intubated and ventilated. Pressure-
controlled ventilation (Harvard Apparatus) was maintained at 2–3 cm H2O; anesthesia
was maintained with 0.5–1% isoflurane throughout the procedure. A permanent coronary
artery ligation (PCAL) procedure was performed as previously described [28]. Two hours
after surgery, mice were randomized to receive vehicle (0.5% hydroxyethyl cellulose, HC)
or 10 mg/kg/day empagliflozin (EMPA) daily via oral gavage for 14 days.
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At 14 days post-PCAL, WT and PKO mice underwent echocardiography. Hearts were
harvested and weighed to assess wet/dry ratio and heart weights were normalized to
tibia length. For biochemistry, the largely acellular fibrous infarct region was excluded.
In a separate series of experiments, hearts were harvested 3 and 14 days post-PCAL for
histological assessment of immune cell infiltration and fibrosis. A separate cohort of WT
mice were followed for an additional 2 weeks (to 28 days post-PCAL) at which time echo
was performed and hearts were obtained for the same biochemical studies performed
at 14 days. Studies were limited to 14 days post-PCAL in PKO mice due to anticipated
high morbidity and mortality rates characteristic of these mice [25,28]. The protocol is
summarized in Figures 1A and 3A.

3.3. Echocardiography

Transthoracic echocardiography was performed with a high-resolution Vevo 3100
(Fujifilm Visual Sonics, Inc.; Toronto Canada). Mice were anesthetized with an inhaled
mixture of oxygen and 2% isoflurane gas at a flow rate of 1 L/min. Heart rate was
maintained between 400 to 500 bpm and ultrasound gel was warmed to body temper-
ature before application to the depilated mouse chest. The echocardiography data col-
lection and cardiac function analysis has been validated by others and described in our
previous paper [28]. LV volume, ejection fraction (EF)% and Fractional Shortening (FS)
were calculated from M-mode-derived LV dimensions using the formula (LV Volume =
[7/(2.4 + LVID)] * LVID3 EF = (LV vol,d − LV vol,s)/LV vol,d * 100. Fractional Shortening
(FS) = [(LVd − LVs)/LVd)] * 100.

3.4. Histology for Immune Cell Infiltration and Fibrosis Post-MI

Three and 14 days after PCAL, hearts were harvested, perfused with PBS, fixed in
4% paraformaldehyde (PFA) for 24 to 48 h and then transferred to 70% ethanol. Tissues
were prepared and preserved through cryo-embedding in an optimal cutting temperature
compound or paraffin embedding for subsequent histopathology staining and microscopic
analysis (Keyence Biorevo BZ-9000). To identify immune cell infiltration on day 3, slide
sections were stained with hematoxylin and eosin (Stain Kit Vector Laboratories Inc., H-
3502) according to manufacturer’s protocol, followed by dehydration in 95–100% ethanol
gradient. Slide sections were covered with hematoxylin and rinsed with distilled water.
Adequate Eosin Y solution was applied on sections, incubated for about 3 min and rinsed
using 100% ethanol. Slides were dehydrated in 3 changes of 100% ethanol, cleared with
xylene and mounted with Cytoseal (VWR, 48212-187).

Fibrosis was assessed at 14 days by staining heart sections with Masson’s Trichrome
(Sigma-Aldrich, HT15-1KT). Briefly, slide sections were deparaffinized using xylene and an
ethanol gradient (100–70%) and hydrated with deionized water. Sections were placed in a
container with Bouin’s solution overnight, washed in running tap water to remove yellow
color from sections and stained in Weigert’s iron hematoxylin and Biebrich scarlet-acid
fuchsin solution. Further steps included decolorizing with phosphomolybdic -phosphotungstic
acid solution, aniline blue solution staining and clarification in 1% acetic acid solution.
Sections were dehydrated through alcohol, cleared in xylene and then mounted.

