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The second-generation antipsychotic drug aripiprazole modulates
the serotonergic system in pancreatic islets and induces beta cell
dysfunction in female mice
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Abstract
Aims/hypothesis Second-generation antipsychotic (SGA) drugs have been associated with the development of type 2 diabetes
and the metabolic syndrome in patients with schizophrenia. In this study, we aimed to investigate the effects of two different SGA
drugs, olanzapine and aripiprazole, on metabolic state and islet function and plasticity.
Methods We analysed the functional adaptation of beta cells in 12-week-old B6;129 female mice fed an olanzapine- or
aripiprazole-supplemented diet (5.5–6.0 mg kg−1 day−1) for 6 months. Glucose and insulin tolerance tests, in vivo glucose-
stimulated insulin secretion and indirect calorimetry were performed at the end of the study. The effects of SGAs on beta cell
plasticity and islet serotonin levels were assessed by transcriptomic analysis and immunofluorescence. Insulin secretion was
assessed by static incubations and Ca2+ fluxes by imaging techniques.
Results Treatment of female mice with olanzapine or aripiprazole for 6 months induced weight gain (p<0.01 and p<0.05,
respectively), glucose intolerance (p<0.01) and impaired insulin secretion (p<0.05) vs mice fed a control chow diet.
Aripiprazole, but not olanzapine, induced serotonin production in beta cells vs controls, likely by increasing tryptophan hydrox-
ylase 1 (TPH1) expression, and inhibited Ca2+ flux. Of note, aripiprazole increased beta cell size (p<0.05) and mass (p<0.01) vs
mice fed a control chow diet, along with activation of mechanistic target of rapamycin complex 1 (mTORC1)/S6 signalling,
without preventing beta cell dysfunction.
Conclusions/interpretation Both SGAs induced weight gain and beta cell dysfunction, leading to glucose intolerance; however,
aripiprazole had a more potent effect in terms of metabolic alterations, which was likely a result of its ability to modulate the
serotonergic system. The deleterious metabolic effects of SGAs on islet function should be considered while treating patients as
these drugs may increase the risk for development of the metabolic syndrome and diabetes.
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Abbreviations
D2R Dopamine D2 receptor
D3R Dopamine D3 receptor
D4R Dopamine D4 receptor
DEGs Differentially expressed genes
EE Energy expenditure
ΔF Change in fluorescence
Fbasal Basal fluorescence
GSIS Glucose-stimulated insulin secretion
H1R Histamine H1 receptor
5-HT 5-Hydroxytryptamine
iWAT Inguinal white adipose tissue
M1R Muscarinic M1 receptor
M5R Muscarinic M5 receptor
mTOR Mechanistic target of rapamycin
mTORC1 Mechanistic target of rapamycin complex 1
ORA Over-representation analysis
p-adj Adjusted p value
PCA Principal component analyses
PCPA 4-Chloro-DL-phenylalanine
RER Respiratory exchange ratio
RNA-seq RNA-sequencing
RT-qPCR Quantitative real-time PCR
SGA Second-generation antipsychotics
TEM Transmission electron microscopy
TPH1 Tryptophan hydroxylase 1
WAT White adipose tissue

Introduction

In recent years, an increased incidence of type 2 diabetes in
patients taking chronic pharmacological treatment has been
reported [1]. In patients receiving second-generation antipsy-
chotic (SGA) drugs [2, 3], the first-line treatment for schizo-
phrenia, the increase in incidence varies between 10% and
20%. SGAs induce metabolic alterations, including weight
gain, hyperglycaemia, insulin resistance and dyslipidaemia,
which increase the risk for cardiovascular disease [2]. In a
large cohort of drug-naive individuals with schizophrenia,
the incidence of type 2 diabetes was augmented in those
prescribed the SGA olanzapine [4]. Rajkumar et al reported
that the SGAs olanzapine and aripiprazole doubled the risk for
developing type 2 diabetes, whereas the first in class antipsy-
chotic, clozapine, increased the risk by fourfold [5]. Female
individuals are more susceptible to the metabolic side effects
of SGAs and, therefore, preclinical studies are often perform-
ed on female rodents [6].

SGAs act through a broad range of receptors, including
dopamine D1–D4 receptors (D1R–D4R), serotonin receptors
(5-hydroxytryptamine [5-HT])1A, 5-HT2A, 5-HT2C, 5-HT3, 5-
HT6 and 5-HT7), histamine H1 receptor (H1R) or muscarinic
M1–M5 receptors (M1R–M5R) [7]. Several studies have test-
ed SGA drug-induced effects on whole-body glucose homeo-
stasis [8]; however, their impact on beta cell function remains
unclear [9]. Beta cells express different serotonergic receptors
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and synthesise, store and release serotonin in response to
glucose, but the effects of SGAs on serotonin biosynthesis
and signalling in islets and their impact on insulin secretion
are not clear [10]. As reviewed previously [8], olanzapine has
higher antagonistic activity against serotonin 5-HT2A recep-
tors and the dopamine receptor D2R, but is also antagonistic
against D3R and D4R, 5-HT3 and 5-HT6 receptors, H1R, α1-
adrenergic receptors and M1R–M5R. On the other hand,
aripiprazole has partial agonistic activity for the dopamine
receptors D2R, D3R and D4R, 5-HT1A and 5-HT2C receptors,
and α1-adrenergic receptors, and also exhibits 5-HT2A and 5-
HT7 receptor antagonism.

