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Abstract

A basic—yet nontrivial—function which neocortical circuitry must satisfy is the ability to

maintain stable spiking activity over time. Stable neocortical activity is asynchronous, criti-

cal, and low rate, and these features of spiking dynamics contribute to efficient computation

and optimal information propagation. However, it remains unclear how neocortex maintains

this asynchronous spiking regime. Here we algorithmically construct spiking neural network

models, each composed of 5000 neurons. Network construction synthesized topological

statistics from neocortex with a set of objective functions identifying naturalistic low-rate,

asynchronous, and critical activity. We find that simulations run on the same topology exhibit

sustained asynchronous activity under certain sets of initial membrane voltages but trun-

cated activity under others. Synchrony, rate, and criticality do not provide a full explanation

of this dichotomy. Consequently, in order to achieve mechanistic understanding of sus-

tained asynchronous activity, we summarized activity as functional graphs where edges

between units are defined by pairwise spike dependencies. We then analyzed the intersec-

tion between functional edges and synaptic connectivity- i.e. recruitment networks. Higher-

order patterns, such as triplet or triangle motifs, have been tied to cooperativity and integra-

tion. We find, over time in each sustained simulation, low-variance periodic transitions

between isomorphic triangle motifs in the recruitment networks. We quantify the phenome-

non as a Markov process and discover that if the network fails to engage this stereotyped

regime of motif dominance “cycling”, spiking activity truncates early. Cycling of motif domi-

nance generalized across manipulations of synaptic weights and topologies, demonstrating

the robustness of this regime for maintenance of network activity. Our results point to the

crucial role of excitatory higher-order patterns in sustaining asynchronous activity in sparse

recurrent networks. They also provide a possible explanation why such connectivity and

activity patterns have been prominently reported in neocortex.
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Author summary

Neocortical spiking activity tends to be low-rate and non-rhythmic, and to operate near

the critical point of a phase transition. It remains unclear how this kind of spiking activity

can be maintained within a neuronal network. Neurons are leaky and individual synaptic

connections are sparse and weak, making the maintenance of an asynchronous regime a

nontrivial problem. Higher order patterns involving more than two units abound in neo-

cortex, and several lines of evidence suggest that they may be instrumental for brain func-

tion. For example, stable activity in vivo displays elevated clustering dominated by specific

three-node (triplet) motifs. In this study we demonstrate a link between the maintenance

of asynchronous activity and triplet motifs. We algorithmically build spiking neural net-

work models to mimic the topology of neocortex and the spiking statistics that character-

ize wakefulness. We show that higher order coordination of synapses is always present

during sustained asynchronous activity. Coordination takes the form of transitions in

time between specific triangle motifs. These motifs summarize the way spikes traverse the

underlying synaptic topology. The results of our model are consistent with numerous

experimental observations, and their generalizability to other weakly and sparsely con-

nected networks is predicted.

Introduction

Network connectivity shapes dynamics in many systems and on many scales, ranging from

gene transcription networks to epidemic spreading [1]. In the brain, neocortical architecture

supports myriad complex functions. Before any of these functions can occur, neuronal spiking

activity must be maintained throughout the lifespan of an animal. Stable maintenance of spik-

ing activity—both as “background” activity and when tasked with inputs and outputs—is a

basic function that arises from the structure of synaptic connectivity in the brain. Given the

fact that the vast majority of excitatory synapses are weak and connections are sparse and

recurrent, achieving stable activity is highly non-trivial [2–5]. Theoretical and experimental

studies have characterized several architectural features that have the capacity to promote and

shape spiking activity, such as a heavy-tailed synaptic weight distribution, excitatory clustering

and the ratio between incoming and outgoing connections [3, 6–9]. Additionally, dynamical

properties of ongoing activity, such as a balance between excitation and inhibition [8] and cor-

related spiking [10], are shaped by connectivity and in turn impact the continuation of spiking

activity.

Neocortical activity in the awake mammal is characterized by low-rate, near-critical, and

asynchronous dynamics. Any theory which purports to explain stable activity in neocortex

must take these features of activity into consideration. Previous work has demonstrated that

sustained activity co-occurs within a specific range of firing rates, supported by a balance

between excitatory and inhibitory conductance [12, 19]. Firing rates that are too low or too

high contribute to instability within the network [12]. Neocortex is also often characterized as

having critical or near-critical dynamics [13]. In a practical sense, this entails activity which, in

the absence of external input, is maintained without becoming epileptic nor dying out, and

which follows a power law distribution in its active population size. The idea that neocortex

operates near a critical point has a long history in neuroscience, going back to Alan Turing

[14], and has been implicated in a number of desirable properties for neural networks [15].

For example, networks tuned near the critical point display maximum information transmis-

sion [13], information storage [16], and computational power [17]. Any incoming signals
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interact with and rely upon the activity state already present in a network, or the “background”

activity, which in neocortex is generally asynchronous and irregular. Several theoretical studies

have focused explicitly on self-sustained activity in the asynchronous state and the propagation

of inputs in this state. They found a complex relationship between synaptic strength and firing

rate in the maintenance of an asynchronous spiking regime [18–20]. Here we focus on said

background activity and ask how it may be stably maintained in the absence of inputs. We

build on previous theoretical and experimental studies by uncovering the dynamic mecha-

nisms behind self-sustained activity using models that capture crucial factors of neocortical

activity. Namely, the models match the ratio of excitatory to inhibitory units, the connectivity

parameters, and the measurements of rate, synchrony, and criticality observed in neocortex.

Experimental results suggest that pairwise measurements alone may be insufficient to

explain network dynamics. Higher-order patterns in both structure and activity have been

reported to be intrinsic features of neocortex [21] and may be key to its function. Excitatory

synaptic connectivity displays a prevalence of specific triplet motifs [2, 3] and cliques of

neurons [8]. Activity in real neuronal networks exhibit elevated clustering [21–28] that is

dominated by triplet motifs which can improve synaptic integration by coordinating the pre-

synaptic pool [29]. Moreover, correlations between three units are necessary to recapitulate

spatiotemporal spiking patterns [30]. Computationally, triplet motifs may improve coding [31,

32] and enhance perceptual accuracy and the prediction of responses in visual cortex [28, 33].

The causal relation from underlying synaptic connections to functional connections and cor-

relations in activity within a network is complex [29, 34]. The presence of certain motifs in

synaptic graphs greatly affects the strength of higher-order correlations in network neuronal

activity [35]. Furthermore, the low firing rates and weak synaptic connections found in neo-

cortex necessitate correlated inputs onto individual neurons [19, 36]. Here we build functional

networks and then identify the intersection of the functional network with the synaptic net-

work. We then analyze this subset of active synapses, or recruitment network, to study the

dynamics that correspond to the activation of the underlying synaptic connectivity. Our focus

is on the presence of higher order functional motifs and its relation with the maintenance of

an asynchronous spiking state. First, a novel algorithmic approach is used to build large num-

bers of sparsely-connected recurrent spiking neural network models. Simulations are run on

these models to explore the roles of realistic dynamics and higher-order interactions in sus-

tained spiking activity. These models are recurrent and sparsely-connected; they are composed

of excitatory and inhibitory adaptive exponential leaky integrate-and-fire (AdEx) neurons

with conductance-based synapses [37]. Network topology parameters are varied and informed

by connectivity seen in cortex [3, 6, 7]. By design, the models closely approximate both the sta-

tistics of connectivity as well as spiking activity in neocortex [20, 38, 39]. We find that simula-

tions on the same network topology can either spontaneously stop (truncated run) or show

sustained activity (sustained run), corresponding to different sets of initial membrane voltages.

The dichotomy between sustained runs and this subset of late-truncating runs on the same

networks, in addition to our ability to algorithmically construct and simulate very large num-

bers of networks, provided us with the opportunity to study the conditions which underlie sus-

tained asynchronous activity.