3.5. Effect of EMPA on Mitophagy and Mitochondrial Biogenesis on Differentiated H9C2 Cells

H9C2 (rat cardiac myoblast cells) were purchased from ATCC (CRL-1446) and main-
tained in high-glucose growth media consisting of DMEM (Gibco, 11995-073; Thermo Fisher
Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum (Life Technolo-
gies, 16010-159; Carlsbad, CA, USA) and 1% antibiotic/antimycotic (Life Technologies,
15230-062; Carlsbad, CA, USA). Cells were differentiated for 4 to 5 days in high-glucose
DMEM containing 1% fetal bovine serum and 1% antibiotic/antimycotic before starting
experiments. To investigate the effect of the SGLT2 inhibitor on autophagy/mitophagy
and/or mitochondrial biogenesis, cells were treated with 0.1 or 1 µM EMPA or vehicle
0.1% v/v dimethyl sulfoxide (DMSO) (Sigma-Aldrich, D4540; St. Louis, MO, USA) for 24 h.
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Then, 8 h before cell harvesting, 50 nM Bafilomycin A1 or 0.1% v/v DMSO was added to
inhibit lysosomal degradation for flux determination. Functional respiratory analysis and
biochemical analyses of mitochondrial components were then performed.

3.6. Subcellular Fractionation of Heart Tissues and Differentiated H9C2 Cells

For subcellular fractionation to obtain whole lysate and mitochondria-enriched heavy
membrane, heart tissues were homogenized in 1 mL HES buffer [4-(2hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES) (10 mM, pH 7.4), ethylenediaminetetraacetic
acid [EDTA] (1 mM) and sucrose (250 mM)]. Fresh protease inhibitor cocktail (Roche,
05056489001) and phosphatase inhibitors (20 mM sodium fluoride) were added immedi-
ately before use. Homogenates were spun down at 1000 g to eliminate nuclei and debris.
Next, 200 µL of postnuclear supernatants were saved as whole lysate; the remaining su-
pernatants were then spun down at 7000 g to obtain the mitochondria-enriched heavy
membrane pellet. The pellet was then resuspended in RIPA buffer pH 8.0 [Trizma base
(50 mM; Sigma-Aldrich, T1503), NaCl (150 mM; Sigma-Aldrich, S7653), ethylene glycol
tetraacetic acid [EGTA] (2 mM; Sigma-Aldrich, E4378), ethylenediaminetetraacetic acid
[EDTA] (1 mM; Sigma-Aldrich, E4884), sodium deoxycholate (0.5%; Sigma-Aldrich, D6750),
NP-40 (1%; Sigma-Aldrich, I3021), sodium dodecyl sulfate [SDS] (0.1%; Bio-Rad Laborato-
ries Inc., 161–0302)] with protease and phosphatase inhibitors added just before use.

For the in vitro H9C2 cell experiments, media were removed, and cells were rinsed
with PBS. HES buffer with protease and phosphatase inhibitors was then added and cells
were collected with a cell scraper and transferred to an Eppendorf tube. Mitochondria
fractionation from differentiated H9C2 cells followed the protocol previously described [28].
All the cell samples and tissue samples were stored at −80 ◦C until use.

3.7. Western Blot Analysis

Protein concentrations of whole lysates, mitochondria-enriched heavy membrane and
nuclear samples were determined by Bio-Red DCTM Protein Assay kit (BIO-RAD, 5000111;
Hercules, CA, USA). Equal amounts of proteins were separated on Bolt 4–12% Bis-Tris
Plus gels (Thermo Fisher Scientific; Waltham, MA, USA) and transferred to nitrocellulose
membranes. Membranes were blocked with 5% nonfat dry milk prepared in Tris-buffered
saline with 0.1% Tween 20 (TBS-T) pH 7.6 for 1 h and incubated with 1:1000 diluted
primary antibodies against: P62, TOM70, TOM40, COX IV, Mfn2, PINK1, PGC-1α and
PPAR-α. After primary incubation, blots were washed with TBS-T at room temperature and
incubated with KPL Peroxidase Labeled Goat anti-Mouse IgG (H + L) (1:3000, KPL Affinity
Purified Antibody, SeraCare) or KPL Peroxidase-Labeled Goat anti-Rabbit IgG (H + L)
secondary antibodies for 2 h in room temperature. Membranes were washed in TBS-T
(3 × 5 min), developed with Clarity Western ECL Substrate (Bio-Rad) and imaged using
a ChemiDoc XRS and Image Lab software v 5.0 (Bio-Rad). Densitometry was performed
using NIH Image J software v 1.51.