Herein, we used the chemically unrelated SGAs,
olanzapine (a commonly prescribed SGA that is highly diabe-
togenic) and aripiprazole (the metabolic side effects of which
are less well-known) to study the effects of prolonged treat-
ment with SGAs on blood glucose levels, islet morphometry
and beta cell function in female mice.

Methods

Animals Animal experiments were approved by the Animal
Ethics Committees of the Spanish National Research Council
and Comunidad de Madrid in accordance with Spanish (RD
53/2013) and European Union (63/2010/EU) legislation
(PROEX 037/17).

Details of the B6;129 mice used in this study have been
previously reported [11]. Mice were housed in a pathogen-free
facility in temperature-, humidity- and light-controlled rooms
(with a 12 h light–dark cycle), with free access to food andwater.
Ninety female mice, aged 12 weeks, were randomly allocated
into three experimental groups; mice received a standard chow
diet (SAFE A04; Scientific Diets [SAFE], France), or the same
diet supplemented with olanzapine (GP8311; Glentham Life
Sciences, UK) or aripiprazole (AC457990010; ACROS
Organics, ThermoFisher Scientific, USA) (both 40 mg/kg chow
diet). Dosage (5.5–6.0 mg kg−1 day−1) was calculated consider-
ing daily food intake. After 6 months on the diet, mice were
euthanised by cervical dislocation and pancreatic islets, whole
pancreases, white adipose tissue (WAT) depots (epididymal
WAT [eWAT] and inguinal WAT [iWAT]) and blood were
collected and processed for analysis. As a positive control for
serotonin expression in isletswe used 12-day pregnant B6 female
mice, aged 16 weeks, bred in-house with B6 male mice.

Analysis of olanzapine and aripiprazole in plasma A simple
and sensitive LC-MS/MS method (Agilent Technologies,
Spain) was used for simultaneous determination of aripipra-
zole and olanzapine levels in plasma, as reported previously
[12] and detailed in the electronic supplementary material
(ESM) Methods.

Food intake measurement Food intake was measured manu-
ally using KERN PCB2500-2 scales (KERN, Germany)
during the first month of treatment in mice housed in group
cages and the mean food intake per mouse and per day was
calculated.

Metabolic assays After 6 months on the diets, metabolic
assays were performed, including i.p. GTT, i.p. ITT,
glucose-stimulated insulin secretion (GSIS) and indirect calo-
rimetry (see ESMMethods). In brief, for GTT and GSIS anal-
ysis, after 16 h of fasting, D-(+)-Glucose (2 g/kg body weight;
G8270; Sigma-Aldrich, USA) was injected into mice and tail
vein blood samples were collected at 0–120 min post-injec-
tion. For ITTs, after 4 h of fasting, human recombinant insulin
(Actrapid; 0.75 U/kg body weight; Novo Nordisk, Denmark)
was injected into mice and tail vein blood samples were
collected at 0–90min post-injection. Plasma glucose and insu-
lin levels were measured via glucometer (Accu-Check Aviva;
Roche Diagnostics, Switzerland) and ELISA (10-1247-01;
Mercodia, Sweden), respectively. Indirect calorimetry analy-
sis was carried out during light and dark cycles using the TSE
Phenomaster monitoring system (TSE Systems, Germany).
Oxygen consumption and CO2 release were measured, and

respiratory exchange ratio (RER) was determined as V̇CO2

/O2. Energy expenditure (EE) was calculated as EE = (3.185

+ 1.232 × RER) × V̇O2. Total locomotor activity was simul-
taneously measured using an infrared photocell beam inter-
ruption method, carried out using the TSE Phenomaster, as
described previously [13]. Analysis was performed using the
TSE Phenomaster Mouse software V5.1.7 (TSE Systems).

Pancreatic islet isolation and culture Islets were isolated by
collagenase P (11215809103; Roche, Germany) digestion
(13.5 U/ml in cold Hank’s buffer), as described previously
[14]. For ex vivo experiments, islets were recovered overnight
at 37°C and 5% CO2 in complete RPMI-1640 medium
(2 mmol/l L-glutamine, 1 mmol/l sodium pyruvate, 50 μmol/
l β-mercaptoethanol, 10 mmol/l HEPES and 10% [vol./vol.]
FBS) containing 5.6 mmol/l glucose. The next day, islets were
pooled, randomised and incubated with 6 μmol/l olanzapine
or aripiprazole (dissolved in DMSO; D8418; Sigma-Aldrich),
1–500μmol/l serotonin (14927; Sigma-Aldrich) (1–24 h incu-
bation) or 10 μmol/l 4-Chloro-DL-phenylalanine (PCPA;
C6506; Sigma-Aldrich). Control islets were treated with
0.01% (vol./vol.) DMSO.