Results

Network construction and simulation

Each spiking neuronal network was composed of 4000 excitatory and 1000 inhibitory adap-

tive exponential leaky integrate-and-fire (AdEx) units [37]. Synaptic connections were recur-

rent, sparse and conductance-based (Fig 1A). Excitatory connection strengths followed a

PLOS COMPUTATIONAL BIOLOGY Cyclic transitions between higher order motifs in sparse recurrent networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007409 September 30, 2020 3 / 30

https://doi.org/10.1371/journal.pcbi.1007409


heavy-tailed, log-normal distribution, where μ = −5.0�10−5.0 nS, σ = 0.5 nS, corresponding to

a mean of 1.13 nS and a variance of 0.365 nS (Fig 1B). Networks therefore had a large num-

ber of weak connections and few strong excitatory synapses. Given that local connectivity in

neocortex is clustered [2, 3]—although global statistical patterns of connectivity cannot be

precisely determined from paired patch clamp recordings [40]—we also created clusters

within our networks. For each network we defined 50 clusters and randomly assigned each

excitatory unit to two of these clusters. Intra-cluster connection probability was twice that of

inter-cluster connection probability. This resulted in excitatory clusters of different sizes

(mean = 158.40, std = 12.27 units per cluster) [8]. The excitatory subgraphs had an average

connection density (ratio of the actual over the total possible number of connections) of

0.211 (std: 1.10�10−4), of which 22.4% were reciprocal (std: 0.02%). Total density within each

cluster was 0.389 (std: 3.11�10−3) and density between units in different clusters was 0.196

(std: 9.94�10−5) (Fig 1C and 1D).

Fig 1. Network construction and search. A: Our networks were constructed with 4000 clustered excitatory and 1000

unclustered inhibitory units. Probabilities of connection (those from excitatory to excitatory units, and from inhibitory to

inhibitory units) were inferred from experimental literature and determined via grid search (those from excitatory to

inhibitory units and vice versa). Simulation runs began with 30ms of 20Hz Poisson input onto a subset of 500 units. B:

Synaptic weights followed a log-normal (heavy-tailed) distribution. Synapses were conductance-based, so weights are in

units of nanosiemens. Connections originating from inhibitory units were 10x stronger than those from excitatory units.

C: For each network, we defined 50 clusters in total and randomly assigned each excitatory unit to two of these clusters.

The wiring probability between units within the same cluster is twice that of units in different clusters. This resulted in

heterogeneously-sized clusters. Here we show the cluster size distribution (in counts) for 500 networks. D: Visualization

of a subset of 300 clustered excitatory units in our network.

https://doi.org/10.1371/journal.pcbi.1007409.g001
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At the beginning of a simulation trial, or run, initial resting membrane voltages were randomly

assigned from a uniform distribution of -60 to -50 mV across all units. Activity was then initiated

by 30 ms of 20 Hz Poisson input onto a set of 500 randomly chosen excitatory units (Fig 1A).

Algorithmically identifying networks for analysis

We focus our study exclusively on network simulations which displayed naturalistic spiking

dynamics. In order to evaluate large numbers of networks for biological realism while mini-

mizing sampling bias, models were constructed, simulated, and scored algorithmically. We

restricted the search for viable topologies to a range of connection likelihoods bounded by

experimental observations [29]. This should not be interpreted to suggest that these connec-

tion likelihoods are the only viable solution for realistic spiking activity—we did not compre-

hensively survey the range of possibilities.

We identified viable topologies iteratively; in the first iteration, we performed a low resolu-

tion grid search for connection probabilities (Fig 2A). The values for the probabilities of con-

nection from excitatory to excitatory units, pe!e, and from inhibitory to inhibitory units, pi!i,

were inferred from experimentally measured connection probabilities in neocortex. They were

0.20 and 0.30 respectively [3, 29]. We performed grid search for the values of pe!i and for

pi!e. The existence of multiple classes of interneurons in neocortex means that this parameter-

ization is a generalization—the values used for pi!i and found for pe!i and pi!e represent

summary values for a generic interneuron. During grid search, we rewired topologies within a

limited range of pe!i and pi!e, to identify sets of connection likelihoods that resulted in net-

works with sustained low-rate, near-critical, and asynchronous dynamics, as observed in neo-

cortex [20–33, 37–39, 41–44]. Criticality was measured using a branching parameter that is the

ratio of active descendant units to active ancestor units across time [13]. A value of 1—where

the number of active descendants is equal to the number of active ancestors—indicates critical

dynamics (Fig 2B). We used a fast, on-line synchrony heuristic (variance of the mean voltage

divided by the mean of voltage variances, see Methods) for the sake of grid search speed. A run

was considered to be asynchronous if this heuristic value was below 0.5. Runs below this

threshold correspond to a high mean Van Rossum distance which we employed throughout

the remainder of the study [45, 46] (see Methods).

The first iteration of grid search isolated a region of interest, and we next used a higher res-

olution grid to find specific topologies each with the same probabilities of connection but dif-

fering in the specifics of connections (Fig 2A). To find these topologies we used the best results

obtained from the second round of grid search, which were pe!i = 0.22 and pi!e = 0.31. These

values were chosen for their ability to yield network simulations that had both low spiking

rates and a high proportion of completion (see Methods).

These connectivity parameters were used to generate 2,761 synaptic topologies, where each

unique topology is referred to as a network. For each network we randomly created 100 sets of

input units, with 500 excitatory units per set. We ran 50 simulations on each set of input units,

where each simulation began with different membrane voltages for all units. Each simulation

lasted for as long as spiking activity was sustained, up to a maximum of 1 second. The spiking

activity of each run on each network was then scored according to the average firing rate, the

level of asynchrony, how balanced—or critical—the network was, and the duration of time

over which spiking activity was maintained (see Methods). If a network’s average firing rate

within excitatory units for all complete runs out of the initial 500 was less than 8 spikes/second,

we added this network to the set of low-rate networks for subsequent analyses. High-rate net-

works were eliminated to maintain consistency with the low spike rates generally measured in

neocortex. This yielded a final count of 87 low-rate networks. For each of these networks, we
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determined the set of input units which led to the most consistently sustained simulations,

with the trade-off of rate increasing slightly. We will refer to these as a network’s optimal input

units. Optimal input units were then fixed and used to generate 100 additional runs on each

synaptic network; only the initial network state (i.e. membrane voltages of all units) varied.

This generated a total of 8,700 unique runs, which we then analyzed.

Fig 2. Grid search yields networks with dynamics resembling neocortex. A: We performed two rounds of grid search for the topological parameters

that yielded consistent low-rate, critical, and asynchronous dynamics. The first search was at a lower resolution to narrow down our region of interest,

and the second was at a finer resolution. B: One scoring metric we used was branching. The branching parameter [13] is a proxy for criticality. It

measures the ratio of active descendant units to active ancestor units. A branching value of 1 indicates a balanced (or critical) network, which is the

value we optimized for. C: Distribution of the interspike interval coefficient of variation for individual neurons. D: Distribution of the interspike

interval coefficient of variation for networks. E: L2 error between autocorrelation and normalized autocovariance.

https://doi.org/10.1371/journal.pcbi.1007409.g002
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To ensure that our simulations truly demonstrate sustained asynchronous irregular activity

as seen in neocortex, we measured the distribution of the coefficient of variation of the inter-

spike intervals of all neurons in every completed network simulation (Fig 2C), and also aver-

aged across units within each completed simulation (Fig 2D). In both instances we find that

networks are in an irregular regime (CV> 1). Averaging across networks we find a mean CV

of 1.23 ± .21 for excitatory neurons and 1.31 ± .23 for inhibitory neurons. Furthermore, we

measured the L2 error between the autocovariance normalized by variance and the autocorre-

lation of activity (after rate was no longer increasing in each trial) in both excitatory and inhib-

itory populations. The low level of difference seen between the two, and the rapidly decaying

autocovariance, are qualitatively consistent with a stationary process (Fig 2E) [47]. Previous

work has defined the asynchronous irregular state by using coefficients of variation greater

than 1 to define irregularity and by using stable firing rate to define asynchrony [11, 19, 48].

Within this framework, our observations indicate our networks exhibit an asynchronous irreg-

ular regime with stationary activity.

Rate, branching scores, and synchrony values on sustained and truncated

simulations

We found that the same topology was capable of producing both sustained and truncated

activity when only initial membrane voltages were varied. To be clear, the optimal input units

and Poisson input trains were always the same but the membrane voltages varied. A run was

sustained (or complete) if it displayed stable activity for the duration of a 1-second trial (Fig

3A). We found that all network simulations which reached 1 second were in each case able to

sustain activity for the full duration of the simulation: we surveyed run times up to 10 seconds.

