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The urgent need for innovative sampling strategies to reveal an  
ever-elusive viral diversity

Viruses are widely regarded as the most abundant and genetically diverse biological 
entity on Earth, with multiple studies converging towards an estimated number of 
viral particles present globally on the order of 1031 [1,2]. They infect organisms in all 
domains of life and are essential for ecosystem health, resilience, and function [3]. 
Despite their prevalence, only a fraction of viral species is known and classified by 
the International Committee on Taxonomy of Viruses (ICTV, 14690 species as of April 
2024 [4]). Most of the known viruses are biased towards those infecting humans, 
livestock, and crops, reflecting largely human-centric approach to virus research. The 
growing number of outbreaks in past decades caused by animal or plant viruses such 
as Ebola virus, mpox, SARS-CoV-2, influenza virus, or tomato yellow leaf curl virus, 
underscores the gaps in our understanding of viral ecology [5,6]. This lack of knowl-
edge limits our comprehension of the patterns and processes behind viral evolution, 
which hinders the early detection and monitoring of emerging pathogens, having dra-
matic consequences on human, animal and plant health, and hence, food safety. It is 
clear that ecosystem-level knowledge is crucial for improving global health, a gap that 
the One Health strategy aims to address by integrating medical, social, environmen-
tal, and veterinary sciences [3,7]. The One Health approach recognises that all com-
ponents of an ecosystem are interconnected and can directly or indirectly affect one 
another. This notion has been reinforced by the advancement of viral metagenomics, 
allowing the identification of both known and novel viruses in a very short time [8,9]. 
Viral metagenomics involves sequencing the nucleic acid content of viruses within 
samples without prior knowledge of the viruses present. It has been applied to multi-
ple types of samples (i.e., environmental, whole individual, gut) and in various fields 
such as ecology, diagnostics, monitoring and surveillance. Despite the decreasing 
cost of sequencing, the challenge of exhaustively sampling all the viruses hosted by 
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species across entire ecosystems remains extremely difficult, if not impossible. Many 
species are particularly hard to find and capture due to the ecosystems they inhabit 
and their unique ecological characteristics. Additionally, national, and international 
regulations prohibit the sampling of many wild species, limiting the amount of avail-
able biological data. In this case, non-invasive sampling from faeces can be utilised, 
though it only offers a partial view of the viral community. Consequently, there is 
a pressing need to develop new sampling approaches. Here, we aim to argue for 
the potential of using sentinels—species that respond quickly, measurably, and in a 
timely manner to environmental changes—as new large-scale and thorough sampling 
strategies combined with molecular tools to efficiently document the virosphere and 
monitor disease emergence.

Animal and plant sentinels: Virus collectors to be chosen with precision

As anthropogenic activities accelerate climate change, predicting how ecosystems 
will respond becomes increasingly challenging. Sentinels have been proposed as 
valuable tools for monitoring and protecting socio-ecological systems [10]. A classic 
example of a sentinel species is the Canary bird, used by coal miners to provide early 
warnings of toxic carbon monoxide emissions [11]. While sentinels can be used to 
detect hazardous chemicals and pollutants, they can also serve as indicators of biodi-
versity, biotic and abiotic changes, or to detect the presence of viruses [10]. Different 
sentinels have been extremely helpful in detecting changes in the virosphere across 
diverse ecological and epidemiological contexts, offering early warnings of potential 
outbreaks (Fig 1A) [12].

To be most effective, a sentinel must possess specific ecological traits and inter-
act with viruses in a way that improves the cost- and time-effectiveness of monitor-
ing. Within a specific ecosystem, these two elements form the ecosystem sentinel 
framework and should be integrated in one or more components of the One Health 
strategy [12] (Figs 1B and 2). Sentinels should inhabit the same environment as the 
hosts and viruses being targeted, possess the capacity to carry, accumulate, and/
or become infected by the viruses, and allow at least some of their genetic mate-
rial to remain stable long enough for detection. Additional ecological attributes can 
enhance a sentinel’s utility for viral surveillance. The intensity of trophic interactions, 
which refers to a species’ connection to other ecosystem components, can serve as 
a predictive criterion for identifying effective sentinels [13]. Top predators and scaven-
gers are particularly effective due to their strong connections with their resources and 
their exposure to a variety of prey, making them more likely to accumulate a broad 
range of pathogens [14–17]. Pathogen vectors are also strong candidates for sen-
tinel surveillance because they play a critical role in transmitting pathogens [18,19]. 
Sentinels must also be easily sampled and observable for timely monitoring. Species 
with broad geographic ranges and those with specific ecological niches are particu-
larly valuable because they can provide data from diverse locations and ecosystems, 
or from more specialised environments, respectively [16,17,20–22]. Species that 
feed through filtration are also important, as they can concentrate viruses from their 
environment [23]. Species serving as reservoirs, alternate or secondary hosts for 
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Fig 1.  The use of sentinels as viral detectors (created with Biorender). (A) Non-exhaustive list of species used for viral detections and the findings 
linked to them. (B) Implementation of sentinels within one of the three components of the One Health strategy.

https://doi.org/10.1371/journal.ppat.1013141.g001

https://doi.org/10.1371/journal.ppat.1013141.g001
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Fig 2.  Designing an ecosystem sentinel framework for viral surveillance using army ants (created with Biorender). To characterise the viro-
sphere and monitor specific viral diseases within a particular context, an ecosystem and sentinel species are first identified to establish the ecosystem 
sentinel framework. The selection of species is based on its ecology and interactions with the targeted viruses to improve detection. A sampling strategy 
is then designed, and various molecular techniques are used to analyse the sentinel virome.

