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Abstract We demonstrate that for quantum dot (QD) based
electrochemiluminescence (ECL), the commonly used co-
reactant does not perform as effectively as potassium persul-
fate. By exploiting this small change in co-reactant, ECL in-
tensity can be enhanced dramatically in a cathodic-based ECL
system. However, TPA remains the preferential co-reactant-
based system for anodic ECL. This phenomenon can be
rationalised through the relative energy-level profiles of the
QD to the co-reactant in conjunction with the applied potential
range. This work highlights the importance of understanding
the co-reactant pathway for optimising the application of ECL
to bioanalytical analysis, in particular for near-infrared (NIR)
QDs which can be utilised for analysis in blood.

Keywords Electroanalytical methods -
Electrochemiluminescence - Quantum dots

Introduction

The application of electrochemiluminescence (ECL) in re-
search and commercial applications has been predominantly
focused on ruthenium complexes that displayed intense, stable
signals in both organic and aqueous media [1-4]. The vast
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majority of these systems are based upon the classic
[Ru(bpy);]**-tri-n-propylamine (TPA) co-reactant system,
and the development of new luminophores and alternative
co-reactants have attracted much attention. Following the dis-
covery of ECL emission from silicon quantum dots (QDs) [5],
the focus of investigations shifted towards nanomaterials that
displayed size-tunable emission and enhanced optical and
electronic properties [6]. The vast majority of these works
focused on materials that emitted in the visible region,
resulting in a good understanding of the ECL behaviour of
these materials.

The ECL of visible region QDs has been studied extensive-
ly, which has been shown to produce an ECL response with a
variety of co-reactants [7—10]. This has allowed the develop-
ment of a number of ECL biosensors that use visible region
QDs as labels [11-14]. Near-infrared (NIR) QDs are of in-
creasing interest owing to their emission wavelength that lies
outside the absorption range of biological fluids and tissue.
The potential benefits of NIR-emitting species in biosensing
and imaging applications have been well documented because
of their improved penetrability through biological samples
and reduced tissue autofluorescence [15, 16]. This can provide
more detailed and better-defined images for deep tissue imag-
ing. For biosensing, it opens up opportunities for development
of systems with detection directly from whole blood samples,
negating the requirement for time-consuming and expensive
sample preparation procedures.

Currently, no such investigations into the behaviour of NIR
QDs in different systems have been carried out, with the ma-
jority of work focused on cathodic NIR ECL with potassium
persulfate co-reactant [17—19]. Only a single example exists of
anodic NIR ECL [20-22], and there are currently no docu-
mented ECL systems that utilise NIR-emitting QDs and no
additional co-reactant (termed co-reactant-free systems).
Therefore, the ECL characteristics of these QDs have not been
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determined in a variety of systems, which has prevented a full
understanding of their ECL behaviour. Investigation into these
properties should supplement the electrochemical characteri-
sation of these QDs and could aid in the development of a
greater variety of NIR ECL biosensors.

NIR-emitting QDs are beginning to emerge as leaders in
this field as a result of their excellent optical properties, large
surface-to-volume ratio and surface modification opportuni-
ties [23]. They have successfully been used within in vivo
imaging studies [24-28]; however, there has been limited
work on their application within ECL biosensing platforms
[19, 20]. This has recently been shown for the determination
of dopamine in whole blood, highlighting the significance of
NIR QDs for biosensing [21]. This research demonstrates the
flexibility of NIR QDs, which can generate an ECL signal
with a variety of co-reactant systems. Therefore, the develop-
ment was the optimisation of these conditions to obtain the
most sensitive, responsive and stable ECL signal. This has not
been done previously with NIR QDs, and thus there is a clear
requirement for such investigations.

The aims of this work were to investigate the ECL charac-
teristics of NIR QDs in a variety of co-reactant systems and
determine the likely mechanisms of their response and to de-
termine the optimal co-reactant for a defined application.
Although this work is specific to NIR QD ECL, the insights
found can be applied to any QD ECL-based system.