We therefore chose one second as an indication of a network’s ability to sustain activity indefi-

nitely, and as the definition of a successful run. If a network ceased all spiking before reaching

the 1-second mark, that simulation was considered truncated (Fig 3B). Scoring analysis of the

network spiking dynamics of rate, branching and synchrony between sustained and truncated

run types revealed substantial overlap regardless of outcome.

Duration of truncated runs followed a long-tailed distribution, with the majority of runs

truncating early (Fig 3C). Since activity within the excitatory units tended towards fewer spikes

as a run approached truncation, we did not include the final 50ms of truncating runs in the cal-

culation of rate, branching, or asynchrony scores. We also did not consider the stimulus period

(initial 30ms), as we wished to analyze self-sustained network dynamics rather than stimulus-

driven spikes. By focusing our analyses on the ‘middle portion’ of each run, we found that the

rate, branching and synchrony values within excitatory units of both sustained and truncated

run populations overlapped substantially. Runs that truncated within the epoch spanning

500ms to 990ms and sustained runs shared similar mean excitatory firing rates (9.77 and 10.14

spikes/s, respectively; p< .0005, n = 657, two sample chi square test). Runs that truncated

between 140 and 400 ms had a significantly higher mean rate (15.65 spikes/s; p< 1 � 10−15,

n = 1354, two sample chi square test), suggesting that higher firing rates contribute to instabil-

ity of a network [12] (Fig 4A). The overlap index between rates of runs truncating later than

500 ms and sustained runs was 0.41 (95% CI 0.14 - .043). In runs that truncated earlier than

500 ms the overlap index with sustained runs was 0.27 (95% CI 0.23-0.30). Unlike rate, there

was no difference in the scores between longer and shorter run times for both criticality and

synchrony. The criticality score, measured using the branching parameter, was 0.997 ± 0.136

for truncated runs and 1.009 ± 0.004 for completed runs (p< 1 � 10−15, n = 979, two sample

chi square test). The overlap index for criticality for the two run types was 0.31 (95% CI 0.21-

0.35) (Fig 4B). Thus first order descriptors of rate and criticality within excitatory units, while
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different, substantially overlapped. This eliminated the possibility of a simple explanation of

how and why activity was sustained in some cases while truncated in others.

As described above, only spikes from the middle portion of each run—that is, 30ms after

trial start until 50ms prior to truncation—were used for the calculation of asynchrony scores.

For the sake of computational efficiency during grid search, synchrony was defined as the vari-

ance of the mean voltage divided by the mean of voltage variances of all excitatory units (see

Fig 3. Simulations on the same network topologies yield sustained or truncated runs. A: A raster plot of a single

complete 1000ms simulation on one of our networks. Excitatory units are numbered 1-4000 on the y axis, and inhibitory

units are 4001-5000. B: A raster plot of a single truncated simulation (700ms) on the same network with the same input.

C: Distribution of truncation times in ms for all truncated runs. D: Instantaneous rate across time for the simulations in

rasters A and B, binned at 10 ms. Blue: sustained run; orange: truncated run; solid line: excitatory units; dashed line:

inhibitory units. E: Instantaneous branching across time for the simulations in rasters A and B, binned at 10 ms. Same

legend conventions as in D. F: Instantaneous Van Rossum distance across time for the simulations in rasters A and B,

binned at 50 ms. Same legend conventions as in D.

https://doi.org/10.1371/journal.pcbi.1007409.g003
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Methods). Due to the dependence of this rapid measure upon voltages, and the fact that all

voltages decay to resting potential after truncation, it will always yield high synchrony values

for truncated runs. We therefore used Van Rossum spike distance for all excitatory units, nor-

malized for run duration (see Methods) [45, 46], as our measure for each simulation’s asyn-

chrony score outside of the initial grid search. As asynchrony increases, the Van Rossum

distance also increases. The Van Rossum spike distance for our simulations was 3.82 ± 0.62 for

truncated runs and 4.27 ± 0.51 for completed runs (p< 1 � 10−15, n = 1033, two sample chi

square test). To provide some context, the corresponding Van Rossum spike distance of a rate-

and size-matched network of uncorrelated Poisson units would be approximately 9. The over-

lap index for truncated and completed runs was 0.68 (95% CI 0.61-0.73) (Fig 4C and 4D). The

values of Van Rossum spike distance were, like rate and criticality, highly overlapping between

truncated and sustained runs. Thus rate, criticality, and synchrony levels substantially over-

lapped and did not cleanly partition truncated and sustained run types.

Graph theory analysis of simulated networks

Having established that first order descriptions of network spiking failed to cleanly segment

simulations into sustained and truncated runs, we next considered higher order descriptions.

In previous work we have defined a taxonomy of active networks [29]. In that work we found

Fig 4. Score distributions for sustained and truncated runs. A: Distributions of spike rate scores for completed (blue),

late-truncated (> 500 ms duration, green), and early-truncated (< 100 ms duration, orange) simulations. B: Distributions

of criticality scores (branching parameter) for completed (blue) and truncated (orange) simulations. C: Distributions of

asynchrony scores (Van Rossum spike distance) for completed and truncated simulations. D: Same asynchrony score

data as in C, with completed and truncated simulations now separated along the y axis by their total durations. Each dot

indicates an individual simulation.

https://doi.org/10.1371/journal.pcbi.1007409.g004
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that mechanistic insights underlying spiking network activity were provided by focusing on

the subset of synaptic connections active during any one run. We refer to these networks as

recruitment graphs and focus our analysis on these networks.

To do so, we begin with the structural connectivity matrix of our models as the synaptic

graph (Fig 5A). We then constructed functional graphs using mutual information to quantify

pairwise correlations between spiking neurons across each simulation. In order to generate a

series of recruitment graphs, we identified the intersection of the functional graph with the

Fig 5. Graph and motif definitions. A: The synaptic graph is the ground-truth topology of our networks. Based on

spiking activity during each simulation, we construct a series of active synaptic subgraphs—one for each time bin. These

are graphs made of units which spiked in that bin, connected via the same edges as in the synaptic graph. We infer a

single functional graph from whole-trial spiking activity using confluent mutual information—these graphs represent the

functional connectivity of the network for each simulation trial. The intersection of the functional graph with the active

subgraph for a given time bin yields the recruitment graph for that time bin. B: The three triangle motifs we examine—

fan-in, fan-out, and middleman—are isomorphic by rotation. When calculating motif clustering, the choice of reference

node is key. C: Calculation of the clustering coefficients of the different triangle motifs on weighted directed graphs, as

defined in Fagiolo 2007 [49]. The clustering coefficient is defined as the ratio of the actual to the possible motif counts.

https://doi.org/10.1371/journal.pcbi.1007409.g005
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synaptic subgraph according to the units which were active in each 10ms time step, resulting

in one recruitment graph per time step. Weight values of functional and recruitment connec-

tions were calculated from mutual information and summarized in the functional graph,

rather than taken from the synaptic weight matrix (see Methods). Due to our interest in the

relationship between synaptic structure and functional spike maintenance, we focused our

analysis on recruitment graphs. Thus the following results, unless otherwise noted, describe

actual synaptic connections which have functional significance because they are active.

Triplet motifs

The term ‘motif’ refers to a pattern formed by a group of units in a network. Previously we

found that triplet motifs were informative of synaptic integration [29] and also increased the

power of in vivo encoding models [28, 31–33]. Here we focused our analysis on similar pat-

terns of connectivity in the recruitment network, involving groups of three units [49].

From the perspective of a single reference neuron, neighboring neurons can be arranged

into four types of triplet motifs: fan-in, fan-out, middleman, and cycle. In isolating one triplet,

the fan-in, fan-out, and middleman motifs are isomorphic by rotation, meaning that they only

differ due to the choice of reference node (Fig 5B). The relative importance of a motif for a

given neuron is measured by its contribution to that neuron’s clustering coefficient (Fig 5C).

The clustering coefficient is the weighted ratio of the actual over the possible counts of a partic-

ular triplet motif type in which that neuron participates. Individual reference nodes in a given

triplet may yield different clustering coefficients due to their specific weights and connections

(see Methods).