Static incubations For each individual mouse, 3–6 groups of
three islets matched by size were placed in each well of a 96-
well plate. Islets were pre-incubated for 1 h at 37°C and 5%
CO2 in KRB containing 2.8 mmol/l glucose, 115 mmol/l
NaCl, 5 mmol/l KCl, 1.2 mmol/l NaHCO3, 1.1 mmol/l
MgCl2, 1.2 mmol/l NaH2CO4, 2.5 mmol/l CaCl2, 25 mmol/l
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HEPES and 0.25% (wt/vol.) BSA. Incubations were then
performed using 2.8 mmol/l or 16.7 mmol/l glucose at 37°C,
5% CO2 for 1 h. Insulin levels were determined by ELISA
(Mercodia) and values were normalised to islet number.

Insulin content Insulin was extracted from 20 islets/mice
using glycine/NP-40 lysis buffer (200 mmol/l glycine, 0.5%
NP-40; pH 8.8) and measured by ELISA.

Intracellular Ca2+ imaging Islets treated ex vivo with SGAs
were pre-incubated with Fura-2 AM (F11212; ThermoFisher
Scientific) and perfused with KRB containing glucose
(2.8 mmol/l or 16.7 mmol/l). Fluorescence measurements
were obtained at excitation wavelengths of 340 nm and
380 nm with an Axiovert 200 inverted microscope (Zeiss,
Germany) with appropriate filters. Data acquisition was
performed with the Aquacosmos 2.6 software (Hamamatsu
Photonics, Japan). Recordings were expressed as the ratio of
fluorescence at 340 nm and 380 nm (F340/380).

Immunohistochemistry Pancreases were fixed in Bouin’s solu-
tion (HT10132; Sigma-Aldrich) overnight at 4°C. Paraffin
embedding and tissue sectioning were performed as described
previously [15]. Longitudinal pancreatic sections of 6 μm thick-
ness, generated every 80 μm, were hydrated and pre-treated by
boiling for 20 min in a microwave in antigen-retrieval solution
containing 100 mmol/l sodium citrate dehydrate (pH 6;
W302600; Sigma-Aldrich) supplemented with 0.05% (vol./
vol.) Tween-20. Insulin and glucagon expression was analysed
by immunohistochemistry staining using primary antibodies
against insulin and glucagon, and secondary biotinylated anti-
bodies diluted in PBS (ESM Table 1). Pancreatic sections were
then processed for diaminobenzidine (DAB)-immunoperoxidase
staining (SK-4100; Vector Laboratories, USA) and counter-
stained with Mayer’s Hematoxylin (H3136; Sigma-Aldrich).
Images were examined using a Axiophot Zeiss light microscope
and captured with a DP70 digital camera (Olympus, Japan).
Insulin and glucagon staining and total pancreatic area were
quantified by ImageJ software version 1.52a (NIH, USA).
Morphometric analysis of the pancreas is described further in
ESM Methods.

Immunofluorescence of pancreatic sections and islets Pancreatic
sections were processed as described above using antibodies
against insulin, glucagon, serotonin, p-S6 and Ki67, and
secondary Alexa-Fluor conjugated antibodies (see ESM
Methods for further details). For in toto islet immunostaining,
20 islets were handpicked, placed in μ-Slide 8-well plates
(80826; Ibidi, Germany) and processed for insulin and sero-
tonin immunostaining, as detailed in ESMMethods. Antibody
details are listed in ESM Table 1. Immunofluorescence was
examined using an epifluorescence microscope (Nikon 90i;
Olympus) and images were taken with a digital camera

(Nikon DS-2Mv, Japan). The percentage of beta cells co-
expressing insulin and Ki67, p-S6 or serotonin was obtained
by dividing the number of positive cells for each staining by
the total number of insulin-positive cells in each islet.

Ultrastructural analysis by transmission electron microscopy
For transmission electron microscopy (TEM) analysis, pools
of 300 pancreatic islets from three mice per condition were
processed as described in ESMMethods. Tissue sections were
examined using a Zeiss Libra 120 transmission electron
microscope and TEM images were taken with an electron
multiplying charge coupled device (EMCCD) camera
(Albert Tröndle, Germany). The number and type of the secre-
tory granules in beta cells (n = 10 beta cells from three inde-
pendent mice/group) were assessed using ImageJ software
(NIH). Insulin granules from beta cells were classified into
four categories: mature (with an electron-dense core); imma-
ture (with a less electron-dense core); empty (lacking the
core); and atypical (insulin granules with an irregular shape).

Serotonin measurement Supernatants collected from static
incubation experiments were used for the measurement of
serotonin levels using the ELISA Fast Track kit (BA
E-8900; LDN, Germany). Values were normalised to islet
number.