https://doi.org/10.1371/journal.ppat.1013141.g002

https://doi.org/10.1371/journal.ppat.1013141.g002
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specific viruses have also proven valuable in addressing specialised questions related to viral virulence or host immunity 
[24]. However, this focus somewhat deviates from the scope proposed in this review. Overall, an effective ecosystem sen-
tinel framework for virus detection and surveillance takes into account both the sentinel’s ecology and its interactions with 
viruses within the ecosystem. In this regard, applying viral metagenomics to a sentinel does provide valuable insights into 
the virosphere, and generalising such approaches would without a doubt improve early detection and potentiate surveil-
lance efforts (Fig 2).

Sentinels in action for viral monitoring in hard-to-reach environments

Several pioneering studies have demonstrated that top-end insects or feline predators can be useful indicators of viruses 
in the phylum Cressdnaviricota in terrestrial ecosystems [14,15,25]. While these studies were noteworthy for demonstrat-
ing proof-of-concept of sentinel framework, they were limited in scope as they focussed solely on one particular phylum of 
viruses. More recently, two other studies have gone a step further by characterising the virome (i.e., the overall collection 
of viral sequences) of animal sentinels: one conducted in a remote tropical rainforest in Gabon using army ants of the 
genus Dorylus [17], the other carried out in the Antarctic Peninsula and South Shetland using snowy sheathbill (Chionis 
albus) [16]. Both species inhabit ecosystems characterised by their remoteness and extreme meteorological conditions, 
making these environments hostile and hard-to-reach by surveillance scientists. Despite tropical forested regions being 
hotspots for emerging diseases and Antarctica a region for putative endemic viral evolution, little is known about the 
viruses circulating in these regions [26,27]. The nomadic behaviour of army ants (i.e., frequently relocating their nests) 
and migratory behaviour of snowy sheathbills (i.e., travelling between Graham Land in Antarctica and the Río de la Plata) 
make them well-suited to serve as sentinels for viral diversity in their ecosystems as they are exposed to a wide range 
of biotic and abiotic conditions [28,29]. Hence, both species have a wide diet, including invertebrates, live or dead verte-
brates, and photosynthetic eukaryotes [28–30]. By analysing the virome of army ants and snowy sheathbills, 56 and 17 
viral families were identified, respectively [16,17]. Interestingly, these two studies highlighted the discovery of sequences 
with high identity with that of human viruses and a cyclovirus in army ants, a Sapovirus GII and a gammaherpesvirus in 
snowy sheathbills, but also with plant viruses. These findings provide insight into the complex viral networks that may exist 
between humans, animals (e.g., birds and invertebrates) and plants, highlighting the potential for conceptualising ad hoc 
sentinel frameworks for viral monitoring and surveillance of difficult-to-access ecosystems.

Sentinel-based epidemiological surveillance: An approach that still needs validation

These studies have raised several intriguing and unresolved questions that are crucial for determining the best approach 
to enhance inferences made from sentinels. While sentinels appear to sample/accumulate a significant variety of viral 
genomic sequences, it is essential to determine whether the viral diversity they accumulate accurately reflects the one 
circulating within the ecosystems they inhabit. It must also be established whether this representativeness remains 
consistent across ecosystems and over time through longitudinal sampling at various locations. Furthermore, under-
standing where viral nucleotide sequences localise within a sentinel and how long they persist on or inside them would 
provide valuable insights into the interaction between sentinels and viruses, potentially leading to more efficient sampling 
strategies. Evaluating the variation of viral diversity between individuals coming from, in the specific case of ants, differ-
ent castes (workers, soldiers, queens, and males), as well as colonies, species and ecological niches would also help 
optimise the sampling scheme. Once an ecosystem sentinel framework is established, viral metagenomics techniques 
need to be combined with complementary molecular methods to evaluate the reliability of sentinels (Fig 2). Specifically, 
identifying the hosts through which sentinels accumulate viral sequences, using diet metabarcoding analyses, could help 
pinpoint potential reservoirs and locations where specific viruses are present, facilitating the implementation of mitigation 
measures. It is also important to determine whether viruses are infectious (i.e., replicate within sentinels) or in a tran-
sitory phase in sentinels, using small interfering RNAs (siRNA) for instance, which are produced as host antiviral RNA 
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interference (RNAi) response [31]. Viruses with potential risk of spillover should be detected and monitored using targeted 
quantitative polymerase chain reaction (qPCR). Tracking sentinels foraging areas using biologging technology [32] could 
also provide important insights into their foraging behaviour and offer a clearer understanding of the environments in 
which they develop their virome. Even after addressing these questions, we must still determine how to assess the risk 
of any spillover into other species based on the viral sequences identified in a sentinel’s virome. While we use army ants 
and snowy sheathbills as examples of sentinel frameworks, other species have shown their potential in different contexts 
(Fig 1A). Thus, it is now essential to evaluate whether different species, such as termites with their xylophagous feeding 
habits [33] or spiders as top insect predators [34], whose virome has been documented but not within a sentinel frame-
work, could be good candidates for use as sentinels of specific ecosystems. Developing these studies should be the first 
step towards establishing effective ecosystem sentinel frameworks. Guided by a One Health perspective, they could play 
a pivotal role in preventing future outbreaks.
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