It was possible that each of the algorithmically generated networks had different connection

densities and weight distributions, which would impact weighted motif clustering coefficient

measures. A measure that incorporated weight and controlled for density would be especially

relevant since the recruitment graph density evolves over time. Furthermore, comparison with

density matches is important given that sparseness itself results in enhanced small-world clus-

tering [50]. We therefore used the measure of clustering propensity [51]. Propensity is the

ratio of the clustering coefficients of the recruitment graphs compared to the average cluster-

ing coefficients of graphs with the same connection structure but randomly assigned connec-

tion weights. The propensity measure allowed us to compare different networks despite

different connection densities and also allowed us to assess the impact of specific edge weights

on triplet motif clustering coefficients [49]. A propensity value of 1 indicates that specific edge

weights play a negligible role in clustering, since random edge weights would yield the same

clustering coefficients (see Methods).

Density and reciprocity statistics

As reported above, synaptic networks were 21.1% connected, and 22.4% of connections were

reciprocal. The functional networks of sustained runs, which were calculated using mutual

information and were unique to each run, were more densely and also more reciprocally con-

nected (Fig 6A, left). The functional networks averaged 32.6% (std: 0.6%) connectivity, of

which 59.0% (std: 0.4%) were reciprocal. Recruitment graphs across time in sustained runs

were sparser than the synaptic graphs, although only slightly less reciprocally connected (9.5%

connected, std: 0.5%, and 16.7% recurrent, std: 0.5%) (Fig 6B, left). Functional and recruitment

density and reciprocity did not differ significantly between sustained and truncated runs.

However, there were more limited ranges for and a tighter relationship between density

and reciprocity of both functional and recruitment graphs of sustained runs. In contrast, the

spread of density and reciprocity, and of their relation, was more diffuse in truncated runs
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(Fig 6A and 6B). In addition to greater variance for truncated runs, there are differing trends

in the variance, suggesting multiple modes of failure for a network simulation. The right-hand

panels of 5A and 5B show, for functional and recruitment graphs respectively, the relationship

between truncation time and the minimum distance between truncated and sustained runs,

where distance is measured according to the 2D coordinate space of the left-hand panels (reci-

procity vs. density). The minimum distance levels off for runs which exceed 200 ms in dura-

tion. Thus, the density and reciprocity measures of truncated runs do not approach those of

sustained runs as duration increases. For runs which truncate prior to 200 ms, the minimum

distances vary much more but are not strictly dependent on run duration. Thus the increased

variance in truncated runs’ density and reciprocity compared to those of sustained runs is not

dependent on run duration. This is particularly the case at time points beyond 100—200 ms.

Fig 6. Standard network reciprocity. A: The left-hand panel shows the reciprocity (ratio of reciprocal connections to

total connections) of functional graphs plotted as a function of their density (ratio of existing to possible connections).

Data points for sustained runs are plotted in black and form a tight cluster, whereas those for truncated runs are varied.

Truncated runs are colored by the ratio of inhibitory to excitatory spike rates. The right-hand panel shows the minimum

distance (in reciprocity vs. density coordinate space for functional graphs) between each truncated run and a sustained

run as a function of truncation time. Truncated runs which have greater than 200ms duration level off in their minimum

distance. Thus, past a certain threshold, the difference between truncated and sustained runs’ density and reciprocity is

not related to the run duration. B: The left-hand panel shows the reciprocity (ratio of reciprocal connections to total

connections) of recruitment graphs plotted as a function of their density (ratio of existing to possible connections).

Sustained runs are plotted in black and form a neat relationship between density and reciprocity and occur within a

limited range of values. As in panel A, truncated runs are more diffuse. The color of each point indicates the ratio of

inhibitory to excitatory spike rates. And also as in panel A, the right-hand panel shows the minimum distance between

each truncated run and a sustained run (in reciprocity vs. density coordinate space) as a function of truncation time, this

time for recruitment graphs. Truncated runs which have greater than 200ms duration level off in their minimum

distance.

https://doi.org/10.1371/journal.pcbi.1007409.g006
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Triplet motifs in the different graph types

We found that the three isomorphic motifs showed equal clustering in the synaptic graphs.

This is expected of graphs with random, albeit clustered, synaptic connectivity. Clustering pro-

pensity centered at 1.00 (std = 7.8 � 10−5, 7.9 � 10−5, 8.0 � 10−5 for middleman, fan-in, and

fan-out) for all three isomorphic motifs (Fig 7A). A value of 1 indicates that specific edge

weights in synaptic graphs play a negligible role in clustering, since random edge weights

would yield the same clustering coefficients. We found that in contrast to the static synaptic

graph the dynamic functional and recruitment graphs were not random. The isomorphic

motifs’ dominance in the recruitment graphs, or the strength of each motif’s contribution to

overall clustering, varied over time in each trial. For sustained runs, motif clustering propensi-

ties for recruitment graphs (averaged across all time and all topologies) were 1.98 (std = 0.06),

1.91 (std = 0.06), and 2.03 (std = 0.07) for middleman, fan-in, and fan-out, respectively. Pro-

pensity values greater than 1, as these are, indicate that units in the recruitment graphs are

more strongly clustered than would be expected in structurally-matched graphs with random-

ized weights. Motif clustering propensities also varied in recruitment graphs of truncated runs,

with averages of 1.39 (std = 0.23), 1.40 (std = 0.23), and 1.43 (std = 0.24) for middleman, fan-

in, and fan-out motifs (Fig 7A).

Cycling of triplet motifs

To evaluate how the three isomorphic motifs co-varied across time for both successful and

truncated trials, we plotted motif clustering propensities at each point in time against one

another. We visualized this for all runs from a sample synaptic network (Fig 7B), and then

examined sustained runs in particular (Fig 7C and 7D). Additionally, we colored the trajectory

of each run according to the ratio of inhibitory to excitatory spike rates (Fig 7C). Truncated

runs varied in the ratios of excitatory and inhibitory spike rates, consistent with the postulate

that an imbalance between excitation and inhibition may have contributed to overall instabil-

ity within the network. Sustained runs were consistent in their rate ratios. We further exam-

ined each two-dimensional projection of these motif transitions over time. 7E shows fan-in vs

fan-out, 7F shows middleman vs fan-out, and 7G shows fan-in vs middleman for the complete

run in (Fig 7D). As in the 3D case, clustering propensities formed a cyclic trajectory within a

restricted region of 2D motif space. This indicates a systematic alternation between over- and

under-representation of the three isomorphic motifs in the whole network relative to what

would be expected in edge-matched networks. The cyclic trajectory within this region of motif

space was consistent for all complete runs of low-rate, asynchronous, excitatory clustered net-

works we examined. We also found the same orderly temporal progression from one isomor-

phic motif to another when we considered clustering coefficient values as opposed to edge-

normalized propensity. In contrast, truncated simulations were never restricted to this low

variance cyclic alternation.

Motif cycling and sustained activity

The motif cycling trajectory was not present at the moment of first spikes in a simulation.

Rather, the path started at a point in motif space as determined by the initial membrane voltages

of all neurons in the network. Injection of Poisson input drove network activity towards its

eventual trajectory (Fig 7D, 7E, 7F and 7G). We identified two distinct types of truncation—in

the first and far more common (97.7%) of the two, the simulation trajectory never approached

or entered the region in propensity motif space where sustained runs lay. Truncation occurred

rapidly after input stimulus ceased. In the second, rarer case (2.3%), the simulation successfully

entered the sustained regime, yet after several hundred ms the trajectory destabilized, resulting
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in truncated activity. In this small subset of runs that exhibited trajectories prior to truncation,

the trajectories did not follow a canonical path. Instead, motif dynamics during truncated

runs transited in all directions away from the central region, demonstrating the multitude of

ways in which activity structure can lose stability resulting in a failure of maintenance of an

Fig 7. Standard network triplet motifs. A: Comparison of triangle motif clustering propensities of the three isomorphic

motifs on sustained and truncated runs across all networks. B: Trajectories of all runs on a sample network in

3-dimensional isomorphic motif space. Truncated runs have a larger spread of trajectories along with variation in the

ratios of inhibitory to excitatory spike rates. However, sustained runs are consistent in their spike rate ratios. C:

Trajectories of all sustained runs alone, on axes of the identical scale as in panel B. D: Example trajectory of a single run

on the same network, now enlarged (from inset in panel C). The network begins away from the area of its eventual cyclic

trajectory, and the 30ms of Poisson input at the beginning of the run drives it towards this region. E: Example trajectory

from panel D shown as fan-out propensity vs fan-in propensity. F: Example trajectory from panel D shown as fan-out

propensity vs middleman propensity. G: Example trajectory from panel D shown as fan-in propensity vs middleman

propensity.

https://doi.org/10.1371/journal.pcbi.1007409.g007
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asynchronous spiking regime (Fig 7B). We examined whether the initial distance and input tra-

jectory, which were determined by the initial conditions of the network and the Poisson stimu-

lus, were determinants of successful activity maintenance. We found that even if the distance

from the cycling region at the end of the stimulus period was minimal, some simulations still

failed to enter into and stay within that regime. Others which were still distant from the region

after the initial stimulus period continued on a successful trajectory and entered a stable cycling

regime. These behaviors point to complex interactions between the network’s internal state and

how input onto precise units within that network can influence maintenance of asynchronous

spiking.