Experimental
Apparatus

Electrochemical measurements were carried out using a CH
instrument model 760D electrochemical analyser. All experi-
ments were carried out using a conventional three-electrode
assembly, consisting of a 3 mm diameter GC working elec-
trode (unless otherwise stated), Pt wire counter electrode and
Ag/AgCl reference electrode. Working electrodes were
cleaned by successive polishing using 1, 0.3 and 0.05 uM
alumina slurry, followed by sonication in ethanol and water,
respectively, for 30 min. The electrodes were then dried under
a flow of N, gas. Cyclic voltammetry (CV) was carried out at
a scan rate of 100 mV s~ and sample interval of 1 mV across a
potential range outlined in each figure. Measurements involv-
ing simultaneous detection of light and current utilised a CH
instrument model 760D connected to a Hamamatsu H10723-
20 PMT. The input voltage to the PMT was +5 V, and the
control voltage was set between 0.5 and 1.05 V depending
on the required sensitivity. The scan rate was 100 mV s~
(unless otherwise stated). During electrochemical experi-
ments, the cell was kept in a light-tight Faraday cage in a
specially designed holder configuration where the working
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electrode was positioned directly above the PMT window.
All measurements were made at room temperature.

Materials

Core-shell CdSeTe/ZnS QDs (Qdot® 800 ITK™ organic
quantum dots, 1 uM in decane) were purchased from
Invitrogen. 2-(Dimethylamino)ethanthiol (DAET), Nafion®
117 solution, chitosan (medium molecular weight, 75-85 %
deacetylated), phosphate-buffered saline (PBS, pH 7.4), po-
tassium persulfate (K,S,0g), hydrogen peroxide (H,O,),
tripropylamine (TPA), sodium oxalate (Na,C,0,), tris ace-
tate—EDTA (TAE) buffer, 4-morpholineethanesulfonic acid
hydrate (MES), sodium bicarbonate, sulfuric acid (H,SO,)
and sodium hydroxide (NaOH) were all purchased from
Sigma-Aldrich and used as received. All other reagents used
were of analytical grade, and all solutions were prepared in
Milli-Q water (18 m$2 cm).

Methods
Preparation of water-soluble CdSeTe/ZnS core-shell QDs

The method followed was similar to that developed by
Woelfle and Claus [29, 30]. 0.5 mL of 0.5 M DAET in meth-
anol was mixed with 0.25 mL of the CdSeTe/ZnS QDs in
decane (I uM). N, was bubbled through the solution for
5 min, which was then sealed and left stirring overnight in
the dark at room temperature. The QDs were then precipitated
with an excess of acetone followed by centrifugation at
5000 rpm for 6 min. The filtrate was removed and the precip-
itate was re-dispersed in 0.25 mL of distilled water. These
water-soluble QDs were centrifuged for a further 6 min at
3000 rpm to remove any impurities and then stored in dark-
ness at 4 °C.

Preparation of CdSeTe/ZnS core-shell QD—polymer
composite films

A 0.1 % stock solution of chitosan in 1 % acetic acid was
prepared. The QD/chitosan composite was prepared by
mixing aliquots of the water-soluble QDs with the chitosan
solutionin a 1:1 (v/v) ratio. Three microliters of this composite
was then carefully cast onto the electroactive portion of a GC
electrode and allowed to dry for 1 h at 4 °C. A film of bare
QDs and QD—Nafion was prepared in the same manner, with
water and 0.1 % Nafion 117 in MeOH/H,O (4/1) used instead
of chitosan, respectively. The polymer concentration was al-
tered by changing the concentration of its stock solution pre-
dilution with the QDs. QD concentration in the film was al-
tered by mixing the water-soluble QDs with a suitable volume
of water prior to mixing in a 1:1 (v/v) ratio with chitosan.
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Preparation of co-reactant solutions

Co-reactant solutions of TPA, Na,C,0,, H,O, and K,S,0g
were prepared in 0.1 M PBS (pH 7.4) at the concentrations
outlined in each figure.

Results and discussion
Estimation of HOMO and LUMO energy levels

The onset of QD oxidation and reduction has previously been
used to estimate the highest occupied molecular orbital
(HOMO)-lowest unoccupied molecular orbital (LUMO) gap
[25, 31], also known as the quasi-particle gap. Often, the
quasi-particle gap estimated in this way can be unreliable, as
the true oxidation and reduction potentials of the QDs cannot
always be detected. Therefore, it was proposed that the onset
potential for ECL could be used as a more accurate estimate of
these potentials, as the rate-determining step for ECL genera-
tion is the oxidation or reduction of QDs. Figure 1 shows the
anodic and cathodic ECL profiles of NIR QDs. The oxidative
and reductive ECL onset potentials for the QDs and the
HOMO-LUMO energy gap are shown in Table 1.