Transcriptomic analysis of islets from treated mice by RNA-
sequencing Islets were isolated in TRIzol (15596026;
ThermoFisher Scientific) and total RNA was extracted using
the PureLink RNA Mini Kit (Invitrogen, USA). Total RNA
expression was analysed using Illumina TruSeq Stranded
RNASeq technology (Illumina, USA). The libraries were
sequenced (2 × 100 bp) with a mean output of 40million reads
in a NovaSeq 6000 sequencer (Illumina). After a quality
control check with FastQC (www.bioinformatics.babraham.
ac.uk/projects/fastqc, access date 27 May 2019), the reads
were aligned to reference transcripts with the Kallisto
algorithm [16], which provides a matrix of estimated counts
per transcript as the output. Exploratory analyses included
principal component analysis (PCA) and hierarchical cluster-
ing (HC). Transcriptomic analyses were performed with the
DESeq2 package [17], for which differentially expressed
genes (DEGs) were described as those with an adjusted p
value (p-adj) of <0.1 when performing a Wald test between
two conditions and a Benjamini–Hochberg adjustment. Over-
representation analyses (ORAs) of the DEGs were completed
with the WEB-based GEne SeT AnaLysis Toolkit
(WebGestalt) [18].

Western blotting Protein levels were assessed in pancreatic
islets using antibodies against IRS-2, mechanistic target of
rapamycin (mTOR), p-mTOR (Ser2448), S6K1, p-S6K1
(Thr389), p-S6 ribosomal protein, tryptophan hydroxylase 1
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(TPH1) and vinculin (ESM Table 1). Immunoreactivity was
detected by chemiluminescence, using Clarity Western ECL
Substrate (1705061; Bio-Rad, Germany). Densitometric anal-
ysis of the bands was performed using ImageJ software (NIH).
The protocol is fully described in ESM Methods.

Quantitative real-time PCR Gene expression was determined
by quantitative real-time PCR (RT-qPCR) using Power
SYBR Green PCR Master Mix (4367659; ThermoFisher
Scientific) and 7900HT Fast Real-Time PCR System
(ThermoFisher Scientific), as described in ESM Methods.
Primer sequences are shown in ESM Table 2.

Statistical analysis Statistical analysis was performed using
Prism 8 (Graph software, USA). Datasets were first
analysed for normal distribution. For data with parametric
distributions, unpaired Student’s t test was used to compare
mean differences between two groups, and for three or
more groups, one-way ANOVA with Bonferroni post hoc
test was used. For data with non-parametric distributions,
differences between groups were examined with Mann–
Whitney U test for two groups, or Kruskal–Wallis test for
three or more groups. Two-way ANOVA was employed to
compare two different categorical, independent variables.
Where other statistical analyses have been used, this has
been indicated in the figure legends. Data are expressed as
mean ± SEM. Tests were two-sided and p<0.05 was
considered statistically significant. Mice and islets were
randomly and blindly distributed for the treatments by
experimenters. Experimenters were not blind in outcome
assessment.

Results

Alterations in body weight, adiposity, energy balance and
glucose metabolism in female mice fed an antipsychotic
drug-supplemented diet Female mice were fed an
olanzapine- or aripiprazole-supplemented diet (40 mg/kg)
for 6 months. Figure 1a,b shows plasma drug levels at the
end of the treatment. Olanzapine-treated mice gained 8.70 ±
0.88 g of body weight compared with a 4.90 ± 0.47 g gain in
controls fed a chow diet (p<0.01). Aripiprazole-treated mice
also gained more weight than the controls over the treatment
period (p<0.05) but, as body weight stabilised in the last
month of the treatment in this group, there was less body
weight gain compared with olanzapine-treated mice (p>0.05)
(Fig. 1c,d). Both olanzapine- (p<0.01) and aripiprazole-
treated (p<0.001) mice had a significant increase in visceral
adiposity and showed a slight, but not significant, increase in
iWAT/body weight ratio vs controls (Fig. 1e,f).

We further studied the effects of the two SGAs on food
intake. Consistent with a previous report [19], food

consumption was higher in the olanzapine-treated group
compared with the control group (p<0.05; Fig. 1g), whereas
no differences were found between aripiprazole-treated mice
vs control or olanzapine-treated groups. EE and spontaneous
locomotor activity were lower in the dark phase in olanzapine-
and aripiprazole-treated mice vs control mice, although this
difference was only statistically significant for the
aripiprazole-treated group vs controls (p<0.05; Fig. 1h,i).

Fed and fasting blood glucose levels did not differ between
groups (Fig. 1j, ESM Fig. 1b). However, fed plasma insulin
levels were higher in mice receiving the olanzapine- (p<0.01)
or aripiprazole-supplemented diet (p<0.05; Fig. 1k), whereas
fasting insulin was similar between groups (ESM Fig. 1c),
suggesting increased insulin resistance or impairment of insu-
lin clearance with SGA treatment. We further assessed the
effects of SGAs on glucose tolerance and insulin sensitivity.
The GTT showed that olanzapine- and aripiprazole-fed mice
developed glucose intolerance (Fig. 1l). The ITT revealed
that, although insulin sensitivity was reduced in both groups
of treated mice, only the difference between the aripiprazole-
treated and control groups was statistically significant
(p<0.01; Fig. 1m). Collectively, these findings suggest that
both SGAs induce alterations in glucose homeostasis, despite
the fact that aripirazole treatment was associated with less
weight gain.