Markov analysis

In order to quantify the cycling between isomorphic motifs, we constructed a Markov model

for state transitions between dominant isomorphic motifs. We quantified cycling in this way

because, while it does not give a sufficient account (the same markov chain could give different

oscillatory behavior) of the observation, it does give us a necessary condition (a different mar-

kov chain could not generate the same observed pattern of oscillation). We described the net-

work using a probabilistic voting scheme, as opposed to using analog propensity values. A

unitary vote is cast by each unit for the motif type for which it has the highest propensity value

at some time step. The proportion of total votes for each motif type is used to describe the rela-

tive dominance of that motif at that time step.

From this time series we constructed a Markov model transitioning between states. We

found that the parameters characterizing the Markov process were canonical and low variance,

such that successful cycling followed a specific reliable sequence between motifs. In contrast,

the Markov parameters in simulations that truncated showed a failure to recruit this low-vari-

ance canonical sequence. First and second-order state probabilities and state transition proba-

bilities significantly differed between sustained and truncated runs (p< 1 � 10−15, n = 1107,

p< 1 � 10−15, n = 1107, p< 1 � 10−15, n = 884 respectively) (Fig 8A and 8B). Second-order state

conditional probabilities also differed (p� 0.029, n = 227) (Fig 8C). State probability is the

probability of a motif being dominant at a given time. Second order probability is the probabil-

ity with which a sequence of two motifs will be dominant at some given time. Conditional

probability is defined as the probability of a motif given history of previous two motifs.

Markov analysis also gave the time scale which characterized motif cycling via the mean

time for recurrence. This is defined by the expectation of the hitting time for each motif, given

the network is currently dominated by that motif. We define hitting time, t, as Hi = inf{n� 1 :

Sn = i|So = i} and our expectation of hitting time, t, as E½t� ¼
P1

n¼1
n � pðHi ¼ nÞ. This gives a

mean recurrence time for each motif. We find truncating middleman to have mean 18.59 ms

(std: 6.49 ms), completing middleman to have mean 27.02 ms (std 5.99 ms), truncating fan-in

to have mean 18.01 ms (std: 4.61 ms) completing fan-in to have mean 12.39 ms (std: 1.27 ms),

truncating fan-out to have mean 12.95 ms (std: 3.14 ms), and completing fan-out to have

mean: 12.65 ms (std: 3.56 ms). Hitting times differed significantly between sustained and the

small subset of truncated runs that entered this region of propensity (p� 2.70 � 10−6, n = 227)

(Fig 8D).

Effects of connectivity weights

We hypothesized that the cycling between clustering propensities was necessary for sustained

asynchronous activity due to the weak strength of the majority of individual synapses. Fan-in

clustering has the highest probability of remaining in the state of fan-in clustering in the next

time point which hints at the greater need for integration. But once integration is sufficient,

PLOS COMPUTATIONAL BIOLOGY Cyclic transitions between higher order motifs in sparse recurrent networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007409 September 30, 2020 15 / 30

https://doi.org/10.1371/journal.pcbi.1007409


the motif changes. For our model and for most of the synapses in neocortex, convergence of

spikes from multiple sources must occur in order to evoke spikes in a receiving neuron [29].

Consequently we expected that as connection weights increased, the cycling between popula-

tion-wide isomorphic motifs would lessen.

To test this, we strengthened all synaptic weights in the networks that previously scored

well from 1.0x to 2.0x original values in increments of 0.1. Simulations were then re-run on

these strengthened networks using the same stimulus and initial conditions. At 1.6 times the

Fig 8. Markov comparisons between sustained and truncated runs on standard networks. A: Probabilities of state

dominance of a triplet motif in sustained (left) and truncated (right) runs. B: Second order state probabilities for

sustained (left) and truncated (right) runs. C: Second order conditional state probabilities for sustained (left) and

truncated (right) runs. D: Expectation of hitting time for Markov model of state dominance transitions in sustained (left)

and truncated (right) runs. E: Visualization of Markov matrix for state dominance in complete (left) and truncated (right)

runs.

https://doi.org/10.1371/journal.pcbi.1007409.g008
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original weights, networks consistently displayed bursting activity. Consequently we restricted

our analysis to networks with weights increased 1.5 times. All runs on these networks reached

completion.

Increasing weights led to a decrease in all triangle motif propensities (Fig 9B), and also led

to differences in the Markov characterization (Fig 9H). Motif state probabilities differed signif-

icantly between sustained runs on the original graphs and those on graphs with increased

weights (p� 0.00032, n = 296) (Fig 9C). Second-order state probabilities, state conditional

probabilities, hitting times, and state transition probabilities all differed significantly as

well (p< 0.01, p< 0.05, p< 0.005, p< 0.001, Fig 9D, 9E, 9F and 9H) (p� 0.0065, n = 296,

p� .015, n = 267, p� 0.0014, n = 267, p� 0.011, n = 296 respectively), demonstrating the

interaction of synaptic strength on the necessity of this regime (Fig 9). However the trend

remained and in all sustained runs a low variance transition from motif to motif occurred.

The dynamical motif solution is arrived at regardless of synaptic

connectivity statistics

The networks on which we performed all our analyses have excitatory clusters of units. To

test whether our results, including the motif cycling phenomenon, are dependent on this

structure, we next examined non-clustered Erdős-Renyi (ER) graphs with pi!e = 0.25 and

pe!i = 0.35. ER graphs had the same pe!e and pi!i values as the clustered networks. We

found that transitions between motif types were also present in the activity of sustained runs

on ER networks (Fig 10). The relative increase in clustering in ER graphs when comparing

synaptic to recruitment graphs is substantially greater than seen in our graphs with excit-

atory synaptic clusters. In the synaptic networks, triplet clustering coefficients average 0.11.

However, this value increased to 0.20, 0.09, and 0.15 for fan-in, fan-out, and middleman

motifs in the recruitment graphs. The propensity values for all isomorphic motifs were con-

sistently lower than those in 1.5x networks, as well as original networks, with means centered

at 1.25 (Fig 10B). We find that unclustered graphs and clustered graphs differ significantly in

first and second-order state probabilities, state conditional probabilities, hitting times, and

state transition probabilities (Fig 10C, 10D, 10E, 10F and 10H) (p� 5.1 � 10−12, n = 111,

p� 0.00021, n = 111, p� 0.00017, n = 106, p� 1.1 � 10−7, n = 106, p� 6.2�10−8, n = 111

respectively). As in the case with the increased weights however the qualitative cycling of

motifs was present in sustained runs.