3.8. Seahorse Mitochondria Stress Test (Respirometry)

A mitochondria stress test was carried out on differentiated H9C2 cells using XFe24 ex-
tracellular flux analyzers. First, 40,000 cells were seeded in each well of Seahorse XFe24 cell
culture microplate and began differentiation on the second day. Cells were differentiated for
5 days and pretreated with 0.1% DMSO or 0.1 µM/1 µM Empagliflozin for 24 h. Seahorse
assay media was freshly prepared with Seahorse XF base media with 1 mM sodium pyru-
vate, 10 mM glucose and 2 mM glutamine at pH7.4. The cell culture media was replaced
with Seahorse assay media and the cell plate was stored in 37 ◦C incubator (no CO2) for
45–60 min before the assay. Mitochondrial respiration was measured following sequential
injection of 1 µM oligomycin, 1 µM FCCP and 0.5 µM/0.5 µM antimycin/rotenone.

An isolated mitochondria stress test was conducted using a Seahorse XFe96 extra-
cellular flux analyzer. Fourteen days after PCAL, hearts were harvested from C57BL/6J
wild-type and PKO mice and homogenized with Polytron in HES buffer with 0.2% fatty-
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acid-free bovine serum albumin (BSA). Samples were spun down at 1000× g for 5 min to
eliminate nuclei and debris; supernatants were further spun down at 7000× g for 10 min to
obtain mitochondria-enriched heavy membranes. Mitochondria pellets were resuspended
in HES buffer. Protein concentration of samples were measured using Bio-Rad DCTM pro-
tein assay kit. Next, 3 µg isolated mitochondria in 25 µL HES buffer were loaded into XFe96
cell culture plates and spun down at 2000× g for 20 min, then 155 µL of mitochondrial
assay solution (MAS) with 0.2% fatty acid-free BSA was added to bring the volume up to
180 µL. MAS buffer consists of 70 mM sucrose, 220 mM mannitol, 5 mM KH2PO4, 5 mM
MgCl2, 2 mM HEPES, 1 mM EGTA and 0.2% essentially fatty-acid-free BSA, pH 7.2. The
plate was warmed to 37 ◦C for 10 min prior to the assay in incubator (no CO2). Oxygen
consumption was subsequently monitored following sequential injection of 5 mM pyruvate,
5 mM malate and 0.25 mM adenosine diphosphate; 1 µM oligomycin; 1.5 µM FCCP and
0.5 µM/0.5 µM antimycin/rotenone. Rates of mitochondrial oxygen consumption were
normalized to protein loaded.

3.9. Statistical Analysis

A standard student’s t-test was used to determine statistical significance with p-values
less than 0.05 accepted as significant. Error bars indicate the standard deviation. All values
are presented as mean ± standard deviation. All the statistical analysis was performed on
GraphPad Prism v.6.

4. Conclusions

The efficacy of the sodium-glucose transporter 2 (SGLT-2) class of inhibitors in reducing
MACE in diabetic patients is strongly supported by the findings of several randomized
large-scale clinical trials (EMPA-REG OUTCOME, CANVAS, DAPA-HF, DECLARE-TIMI,
VERTIS-CV) [5,9,29–31]. Clearly, the mechanism underlying this salutary effect goes beyond
enhanced glucose control [12,32]. This is underscored by the EMPEROR-Reduced trial
wherein empagliflozin was found to be superior to placebo for preventing CVD-associated
death and hospitalizations for worsening heart failure, irrespective of presence or absence
of diabetes [33]. While several mechanisms have been proposed, including enhanced
natriuresis, better blood-pressure control, favorable changes in the renin–angiotensin–
aldosterone axis, improved renal function and less oxidative stress [10,11], there is little,
if any, evidence that any one of these or combination of these explain the magnitude of
efficacy of this class of drugs in mitigating the progression of heart failure. The salient
findings in this study and our earlier work offer some concrete clues, however.

Previously, we characterized the utility of another compound from a different class of
drugs shown to be effective in treating chronic progressive heart failure in diabetic patients.
The compound is a unique small molecule GLP-1-like receptor (GLP1R) agonist known as
Compound C or 2-quinoxalinamine, 6,7-dichloro-N-(1,1-dimethylethyl)-3-(methylsulfonyl)-
6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB) [20]. We found that
it was very effective in mitigating infarction-induced adverse remodeling via its stimulatory
effect on mitophagy and mitochondrial turnover, but the benefit was lost in PKO mice [28].
Given the reports that GLP1R agonists may have similar cardioprotective properties to
the SGLT2 inhibitors [34], we hypothesized that a mechanism underlying the EMPA effect
would be similar to the GLP1R agonist. However, in our current report we demonstrated
that while enhancing mitochondrial energetics may be common to both drugs, EMPA
is unique in that it appears to not require Parkin, and by extension a robust mitophagy
capacity to elicit its beneficial effects against adverse remodeling.