Olanzapine and aripiprazole impaired beta cell function and
altered islet morphology in female mice Olanzapine and
aripiprazole treatment markedly impaired GSIS in vivo
(AUC p<0.05; Fig. 2a), indicating impaired beta cell function.
Consistently, ex vivo static incubations showed that GSIS was
inhibited in islets of both olanzapine- (p<0.01) and
aripiprazole-treated animals (p<0.05), as compared with islets
from chow-diet-fed mice (Fig. 2b), without affecting islet
insulin content (Fig. 2c).

To determine the mechanism underlying beta cell dysfunc-
tion in response to SGA treatment, islet morphometry was
analysed (Fig. 2d–i). Islet size markedly increased in mice
treated with olanzapine (p<0.01) or aripiprazole (p<0.001)
vs controls (Fig. 2f). Beta cell mass was increased by twofold
in aripiprazole-treated mice compared with chow-fed mice
(p<0.01), but this effect was not observed in olanzapine-
treated mice (Fig. 2g). Interestingly, alpha cell mass was
twofold higher in olanzapine-treated mice than in the controls
(Fig. 2h), which was associated with a non-significant
increase in alpha cell area without changes in islet cell compo-
sition (ESM Fig. 2). Comparative analysis of islet size distri-
bution among groups confirmed the increased number of larg-
er sized islets in mice treated with SGAs vs controls (p<0.001,
analysed by χ2 test; Fig. 2i). Ultrastructural TEM analysis
showed smaller numbers of mature insulin granules (p=0.09)
and more empty granules (p=0.09) in beta cells from
olanzapine-treated mice vs controls (ESM Fig. 2f).
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Effects of antipsychotic drug-supplemented diet on beta cell
proliferation and size in female mice Consistent with a report

in adult animals [20], beta cell proliferation, assessed by Ki67
immunostaining, was low and no differences were found
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between groups (Fig. 3a,b). Notably, beta cell size was
increased in both olanzapine- and aripiprazole-treated mice
(p<0.05; Fig. 3c). mTOR complex 1 (mTORC1), a key regu-
lator of cell size, plays an important role in beta cell compen-
sation under stress conditions [21]. Immunostaining with an
antibody against phosphorylated ribosomal protein S6, a
downstream mTORC1 target, showed increased mTORC1
activity in beta cells from aripiprazole-treated mice (p<0.05),
but not from mice receiving olanzapine (Fig. 3d,e). Thus,
mTORC1 might have a role in mediating beta cell compensa-
tion in aripiprazole-treated mice. Islets were then treated
ex vivo with aripiprazole for 16 h and mTORC1 activity
was assessed by western blotting for mTOR, S6K1 and S6
phosphorylation. Treatment with aripiprazole increased
mTOR/S6K1/S6 phosphorylation (Fig. 3f), indicating stimu-
lation of the mTORC1 signalling pathway.

Ex vivo treatment of pancreatic islets with olanzapine and
aripiprazole impairs GSIS Ex vivo GSIS analyses showed that
both olanzapine and aripiprazole used at 6 μmol/l reduced
insulin secretion in islets without affecting insulin content
(Fig. 4a,b), suggesting direct inhibitory effects of these drugs
on insulin secretion.

We next analysed Ca2+ signalling in islets exposed ex vivo
to olanzapine or aripiprazole for 24 h. Islets treated with
olanzapine showed a similar pattern of Ca2+ oscillations
compared with control islets and no differences were found
in the AUC/min, change in fluorescence (ΔF), basal fluores-
cence (Fbasal) or response time to high glucose (time islets take
to respond to change in glucose concentration by opening

voltage-gated Ca2+ channels) vs controls (Fig. 4c,d,f, ESM
Fig. 3a,c). By contrast, aripiprazole-treated islets exhibited
attenuated Ca2+ entry, as reflected by decreased ΔF and
AUC/min, and delayed response to high glucose vs controls,
while Fbasal was similar between groups (Fig. 4e,g, ESM Fig.
3b,d). These data suggest that aripiprazole interferes with Ca2+

signalling in beta cells.

Transcriptomic analysis in pancreatic islets from female mice
fed an olanzapine- or aripiprazole-supplemented diet To
identify the transcriptomic profile of mouse islets from
SGA-treated mice we conducted RNA-sequencing (RNA-
seq). PCA showed differential gene expression in islets from
mice under SGA treatment (Fig. 5a,b). DEGs were identified
by DESeq2 and classified as genes with p-adj<0.1 as assessed
using a Wald test between two conditions with Benjamini–
Hochberg adjustment. Fifteen genes were differentially
expressed in islets from olanzapine-treated mice and 244
genes were dysregulated in islets from aripiprazole-treated
mice (ESM Table 3, ESM Table 4). Islets frommice receiving
a chow diet were used to identify baseline gene levels.