The estimated HOMO-LUMO energy gap of 800 nm QDs
(1.50 eV) is in good agreement with the optical £, 0f 1.569 eV
from optically induced emission and 1.529 ¢V from ECL
emission (see Fig. 2). This confirms that ECL emission is
originating from the QD core. The proposed electronic struc-
ture of these NIR QDs is outlined in Fig. 3. The HOMO and
LUMO energy levels are calculated from the reduction and
oxidation ECL onset potentials (the energy level of Ag/AgCl
in a vacuum is calculated as —4.74 eV) [32, 33].
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Fig. 1 ECL response of an 800 nm QD/chitosan film in I mM TPA (red)
and 1 mM K,S,0s (black) at a scan rate of 100 mV s ! over the potential
range 2<v<2V vs. Ag/AgCl

Table 1 Reduction and oxidation ECL onset potentials and resulting
HOMO-LUMO energy gap for a series of QDs in the presence of a co-
reactant

QD/ Reduction ECL onset/V Oxidation ECL HOMO-LUMO
nm vs. Ag/AgCl onset/V vs. Ag/AgCl energy gap/eV

800 —0.75 0.75 1.50

HOMO energy is in excellent agreement with that obtained
from differential pulse voltammetry (DPV), whilst LUMO
energy is 0.70 eV less energetic when using ECL onset po-
tentials. This data suggests electron injection into the 1S(e)
quantum confined orbital of the NIR QDs is taking place at
a more positive potential than that observed using voltam-
metric techniques. The similarity between optical E,
and the HOMO-LUMO energy gap calculated from ECL on-
set potentials suggests this method of electronic structure es-
timation is more accurate than that using CV or DPV.

Co-reactant assessment

In order to develop a highly sensitive ECL system, a number
of co-reactants were examined to ensure maximum perfor-
mance for these NIR QDs. As biomedical diagnostics contin-
ually drive towards improved biosensor sensitivities, this is a
key parameter in the development of any sensing system.
Anodic ECL involves an oxidative-reductive system in
which a hole is injected into the 1S(h) energy level of the
QD through heterogeneous electron transfer with the elec-
trode. This is followed by electron injection into the 1S(e)
energy level of this charged particle via homogeneous electron
transfer with a co-reactant that has sufficient reducing power.
Tripropylamine (TPA) and sodium oxalate (Na,C,0,) are typ-
ical anodic ECL co-reactants that have been studied extensive-
ly within ruthenium-containing systems [2, 3, 34-37].
However, generation of an ECL signal between these co-
reactants and NIR QDs has not yet been investigated.
Figure 4 shows the ECL profile of NIR QDs with TPA and

Emission Intensity / A.U.

700 800 900 1000
Al nm
Fig. 2 Emission profiles of 800 nm QDs from optically induced (red)

and ECL (black) processes
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Fig.3 Energy level diagram for 800 nm CdSeTe/ZnS QDs based on their
reductive and oxidative ECL onset potentials and HOMO-LUMO energy

gap

Na,C,0, co-reactants, as well as in a solution of 0.1 M PBS
(co-reactant-free system).

Cathodic ECL involves formation of ECL precursor spe-
cies through reduction at the electrode surface, followed by
homogenous electron transfer between these species to gener-
ate an excited state (reductive—oxidative system). For QDs, an
electron is injected into the 1S(e) energy level of their conduc-
tion band at a potential governed by their size. For emission of
an ECL signal, hole injection into the 1S(h) orbital of this
charged QD is then required, which is achieved through inter-
action with a strong oxidising agent created via reduction and
decomposition of a suitable co-reactant species. Typical co-
reactant species capable of forming such reactive intermedi-
ates include hydrogen peroxide (H,O,) and potassium
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Fig. 4 ECL response of 800 nm QD/chitosan film in 0.1 M PBS (red) +

1 mM Na,C,04 (blue) and + 1 mM TPA (black) at a scan rate of
100 mV s~' over the potential range 0.5<v<1.6 V vs. Ag/AgCl
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persulfate (K,S,0g) [1, 18, 38-43]. Figure 5 shows the QD
ECL profile with H,O, and K,S,0g co-reactants, and in PBS
(co-reactant-free system).

Cathodic ECL was observed with K,S,0¢ and H,O, co-
reactants and with the co-reactant-free system. Both H,O, and
0.1 M PBS exhibit a double peak profile with the onset of
reductive ECL peak 1 at —0.75 V (ECL-1) and the onset of
peak 2 at—1.15 V (ECL-2). Maximum intensity of these peaks
is reached at —1.00 and —1.35 'V, respectively. The strongest
ECL signal was obtained with K,S,0g, which displayed a
single reductive ECL peak with the onset at —0.75 V and peak
maximum at —1.00 V.