Discussion

This work demonstrates that higher-order structure is crucial for sustained low-rate and asyn-

chronous spiking in recurrent networks such as neocortex. Within the range of dynamics sur-

veyed, we found that rate, criticality, and synchrony overlapped substantially between

sustained and truncated runs, although high firing rates corresponded with short run times

consistent with previous work [12]. Thus first order statistics did not cleanly partition the sta-

bility of asynchronous spiking in our models. Our subsequent analyses of higher order struc-

ture revealed that there are many ways for network activity to ‘fail’ and only one specific way

to ‘succeed’. To succeed, spikes must traverse the synaptic network in a coordinated way,

cycling iteratively between the global dominance of three triplet motifs. The transitions

between fan-in, middleman, and fan-out motifs reveal the necessity of balance between distri-

bution of output and convergence of input. The presence of these motifs in the recruitment

graphs demonstrates the functional routing of activity through synaptic connections. When

synapses become stronger and more reliable, overall triplet clustering decreases while the reli-

ability of their transitions remains, demonstrating that these motifs tightly control synaptic
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Fig 9. Networks with increased weights. Networks have the same structure as those seen in Figs 4 and 5, but all edge

weights have been increased by 1.5 times their original values. A: Left, density (ratio of existing to possible connections)

for synaptic, functional, and recruitment graphs. Right, reciprocity (ratio of reciprocal to all existing connections) for

synaptic, functional, and recruitment graphs. B: Clustering propensity for isomorphic triangle motifs on increased-

weight-graph simulations. The y-axis is scaled to match that of Fig 7A (clustering propensities on original graphs) and Fig

10B (clustering propensities on unclustered ER graphs). C: Probabilities of dominance of each triangle motif. The

dominant motif at a time point is given by the maximum of mean middleman, mean fan-in, and mean fan-out across

units. D: Second order motif state probabilities for progression of temporal recruitment graphs. E: Probabilities for each

motif to follow a given second order motif. F: Hitting times for each state for the Markov process defined by motif

transition probabilities. G: Trajectories of all complete runs on a sample network in 3-dimensional isomorphic motif

space. In blue are the runs on the network with its original weights, in orange are the runs on the same network with

weights increased. H: Markov Matrix for transition probabilities between motifs.

https://doi.org/10.1371/journal.pcbi.1007409.g009
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cooperativity. Their presence is able to compensate for a prevalence of weak synaptic connec-

tions and to maintain the asynchronous spiking regime. Higher order motifs in the recruit-

ment network thus provide a direct link between asynchronous spiking and the stability of

activity in that network.

Fig 10. Unclustered (Erdős-Renyi) networks. A: Left, density (ratio of existing to possible connections) for synaptic,

functional, and recruitment ER graphs. Right, reciprocity (ratio of reciprocal to all existing connections) for synaptic,

functional, and recruitment ER graphs. B: Clustering propensity for isomorphic triangle motifs on ER graph simulations.

The y-axis is scaled to match that of Fig 7A (clustering propensities on original graphs) and Fig 9B (clustering

propensities on graphs with 1.5 times increased weights). C: Probabilities of dominance of each triangle motif. The

dominant motif at a time point is given by the maximum of mean middleman, mean fan-in, and mean fan-out across

units. D: Second order motif state probabilities for progression of temporal recruitment graphs. E: Probabilities for each

motif to follow a given second order motif. F: Hitting times for each state for the Markov process defined by motif

transition probabilities. G: Trajectories of all runs on a sample ER network in 3-dimensional isomorphic motif space. All

runs reached completion. H: Markov Matrix for transition probabilities between motifs.

https://doi.org/10.1371/journal.pcbi.1007409.g010
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Our study exclusively examined networks which produced low-rate, critical, and asynchro-

nous spiking, consistent with activity recorded in awake state in neocortex. As such, the cyclic

motif transitions which support stability in this regime may not generalize to regimes with

bursting or synchronous activity. The dynamical features of neocortex are undoubtedly inter-

related with the stability of those dynamics. However, given the prevalence of this spiking

regime, our results provide an explanation for the prominence of higher order motifs in real

data. Elevated motif counts have been observed in synaptic connectivity and in recordings of

clustered activity in vivo [2, 3, 8, 22–28]. Through mechanisms of learning in neocortex such

as STDP, functional patterns may be further strengthened to enhance integration in cortex.

We wish to draw attention to the fact that our study focused on the whole-network scale. Indi-

vidual units spiked only sparsely, making it difficult to continuously track single-unit motifs

across small epochs of time since interspike intervals were generally larger than the intervals

we analyzed. Regardless, functional networks summarizing long recordings from neocortex

also report the prevalence of these motifs, albeit without this dynamic component. The models

we used were constructed to simulate neocortex. The network structures we employed closely

match experimental observations [2, 3] and the model units capture many of the statistics of

neocortical neurons [5]. Our results provide, first and foremost, an account of at least one of

the roles of beyond-pairwise interactions in the brain. Yet the behavior of these models may

reflect necessary features of weakly-connected networks in which integration from multiple

sources is necessary for the system to succeed. In such systems it is likely that stability relies on

higher-order patterns. For example, the spread of rumours in a social network relies on inte-

grating interactions. Social networks are small-world networks characterized by clusters, a fea-

ture which is present in our model as well as many other systems [1, 52]. The “illusion-of-

truth” effect in rumour spreading on a social network has the integrate-and-fire property,

where an individual may need to hear a rumour from multiple sources before they reach a con-

fidence threshold to repeat it to others [53].

The necessity of higher-order patterns for stable asynchronous activity has strong implica-

tions for neural coding. Previous work has already demonstrated that correlations enhance

coding, with triplet correlations having an advantage over pairwise, as well as the limited role

of motifs larger than three nodes [5, 26, 28, 31–33, 54–57]. The neural code must rest upon a

foundation of the maintenance of spiking, which we have shown in turn rests on higher-order

motifs and coordinated synaptic integration in the awake dynamical state. Any two spikes

must take place within some time interval for them to interact. The asynchronous and critical

regime observed in vivo and in our models pushes the limits on what constitutes a cooperative

event. In our model, the precise conditions for integration are dictated by the time constants

we chose, while in neocortex the same time constants may vary and span some range. Neuro-

modulation, cognitive state, and a variety of other factors all dictate the requirements which

need to be met for integration. Local connectivity certainly plays a large role as well. Conse-

quently, the role of higher order interactions in coding and in coordinating synaptic integra-

tion may vary by brain region and state.

Materials and methods

Network structure

Our graphs are recurrent and sparsely connected networks of several thousand adaptive expo-

nential leaky integrate-and-fire (AdEx) units with an extra poisson input term [37]. Synapses

between all units are conductance-based. This enhances realism by taking neuron-specific

state features into account during synaptic integration [37]. Specifically we define our neuron
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Voltage, V, as.

C
dV
dt
¼ � glDtexp

V � VT

DT

� �

� geðV � EeÞ � giðV � EiÞ � gpðV � EeÞ � w ð1Þ

adaptation current, w, as

tw
dw
dt
¼ aðV � ElÞ � w ð2Þ

excitatory conductance, ge, as

te
dge
dt
¼ � ge ð3Þ

inhibitory conductance, gi, as

ti
dgi
dt
¼ � gi ð4Þ

poisson input conductance, gp, as

tp
dgp
dt
¼ � gp ð5Þ

A spike was said to occur if V> Vt, after which V was set to EL, w was incremented by b
and ge and gi were incremented by synapse weight if downstream of the spiking neuron.

For information on parameters, see S1 Table. Each network is comprised of 1000 inhibitory

and 4000 excitatory units. Precise wiring probabilities between excitatory and inhibitory popu-

lations were determined through grid search within biological constraints.

Network synaptic connectivity is heterogeneously clustered [8]. For each network we

defined 50 total clusters, with each excitatory unit randomly assigned to two clusters. Clusters

thus vary in size and follow a binomial distribution. The wiring probability between two units

within the same cluster is twice that of units in different clusters. Network cluster sizes range

from 111 to 207 excitatory units (mean = 158.40, std = 12.27). Inhibitory units are not clus-

tered; their wiring probability is uniform across the graph.

Edge weights follow a heavy-tailed distribution (Fig 1B). Edge weights that originate from

inhibitory units have conductances which are ten times greater than those which originate

from excitatory units, in accordance with experimental results [12].

Network simulation

Each simulation was recorded at 0.1-ms temporal resolution. A trial began with 30 ms of Pois-

son input stimulus onto 500 randomly chosen units. After 30 ms the stimulus would cease and

activity would propagate naturally through the network. The simulation would continue for as

long as spiking activity is sustained, up to a maximum of 1 second. If during a simulation no

spikes occur across the network for 100 ms, the network is deemed inactive and the simulation

trial is halted. We found that all network simulations which reached 1 second were also able to

sustain activity up to 10 seconds. We therefore chose one second as the marker for a network’s

ability to sustain activity indefinitely, and as the definition of a successful run. Upon comple-

tion each simulation yields an output raster of spike times for every unit in the network. The

Poisson input train, input units, network topology, and initial conditions of all units were

recorded for each simulation. This enabled subsequent analyses and also allowed for re-use of
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a synaptic graph or re-instantiation of a simulation using some of the original settings while

varying others.