We conducted ORA to address the specific genetic signa-
tures associated with olanzapine or aripiprazole treatment.
However, because 15 DEGs (in the case of olanzapine) is a
small number of genes for ORA, the analysis was performed
with all genes with a fold change ≤ −1.5 or ≥1.5 and a p value
<0.05, as assessed by the Wald test between two conditions,
and relevant findings were further validated by RT-qPCR. A
total of 289 genes dysregulated by aripiprazole and 136 by
olanzapine were included in the ORA (data not shown). We
found that the top-five upregulated pathways in the aripipra-
zole arm appeared to be related to serotonin biosynthesis (Fig.
5d). The heatmap of serotonin biosynthetic processes (gene
set accession no.: GO:0042427, http://amigo.geneontology.
org/amigo/term/GO:0042427/?q=DDC; access date 22
July 2019) shows that genes encoding the serotonin-
synthetising enzymes Tph1 and Tph2 were upregulated in
islets from aripiprazole-treated mice, whereas the gene
encoding the Htr3a receptor was downregulated in islets of
olanzapine-treated mice (Fig. 5e). Notably, transcriptional
profiling showed no significant alterations in other genes relat-
ed to islet function with SGA treatment (ESM Table 3, ESM
Table 4). Figure 5f shows the RT-qPCR analysis of common
islet genes.

Effects of olanzapine and aripiprazole treatment on the
expression of serotonin-related genes and serotonin levels
in islets In agreement with RNA-seq data, RT-qPCR showed
that aripiprazole increased Tph1 and Tph2 expression vs
controls (p<0.01 and p<0.05, respectively; Fig. 6a), along
with an apparent increase in TPH1 protein levels (Fig. 6b).
In addition, the expression of the serotonin receptorHtr3awas

�Fig. 1 Effects of olanzapine (ola)- and aripiprazole (ari)-supplemented
diet on body weight (BW), adiposity, energy balance and glucose
metabolism in female mice. (a, b) Plasma levels of ola (a) and ari (b) in
mice after 6 months of treatment with antipsychotic drug-supplemented
diets (n=3–6mice/group). (c) BWmonitoredmonthly and (d) BWgain in
the last month of the treatment in mice fed an ari- or ola-supplemented
diet (n=28 control mice, n=29 ola-treated mice, n=23 ari-treated mice) (e)
Epididymal WAT (eWAT) and (f) iWAT normalised to BW (n=6–19
mice/group). (g) Food intake during the first month of treatment (n=17–
26mice/group). (h) EE and (i) locomotor activity (presented as [XY+YT]
counts, indicating the total number of times mice cross the infrared
sensors that border the measuring cage on the X and Y planes)
measured at the end of the treatment period by indirect calorimetry
(n=6–13 mice/group). Light cycle: 08:00–20:00 hours; dark cycle:
20:00–08:00 hours. (j) Fed blood glucose (mmol/l) and (k) fed plasma
insulin (pmol/l) levels (n=11–27 mice/group). (l) i.p. GTT and the
respective AUC (n=15–19 mice/group). The AUC was calculated from
0 to 120 min, according to the trapezoidal rule. (m) i.p. ITT and the
respective AUC (n=17–19 mice/group). The AUC was calculated from
0 to 90 min, according to the trapezoidal rule. All data are presented as
mean±SEM. p values were determined by one-way (d, e, f, g, j, k, l
(lower), m (lower)) or two-way (c, h, i, l (upper), m (upper)) ANOVA
and Bonferroni post hoc test. *p<0.05, **p<0.01, ***p<0.001 vs mice
fed a chow diet; ††p<0.01, †††p<0.001, ola-treated mice vs mice fed a
chow diet; ‡p<0.05, ‡‡‡p<0.001, ari-treated mice vs mice fed a chow diet
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reduced in the olanzapine-treated group vs controls (p<0.05;
Fig. 6c).

Serotonin has been implicated in beta cell compensation
during pregnancy [22, 23]. Ex vivo experiments showed
higher serotonin secretion in islets from aripiprazole-treated
mice, both with 2.8 mmol/l and 16.7 mmol/l glucose treat-
ment, with findings being significant following exposure to
16.7 mmol/l glucose (p<0.05; Fig. 6d). Immunofluorescence
images confirmed higher serotonin levels in islets from mice
that received aripiprazole compared with control mice

(p<0.01; Fig. 6e,f). In fact, we observed that serotonin levels
in islets from aripiprazole-treated mice appeared to be compa-
rable with islets of pregnant mice (Fig. 6e). Overall, our find-
ings indicate that aripiprazole treatment increased serotonin
synthesis and secretion in islets.