As mentioned, in the presence of H,O,, two ECL peaks
were present, which has been observed previously [21]. The
initial peak, ECL-1, was shown to result from the interaction
of QDs with radical oxygen species (ROS) created following
O, reduction at the electrode surface. ECL-2 is produced fol-
lowing the one-electron reduction of H,O, to produce OH,
which can then interact with QDs to generate ECL as outlined
in Egs. 1-7. Previous investigations have shown that ECL-2 is
more sensitive to the dissolved H,O, and thus should be cho-
sen to detect H,O, for the production of ECL through the
following electrochemical reactions [21]:

QDs + le —»QDs(e 1ge) (1)
H;0, + le > OH + OH (2)
QDs(e 1se) + H,0,— QDs + OH + OH (3)
OH + QDs—OH + QDs(h*1g;) (4)
QDs(e 1g.) + OH'—OH™ + QDs* (5)
QDs(e 1s.) + QDs(h"1g,)—QDs* (6)
QDs*—QDs + hv(800 nm) (7)

This shows that a NIR QD ECL response can be generated
in the presence of commonly used cathodic (K,S,0g and

H,0,) and anodic (TPA and Na,C,0,) region co-reactants,
which were shown to enhance ECL intensities compared to
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Fig.5 ECL response of 800 nm QD/chitosan film in 0.1 M PBS (black),

1 mM H,0, (blue) and 1 mM K,S,0x (red) at a scan rate of 100 mV s !
over the potential range —2<r<0 V vs. Ag/AgCl
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Fig. 6 ECL response of 800 nm QD/chitosan film with 1 mM K,S,0g
(red), 1 mM H,0O, (blue), 1| mM TPA (black) and 1 mM Na,C,04
(purple) at a scan rate of 100 mV s~ ' over the potential range
—2<v<1.6 Vvs. Ag/AgCl

co-reactant-free systems. Therefore, these co-reactants were
selected for investigation with the aim of determining which
system provided optimal ECL performance. A comparison of
the ECL response from these co-reactants is shown in Fig. 6.

It is clearly evident from Fig. 6 that K,S,0g generates the
most intense ECL response from NIR QDs that have been
confined to the electrode surface. This is followed by TPA,
H,0, and Na,C,0,4. Figure 7 shows the maximum ECL in-
tensity attained with each co-reactant.

This data illustrates that maximum ECL intensity was ob-
tained with K,S,0g, which was over 450 times greater than
with the alternative cathodic co-reactant, H,O,. It was 30
times greater than with TPA and over 1100 times greater than
with Na,C,0,4. With anodic co-reactants, maximum ECL in-
tensity was 40 times greater in TPA compared to Na,C,Oy.
Figure 8 shows a clearer image of the ECL response with
H,0,, TPA and Na,C,04 using more sensitive PMT settings,
confirming the trend in sensitivity is TPA >H>0, >Na,C,0,.

As mentioned, cathodic ECL required the formation of
excited state QDs [33]; this occurs through the interaction
with a suitably strong reducing agent—SO,~ and OH—
for K,S,0g4 and H,O, co-reactants, respectively. Rapid
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Fig. 7 Maximum ECL intensity of 800 nm QD/chitosan film in a
selection of co-reactant systems. The inset shows the lower response of
H,0, and Na,C,0, for clarity with the averaged results also shown
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Fig. 8 ECL response of 800 nm QD/chitosan film with 1 mM H,0,

(red), 1 mM TPA (blue) and 1 mM Na,C,0,4 (black) at a scan rate of
100 mV s~ over the potential range —2<<1.6 V vs. Ag/AgCl

band-edge recombination of this excited state QD domi-
nates over any oxidation processes, protecting destruction
of the QDs following hole injection and allowing efficient
ECL production [44]. The rate of this intermolecular elec-
tron transfer between a negatively charged QD and the
oxidising agent is a major factor in the generated ECL
intensity [45]. Therefore, the strength of the oxidising
agent has a critical impact on the observed ECL intensity.
The standard redox potential (vs. Ag/AgCl) for the SO,
~/SO,4* couple is approximately 3.16 V [46], whereas for
the OH/OH™ couple, it is 2.16 V (vs. Ag/AgCl) at physi-
ological pH [47]. Figure 9 shows a comparison of the en-
ergetics of these species with the QD HOMO and LUMO
levels and their interactions during the ECL process.