Parameterization

Our models are constructed to parallel the features of biological neural networks, but are also

constrained by considerations of computing resources. In a study which modeled cortex with

high biophysical and anatomical detail, simplifying the neuron model did not lead to drastic

differences in the network’s behavior from the detailed model or from in vivo results. Most

qualities remained unchanged, suggesting that in many cases extremely granular models are

not necessary to yield experimental insights [37]. Instead, the most important feature for

retaining qualitative correspondence are the rules of synaptic connectivity. Therefore we

required our models’ connectivity parameters to closely match those of biological neural

networks.

The probabilities of wiring between excitatory (E) and inhibitory (I) populations in our

models were taken directly from or bounded by the results of biological experiments. The wir-

ing probabilities from E to other E units and from I to other I units in neocortex are well-stud-

ied, but there is less data on connections from E to I and from I to E. We therefore used an

algorithmic approach to find the optimal values. Beginning within a biological range, we used

grid search to find values of pe!i and pi!e that led to successful maintenance of activity at the

lowest possible rates. We used these optimal wiring rules to construct all synaptic graphs in

this study.

Two iterations of grid search were used to find the wiring parameters needed to maintain

naturalistic spiking for the duration of a simulation (Fig 2A). We searched for the optimal

probability of connection from excitatory to inhibitory units, pe!i, and the optimal probability

of connection from inhibitory to excitatory units, pi!e, such that networks would sustain activ-

ity at the lowest possible rates. In the first iteration, we used a low resolution grid (space size

0.001) to search for pe!i within the range 0.16 to 0.24 and pi!e within the range 0.29 to 0.37.

These two ranges were taken from known wiring probabilities in neocortex. Each grid space

was visited ten times to achieve an average measure of rate and completion. This isolated a

region of interest where the rate was lowest, between pe!i values of 0.210 and 0.230, and

between pi!e values of 0.300 and 0.320. We used a higher resolution grid (space size 0.0001) to

explore this region.

For all subsequent simulations we used the best results obtained from grid search. The opti-

mal probability of wiring for excitatory to inhibitory units, pe!i, was found to be 0.22, and the

optimal value for pi!e was 0.31. The values for pe!e and pi!i were taken from known wiring

probabilities in neocortex, and were 0.20 and 0.30 respectively [29]. Based on these wiring

rules, we constructed synaptic graphs of networks for simulations. Each synaptic graph is a

matrix W where the value in wij denotes the weight of the directed connection from unit i to

unit j.

Scores

To evaluate the biological realism of constructed networks, we computed several measures of

network activity for both excitatory and inhibitory subpopulations. All measures were calcu-

lated based on spiking activity between 30ms after trial start and 50ms prior to trial truncation.

Networks were evaluated on rate, defined as average spike frequency over the course of each

trial. Networks were also evaluated on branching parameter as a measure of network criticality

[13]. A branching value of 1 indicates that for every ‘ancestor’ unit that is active, there is an
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equal number of ‘descendant’ units active at the next time step. On average, the number of

units active over the course of a trial in a critical network stays constant.

Branching was mathematically defined as:

s ¼
Xnmax

d¼0

d � pðdÞ; ð6Þ

pðdÞ ¼
X

avalanches

nSajd
Sna

 !
nmax � 1

nmax � na

� �

ð7Þ

where σ is the branching parameter, d is the number of descendants, nmax is the maximum

number of active neurons, na is the number of ancestor neurons, nd is the number of descen-

dant neurons, nSa|d is the number of ancestor neurons in all avalanche events that involved d

descendants, and nSa is the total number of neurons involved in avalanches. The branching

parameter describes the network as a whole; it cannot be calculated for isolated units. For a

given simulation, we calculated network branching at discrete, sequential time steps through-

out. We used the same temporal resolution (5 ms) as used for determining the functional

graph; all spikes at time t are ancestors, and all spikes from t + 5 to t + 20 ms are descendants.

We then averaged the network branching parameter across all time steps to get the overall

branching score for that simulation. Networks were further evaluated on their level of asyn-

chrony, since biological networks display asynchronous activity. In order to evaluate asyn-

chrony rapidly enough to make grid search feasible, a heuristic for synchrony was computed

as the variance of mean voltage normalized by the mean variance of each neuron. An upper

threshold of 0.5 was considered appropriate for network asynchrony. The threshold was evalu-

ated empirically by examining a population of inhomogeneous Poisson neurons with underly-

ing Gaussian firing rates where covariance across the underlying Gaussian processes was the

varied parameter. The Van Rossum spike distance [45] was used as the measure of asynchrony

for all analyses outside of initial grid search. The Van Rossum spike distance was calculated as

follows: each spike train was convolved with an exponential kernel with time constant τ = 10

ms, we then took the distance to be the mean L2 norm between the resulting traces normalized

by
ffiffi
1

t

p
.

Triplet motifs

The clustering coefficients for the four triplet motifs are calculated in the following manner

[49].

Let ti denote the actual number of triplets of a motif type in the neighborhood of unit i, and

Ti denote the maximum number of such triplets that unit i could form. We will build intuition

by beginning with the case of a binary directed graph, or an unweighted connectivity matrix.

Let A represent this graph, with aij = 1 indicating the presence of a directed connection from

node i to node j. Raising the matrix A to the nth power yields the number of paths of length n
between nodes i and j.

Let us first consider the cycle motif; in order for unit i to participate in a cycle, it must have

an edge directed to a second unit, that second unit must have an edge directed to a third unit,

and that third unit must have an edge pointing back to unit i. The path length is 3, and it both

begins and ends at unit i. Thus we calculate A3 and extract the values along the diagonal, or A3
ii.

This gives the number of actual cycle motifs unit i forms.

Counts of the three isomorphic motifs are calculated in a similar way, but they require the

additional involvement of AT. Taking the transpose of graph A reverses the directionality, so
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that connections from i to j are now those from j to i. We would like to trace a path of length 3

from i back to i to form an isomorphic triangle, but exactly one of the steps must be against the

true direction of that edge (Fig 5). Beginning with a middleman reference node, the first step is

‘with the flow’, the second step is invariably ‘against the flow’, and the final step back to i is

again ‘with the flow’. Therefore AAT Aii gives the number of actual middleman motifs unit i

forms. Since fan-in and fan-out motifs are isomorphic to middleman by rotation, we simply

rotate which step is ‘against the flow’ to yield the count of fan-in and fan-out motifs. The num-

ber of actual fan-in motifs unit i forms is ATA2
ii, and the number of fan-out motifs is A2AT

ii .

Now that we can calculate the actual counts, the possible counts of each motif Ti are easily

intuited as a combinatorics problem. Let us begin again with the cycle motif. To form a cycle,

node i requires one edge directed towards it and one edge directed away from it. The number

of possible pairs of in and out edges from node i is calculated by multiplying the out-degree of

node i with the in-degree of node i. In-degree and out-degree refer simply to the number of

edges that are directed in or out of a given node. Some edges may be bidirectional—these can-

not be part of a true cycle motif. The number of bidirectional edges is subtracted from the

product of in- and out-degrees. The final Ti for the cycle motif is

Ti ¼ dini d
out
i � d$i ð8Þ

The Ti for middleman is in fact equal to that for cycle, since forming a middleman has the

same requirements—one edge directed inward paired with one edge directed outward.

A fan-in motif requires two edges directed in towards the reference node. There are dini
number of choices for the first inward edge. Once that choice has been made, there are dini � 1

choices remaining for the second inward edge. Thus we multiply the two to yield Ti for the

fan-in motif.

Ti ¼ dini ðd
in
i � 1Þ ð9Þ

Fan-out is similar—we simply substitute in-degrees with out-degrees since a fan-out motif

requires two edges directed out from the reference node. Ti for the fan-out motif is thus

Ti ¼ douti ðd
out
i � 1Þ ð10Þ

Now that we have both the actual and possible counts for each motif type, the triplet cluster-

ing coefficients of node i are simply their ratios. That is,

C?
i ¼

t?i
T?
i

ð11Þ

If we were interested in binary graphs, we would end here. However, our graphs of interest

have weights associated with each directed edge. There are multiple ways to account for edge

weights when calculating clustering coefficients. One way is to consider only the weights of the

two edges that are incident to reference node i. Alternatively, the weights of all three edges in a

triplet can be taken into consideration. The latter is the chosen method, since we desire a mea-

sure of central tendency. The total contribution of a triplet to the clustering coefficient is thus

the geometric mean of its weights.