Aripiprazole increases serotonin generation and induces
TPH1 expression in pancreatic islets In light of the in vivo
findings showing that aripiprazole treatment increased Tph1
mRNA (p<0.01) and that there was an apparent increase in
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3–6 technical replicates for each condition and mouse (n=6–13
mice/group). Insulin secretion was corrected for islet number. (c)
Insulin content in islets. Twenty islets per mouse were lysed and the
insulin content was normalised to islet number (n=5 mice/condition).
(d) Representative images of pancreatic islets stained with insulin and
glucagon; scale bars, 50 μm; magnification ×40. (e) Pancreas weight
normalised to body weight (BW). (f) Islet size (μm2). (g) Beta cell mass
(mg) (n=7 control, n=7 ola-treated mice, n=6 ari-treated mice) and (h)
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(p<0.001, by χ2 test). All data are presented as mean±SEM. *p<0.05,
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and Bonferroni post hoc test for the AUC graph in (a, right) and in (c, e, f,
g, h) or by two-way ANOVA in (a, left, b); ††p<0.01, ola vs chow;
‡p<0.05, ari vs chow
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THP1 protein levels, along with increased serotonin secretion
(p<0.05) vs controls (Fig. 6a,b,d–f), we studied its direct
effects on the serotonergic system in isolated islets. As shown
in Fig. 7a,b, treatment with aripiprazole for 24 h appeared to
increase serotonin and TPH1 protein levels vs controls.

Finally, we studied whether serotonin mediates the effects
of aripiprazole on mTORC1 activity and beta cell function.

Our findings suggest that treatment with serotonin (100 μmol/
l) for 1 h increased mTORC1 activity, as reflected by apparent
increases in mTOR, S6K1 and S6 phosphorylation vs controls
(Fig. 7c). Moreover, treatment of islets with serotonin for 24 h
inhibited GSIS vs controls (Fig. 7d), as previously reported
[24, 25]. Importantly, co-treatment with aripiprazole and the
TPH1 inhibitor PCPA prevented the negative effect of
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of Ki67 (green) immunofluorescence. Ki67 co-localisation with insulin
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fication ×40. (b) Percentage of Ki67+INS+ cells and (c) beta cell size
(μm2). A total of 43.85 ± 4.83 islets were analysed for Ki67 expression
and beta cell size (n=5–6 mice/group). (d) Confocal microscopy images
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Islets were incubated with 6 μmol/l aripiprazole (ari) or vehicle (0.01%
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unpaired Student’s t test in (f)
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aripiprazole on insulin secretion (Fig. 7e). Collectively, we
suggest that aripiprazole increases serotonin biosynthesis
and secretion in islets and mediates mTORC1 activation
and, probably, beta cell hypertrophy, while impairing insulin
secretion.

Discussion

This study provides novel findings on the effect of the SGAs
olanzapine and aripiprazole in inducing glucose intolerance
and reducing insulin secretion. We demonstrate that

aripiprazole modulates the serotonergic system in islets,
increasing mTOR/S6 phosphorylation, as well as elevating
TPH1 expression and serotonin production in beta cells. By
contrast, the effects of olanzapine on insulin secretion seem to
be independent of the serotonergic system. Since type 2 diabe-
tes develops gradually through life, and chronic medication is
needed to tackle schizophrenia, we analysed the metabolic
disturbances in female mice treated with these two chemically
unrelated SGAs via supplementation in the diet over 6months.
To our knowledge, this is the first preclinical study in rodents
to report the metabolic outcomes of long-term administration
of olanzapine and aripiprazole that focuses on islet function.
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Olanzapine treatment induced weight gain by increasing
food intake; this finding is in agreement with previous studies
that also demonstrated that this effect was mediated by the 5-
HT2C [26] and H1R receptors in the hypothalamus [27].
Conversely, aripiprazole treatment results in less weight gain
and this was not associated with increased food intake, but
rather with reduced physical activity and EE during the dark
phase, an effect likely contributing to weight gain. Moreover,
the effects of olanzapine on EE and physical activity were
small, contrary to previous findings [28]. Of clinical rele-
vance, olanzapine-induced weight gain has been reported in

patients treated for longer than 12 months, but this has not
been the case for aripiprazole [29]. Yet, recent findings point
to a mean 6–7% gain in body weight in young people receiv-
ing aripiprazole [30]. Remarkably, visceral adiposity was
increased in mice treated with either drug, although the effect
with aripiprazole treatment was more robust. In studies of
olanzapine therapy, increased adiposity has been reported
both concomitantly with [31], and also independently from
[32] weight gain. Altogether, our results suggest that both
olanzapine and aripiprazole increase adiposity, irrespective
of the degree of weight gain. Of note, as schizophrenia, per
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se, concurs with metabolic derangements [33], the metabolic
side effects of SGAs are likely to bemore severe in the context

of this disease. Also, although female patients are more
susceptible to changes in glucose metabolism following
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SGA exposure [6], the current study is a single-sex study, a
limitation that needs to be considered for its translatability.

Female mice treated with olanzapine or aripiprazole devel-
oped glucose intolerance that was associated with insulin
resistance in aripiprazole-treated mice. However, we cannot
exclude that longer treatments or more sensitive assays to
assess insulin sensitivity, such as the euglycaemic–
hyperinsulinaemic clamp, would reveal greater effects on
blood glucose levels and insulin sensitivity. A step further,
this is the first study to unravel a unique effect of aripiprazole
in interfering with glucose-regulated Ca2+ signalling, whereas
olanzapine likely inhibits insulin secretion through a mecha-
nism distal to Ca2+ entry into the beta cell. Of interest, while
the GSIS test addresses insulin secretion exclusively, we
cannot exclude alterations in hepatic insulin clearance or the
beta cell insulin-degrading enzyme, both of which impair
insulin secretion [34].