Both oxidising species are capable of hole injection into the
1S(h) quantum confined orbital of the NIR QDs. This can be
seen both in Fig. 9 as well as the fact that an ECL response is
observed with both co-reactants. The greater oxidising
strength of SO, compared to OH results in a more rapid rate
of QD hole injection and therefore a more rapid rate of excited
state QD formation. This manifests itself as an increase in
ECL intensity with the K,S,0g system. It must be noted that
the double peak nature of the ECL profile in H,O, will likely
influence the ECL intensity of the H,O,-sensitive peak. This
is because the concentration of QDs (e (1S,)) for interaction
with OH will have been diminished following consumption
during generation of peak 1.

For anodic ECL, one factor affecting intensity is the ability
of'the electrogenerated co-reactant species to inject an electron
into the 1S(e) energy level of oxidised QDs. Figure 10 shows a
comparison of the energetics of these co-reactant species
(TPA" and CO, ") with the QD HOMO and LUMO levels
and their interactions during the ECL process. The standard
redox potential of TPA'/P, where P is the product of TPA'
oxidation, is approximately —1.70 V (vs. Ag/AgCl) [2] and
that of CO, /CO, is approximately —2.00 V (vs. Ag/AgCl)
[48].
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Fig. 9 Significant energy-level H,O0, K,S,04
interactions and resulting ECL 04
process of 800 nm QDs with
H>0, and K,S,0g co-reactants L1 QDs(e(15,) QDs(e(15,)
-44 15(e) —& 15(e) —
% i i
0% by, v,
3 < i i
~ -5¢ g i i
& > v v
g = 18(h)—0O— 15(h) —O—
) b1 ‘;-E
5 5
go 8
w 3
el
(]
b2
~— OH*/OH"
74
3

The stronger reducing power of CO,~ compared to TPA’
does not result in a more intense ECL signal (Fig. 7), as would
be expected due to faster homogenous electron transfer with
QDs (h*(1Sy,)). This means another factor is affecting excited
state formation in this system. This is related to consumption
of QDs (h*(1Sy)) during electrogeneration of CO, ™. The re-
sult is that ECL intensity of the QD/TPA system is significant-
ly greater, as electrogeneration of TPA" can occur directly at
the electrode surface, even though homogeneous electron
transfer kinetics in this system are likely slower.

These results clearly show that maximum NIR QD ECL
sensitivity is achieved in the cathodic region with K,S,0Og co-

<

50,°/ SO,

reactant. Development of NIR QD ECL systems that require
maximum sensitivity should therefore focus on cathodic ECL
with this co-reactant. The data have also shown that HO, and
TPA are suitable co-reactants, however, a limited response
with Na,C,0, suggests it is unsuitable for use in this system.

Conclusion
Significantly, this is the first detailed investigation into the

optimal conditions for generation of ECL from NIR QDs
based on co-reactant selection, which are likely to play a key

Fig. 10 Significant energy-level TPA N32C204
interactions and resulting ECL
process of 800 nm QDs with TPA t-2 Co,*/ €O,
and Na,C,0, co-reactants 0 TPA*/P
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g 54 3 H !
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@
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role in future development of ECL biosensors [3]. In the fu-
ture, this research will aid in the selection of suitable co-
reactants for achieving optimal biosensor response from these
NIR QDs. The main point of significance from this research is
the far superior sensitivity of K,S,0g co-reactant ECL com-
pared to other common co-reactants, indicating that this
should be used preferentially to obtain the most intense re-
sponse. For any QD-based system, this requires consideration
of the electrode platform, whether anodic or cathodic re-
sponses are required, the onset and energy-level interactions
resulting from the QD and co-reactant which can be based
upon the data presented here. It should be noted that the ener-
gy levels for the QDs are specific to their size and will impact
on the selection of an appropriate co-reactant.

However, the detection of both cathodic and anodic ECL
responses demonstrates the versatility of these NIR QDs,
which should allow their use in a wide variety of sensing
systems and to expand the application of ECL-based systems
into biological samples such as blood and tissues. Overall,
these investigations have outlined the best electrochemical
system for generation of an intense NIR QD ECL response.
This provides the framework for further NIR QD ECL biosen-
sor development.
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