In our animal studies here, EMPA was effective in mitigating adverse postinfarction LV
remodeling when administered post-PCAL (permanent coronary arterial ligation) challenge.
PCAL was associated with adverse remodeling and deterioration in cardiac function in both
WT and PKO mice, which was attenuated with EMPA administration. The beneficial effects
of EMPA were sustained over the course of 28 d in the WT mice despite discontinuation of
the drug 14 d prior to the last assessment of cardiac function. The salutary effects paralleled
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a decline in the degree of the acute immune cell infiltration assessed 3 d after MI and was
associated with a decrease in the magnitude of fibrosis at 14 d in both WT and PKO mice.
Unlike our studies using DMB (GLP1R agonist) earlier, in this study EMPA was effective in
PKO mice and its benefits appeared to be linked to an increase in mitochondrial biomass
without an improvement in mitochondrial quality. Additionally, in differentiated H9C2
cardiomyocytes, EMPA treatment resulted in an increase in basal and maximal respiratory
capacity and an increase in the markers of mitochondrial biogenesis. The effects in H9C2
cells were paralleled in vivo and suggest that EMPA has direct effects at the cellular level
of the cardiomyocyte. These findings support the contention that EMPA increases both
mitochondrial mass and function. Correspondingly, Mizuno and colleagues previously
demonstrated that EMPA can normalize the size and number of mitochondria in the context
of an ischemic challenge such as I/R which normally causes mitochondrial fragmentation
and turnover [35]. In renal cell models, others have found that prevention of mitochondrial
fragmentation is a feature of EMPA administration, likely through repression of DRP1
through AMPK activation [36–38].

In summary, the beneficial effects of EMPA on adverse postinfarction remodeling may
be mediated in part by the drug having a direct effect on mitochondrial quantity in both
WT and PKO mice, and additionally mitochondrial quality in WT mice only. The novelty
of our work demonstrates that the cardiovascular benefit of empagliflozin in attenuating
ischemia-mediated adverse cardiac remodeling is that the mechanism is not fully dependent
on Parkin and can be realized without improving the quality of individual mitochondria.
Recent work by others investigating the beneficial effects of EMPA in various cardiovascular
settings all align with our work in demonstrating that this SGLT-2 inhibitor improves
mitochondrial energetics [39–42]. An important area to focus attention for future studies
not examined here would be to investigate the role of known mitochondrial regulators
such as PGC-1α and PPARα. Another interesting area of investigation beyond our work
here is to elucidate the potential link between mitochondrial energetics, cardiac substrate
utilization and the development of MI-induced adverse LV remodeling.

Our findings highlight the efficacy of EMPA in mitigating adverse postinfarction LV
remodeling and show that this can occur even in the setting of a diminished capacity to
turn over mitochondria. Should this turn out to be a defining mechanism, it is possible
that the efficacy of other or newer SLGT2 inhibitors will be determined by their ability
to enhance mitochondria-linked cellular energetics. Although controversial depending
on the study setting, most agree that MI-induced failing heart leads to a decrease in fatty
acid use with a corresponding increase in glucose utilization. This suggestion is supported
by the growing list of others who have shown that gliflozin class drugs help to maintain
the heart’s preference for utilizing fatty acids and ketone bodies [15,43–45]. However, in
most cases heart failure is associated with a decrease in overall cardiac energetics [46,47].
These metabolic changes may be directly linked to the degree and direction the heart
takes in developing adverse remodeling leading to heart failure. In consideration of our
findings here, and the literature surrounding the mechanism of the gliflozin class of drugs
in attenuating MI-induced adverse remodeling, we hypothesize that a key feature that
underlies their benefits lies in their ability to stimulate mitochondrial-linked energetics
(Figure 6). Our findings, along with others, help establish that gliflozins are highly effective
at attenuating the onset of adverse cardiac remodeling and development of heart failure
beyond their role as anti-diabetic drugs.
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