Notably, mice treated with the SGAs had larger islets,
particularly the aripiprazole-treated group, in which beta cell
mass was twofold higher than that of the control group. In

obesity and pregnancy, beta cell expansion is associated with
enhanced insulin secretion, which compensates for insulin
resistance. On the contrary, aripiprazole impairs insulin secre-
tion despite beta cell expansion, indicating that increased beta
cell mass, per se, is not sufficient to overcome beta cell
dysfunction. The apparent paradoxical effects on mass and
function were more prominent in aripiprazole-treated mice
in which doubling of beta cell mass was associated with
blunted insulin response.

Treatment with SGAs did not affect beta cell proliferation,
which remained low, as previously reported in middle-aged
mice [20]. However, a compensatory proliferative response
might be expected at an earlier stage of the treatment. On the
contrary, we found increased beta cell size in islets from both
groups of SGA-treated mice, as compared with controls,
which might explain the islet size expansion observed at the
end of the treatment. Activation of mTORC1 signalling,
which increases islet hypertrophy, has been suggested to be
involved in the compensatory beta cell expansion during insu-
lin resistance [35]. Our results showed islet hypertrophy in
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aripiprazole-treated mice together with increased p-S6 stain-
ing in beta cells, an effect reinforced by increased phosphor-
ylation of mTOR and its downstream targets S6K1 and S6 in
islets treated ex vivo with this SGA. Thus, the increased islet
size and beta cell mass by aripiprazole might be mediated via
mTORC1/S6. By contrast, S6 phosphorylation was not
increased by olanzapine. At the molecular level, the differen-
tial ability of each drug to induce mTORC1/S6 activity or,
alternatively, other mechanisms, such as the Hippo pathway
[36], might also be implicated in the islet hypertrophy
observed with olanzapine. Also, lower mTORC1 activation
in olanzapine-treated mice could be due to a more subtle
(non-significant) increase in insulin intolerance. It is notewor-
thy that we found greater (although not significant) differ-
ences in insulin granule maturation in olanzapine-treated mice
vs the control group, manifested by a decrease and increase in
mature and empty granules, respectively (both p=0.09), which
deserves further investigation. Additionally, olanzapine-
treated mice had higher alpha cell mass, pointing to potential
pancreatic alterations beyond beta cells.

The complexity of the dopaminergic and serotonergic
systems in pancreatic islets, which regulate insulin secretion
[10, 37], together with the broad spectrum of dopamine/
serotonin receptors targeted by SGAs, makes it difficult to
determine whether a specific receptor mediates the effects of
a particular SGA or if the final outcome results from signalling
pathways activated by multiple receptors. Transcriptomic
analysis of pancreatic islets did not show changes in genes
related to dopamine signalling, but revealed changes in genes
regulating serotonin synthesis. Aripiprazole upregulated Tph1
and Tph2 genes, and the induction of Tph1mRNA and TPH1
protein levels (the rate-limiting isoform for serotonin biosyn-
thesis) was associated with increased serotonin content and
release in islets from aripiprazole-treated mice. These results
were supported by: (1) the ex vivo treatment of islets with
aripiprazole, which similarly resulted in increased TPH1
expression; (2) the decrease in insulin secretion in islets treat-
ed with serotonin that, like aripiprazole, activated mTORC1/
S6 signalling; (3) and the recovery of GSIS in islets treated
ex vivo with aripiprazole together with a TPH1 inhibitor,
pointing to serotonin-mediated inhibition of insulin secretion
by this SGA. Our findings are in agreement with a recent
study showing that Sirtuin 3 deficiency in beta cells increased
Tph1 expression, along with impairment of GSIS in obese
mice [38].

Transcriptomic analysis also showed that olanzapine
downregulated the expression ofHtr3a, which encodes a sero-
tonin receptor, in islets, potentially playing a role in the
impairment of insulin secretion by this SGA, as previously
reported [39, 40]. Notably, changes in serotonin receptor
expression were found in db/db mice, which exhibited
increased expression of Htr2c [41]. So far, the role of

serotonin signalling in beta cell expansion has been described
only in pregnancy [22, 23] and the perinatal period [42].
Recent studies suggest that increased serotonin production
could affect whole-body glucose homeostasis and adiposity
[43]. In the context of tumour growth, serotonin increases
mTORC1 activity in hepatocellular carcinoma [44], reinforc-
ing a possible link between serotonin and mTORC1/S6
signalling. Because serotonin is also a strong paracrine regu-
lator of alpha cell activity [45], additional effects of aripipra-
zole on alpha cells functionality cannot be ruled out.

In summary, we have identified alterations in islet plasticity
and insulin secretion in female mice treated with the SGAs
olanzapine and aripiprazole, with important translational
implications. In the case of aripiprazole, in which the seroto-
nergic system was activated, specific TPH1 inhibitors that do
not cross the blood–brain barrier could be used to prevent
intra-islet and peripheral serotonin dysregulation without
affecting serotonin levels in the brain [46].
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