Let W denote our weighted directed graph. For a triplet in this graph with edge weights wij,

wih, and wjh, the geometric mean is (wij � wih � wjhÞ
1
3. We can extend this to the entire graph by,

Instead of using a binary graph as matrix A in the calculation of ti, using A ¼W1
3, which is the

matrix that results from taking the cubic root of every entry in W. We also note that this for-

mulation is invariant to the choice of reference node in a triplet. Incorporating weights only
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modifies the value of ti. It remains a measure of the actual triplets present—instead of counts it

is now a weighted measure. The denominator Ti still refers to maximum possible counts. It fol-

lows that the clustering coefficient for node i can only be 1 (maximum) when its neighborhood

truly contains all triplets that could possibly be formed and every edge in each triplet is at unit

(maximum) weight. The complete clustering coefficient formulas of weighted directed graphs

are given in Fig 5.

Active subgraphs

For any small span of time in a trial, only a subset of all units in the graph will be active. The

subset of units which spike in some defined time window form the active subgraph for that

time window. We binned spikes into a temporal resolution of 10 ms, so that each complete

1-second simulation resulted in 99 time bins. For each time bin t we defined an active subgraph.

If a unit spiked within time bin t, that unit will be part of the active subgraph for time bin t. All

units which did not spike within that particular time bin are not included in that particular

active subgraph. Since there are 99 time bins for a complete 1-second simulation, there are also

99 active subgraphs in sequence. Edge weights between units in an active subgraph are equal to

those from the corresponding edges (between active units) in the ground truth synaptic graph.

Functional subgraphs

We calculated motifs in the underlying synaptic graphs and found that all four clustering coef-

ficients were equivalent when averaged across each graph, as expected.

To apply motif analysis to activity, we needed to infer functional graphs from spiking activ-

ity to summarize network dynamics. Directed edge weights in a functional graph represent the

likelihood of a functional relationship in the activity between every pair of units.

We used mutual information (MI) to infer functional graphs from all spikes across the

course of a trial, regardless of the trial’s duration (complete or truncated). This results in a sin-

gle functional graph for each trial. We chose to perform functional inference using the full

spike set because this yields functional graphs with higher fidelity and greater sparsity.

The MI method we used is the confluent mutual information between spikes. At a concep-

tual level, an edge inferred from unit i to unit j using confluent MI means that unit j tends to

spike either in the same time bin or one time bin after unit i spikes. Since spikes are binned at

10ms resolution, this method encompasses a delay of 0 to 20 ms. This delay is appropriate

because we found that presynaptic spikes yielded a maximal response from all postsynaptic

neurons at a delay of 5 to 20 ms.

Mathematically, we defined an indicator function on the spike train of neuron j, s(j) evalu-

ating to 1 in the case where there is a spike at time t or t + 1, an indicator function on the spike

train of neuron i, t(j), evaluating to 1 in the case where there is a spike at time t, and considered

the mutual information between them. The resulting networks were further processed by

removing weights corresponding to neurons with negative pairwise correlations. Networks

were then re-expressed to minimize skewness, and background signals were removed by

accounting for background signal and considering weights as the residual resulting from linear

regression on background strength. Finally we considered the z-normalized residual graph to

account for heteroskedasticity [34]. This yields weighted values, for which we establish 0 as a

threshold. All positive normed residual MI values are included in the full functional graph.

Recruitment graphs

The recruitment graph represents both the activity and the underlying connections of a net-

work. A recruitment graph is defined separately for each 10 ms time bin of a given trial, thus
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yielding a temporal sequence of graphs. Each graph is calculated as the intersection of the func-

tional graph, which is unique to every trial, and the active subgraph, which is unique to every

10 ms time bin. All edges in the recruitment graph come from underlying synaptic wiring,

contained in the active subgraph, while edge weight values come from the inferred functional

graph. In other words, for all edges i! j where wfunctional,ij> 0 in the confluent MI functional

graph and wsynaptic,ij> 0 in the active subgraph of time bin t, the edge in the recruitment graph

for time bin t takes on the value of wfunctional,ij. All other recruitment graph edges have value 0.

Just like the sequence of active subgraphs, there are 99 sequential recruitment graphs at 10

ms temporal resolution for every complete 1-second simulation trial. Triplet clustering coeffi-

cients were calculated for every unit on each 10 ms recruitment graph, then averaged across

the population to yield the whole-network clustering coefficients for that 10 ms time window.

These methods allow us to observe how motif clustering changes in the recruitment graphs

across time.

Clustering propensity

Networks may have very different connection densities, which would impact motif clustering

coefficients. This is especially true as the active subnetwork changes in time, and for ER net-

works in comparison to clustered model graphs. We therefore used weighted and unweighted

clustering propensity which enables meaningful comparisons between networks with different

connection densities.

Our measure of weighted propensity begins with calculating the triplet motif clustering

coefficients for each unit in the recruitment graph of every time bin. Then, for each time bin t

we generate ten simulated graphs. These graphs have the same edges as the original recruit-

ment graph at time t, with edge weights randomly sampled from the underlying distribution

of functional edge weights. Motif clustering coefficients are calculated for units in each of the

simulated graphs, then averaged for each unit and each motif type. The clustering coefficients

of the units in the original graph at time t are normalized by the average of the ten simulated

graphs’ clustering coefficients, yielding the unit-wise clustering propensity at time t for each

triplet motif. We used these values to perform all unit-wise motif analysis. In order to examine

motifs at a whole-network level, for each motif type at time t we average across all units with

nonzero clustering propensity values for that motif type.

Unweighted propensity is calculated similarly, considering the functional networks’

unweighted directed clustering to that expected in both an ER graph as well as a small world

graph. Thus, in addition to controlling for density, weighted propensity also measures the

extent to which the specific edge weights in the recruitment graph impact triplet motif cluster-

ing, while unweighted propensity measures the same for specific structure of the recruitment

graph. A weighted propensity of 1 indicates that specific edge weights play a negligible role in

clustering, since random edge weights would still yield the same clustering coefficients, while

an unweighted propensity of 1 indicates that the specific structure of the network is not impor-

tant for clustering.

Erdős-Renyi graph simulations

Unclustered ER Graph simulations were performed using networks consisting of 1000 excit-

atory neurons, 200 inhibitory neurons and 50 Poisson input neurons. These populations were

connected with pee = 0.2, pii = 0.3, pie = 0.25 and pei = 0.35. Synaptic weights relative to leak

conductance were drawn from a log normal distribution (mean = 0.60, variance = 0.11), with i

to e connections scaled up 50% [29].

PLOS COMPUTATIONAL BIOLOGY Cyclic transitions between higher order motifs in sparse recurrent networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007409 September 30, 2020 26 / 30

https://doi.org/10.1371/journal.pcbi.1007409


Overlap index

Overlap Index was used to measure the degree of overlap between two probability distribu-

tions. It is defined as O ¼
X

i

minpi1; pi2, where i is histogram bin index. If two distributions

do not overlap at all they will have an overlap index of 0, if they are identical they will have an

overlap index of 1.

Probability vectors

To quantify the cyclic transitions between relative prominence of motifs over time, we exam-

ined the dominant motif of the network for a given recruitment graph. We define the domi-

nant motif of a graph as the maximum of the demeaned propensities for middleman, fan-in,

and fan-out. We consider the demeaned values of each motif in order to account for the differ-

ent relative magnitudes of motifs without affecting scaling in the cycle structure. Examining

first order probabilities, which is the probability of a motif dominating a recruitment graph in

a given run, on the time series of recruitment graphs from sustained and truncated runs shows

that there is a significant difference between the distributions defining these values across each

type of run.

To further characterize the transitions between different dominant motifs we fit a Markov

model to the series of dominant motifs across recruitment graphs in both truncated and sus-

tained networks. We again find a significant different (p< 1�10−15, n = 884 for all markov

parameters). This all suggests that the failure to propagate found in some networks is tied to

the inability to recruit the cyclic structure that we find to be a hallmark of sustained activity.

Statistical testing: Two-sample chi squared test

P values for comparisons between distributions of different types of network activity were

done by two sample chi square test.

Supporting information

S1 Table. Neuron parameters. Parameters used for simulation of adaptive exponential inte-

grate and fire neurons.

(PDF)
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