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Shine-Dalgarno sequences (SD) in prokaryotic mRNA facilitate protein translation by pairing with rRNA in ribosomes.

Although conventionally defined as AG-rich motifs, recent genomic surveys reveal great sequence diversity, questioning

how SD functions. Here, we determined the molecular fitness (i.e., translation efficiency) of 49 synthetic 9-nt SD genotypes

in three distinct mRNA contexts in Escherichia coli. We uncovered generic principles governing the SD fitness landscapes: (1)

Guanine contents, rather than canonical SD motifs, best predict the fitness of both synthetic and endogenous SD; (2) the

genotype-fitness correlation of SD promotes its evolvability by steadily supplying beneficial mutations across fitness land-

scapes; and (3) the frequency and magnitude of deleterious mutations increase with background fitness, and adjacent nu-

cleotides in SD show stronger epistasis. Epistasis results from disruption of the continuous base pairing between SD and

rRNA. This “chain-breaking” epistasis creates sinkholes in SD fitness landscapes and may profoundly impact the evolution

and function of prokaryotic translation initiation and other RNA-mediated processes. Collectively, our work yields func-

tional insights into the SD sequence variation in prokaryotic genomes, identifies a simple design principle to guide bioen-

gineering and bioinformatic analysis of SD, and illuminates the fundamentals of fitness landscapes and molecular evolution.

[Supplemental material is available for this article.]

Translation initiation is often the rate-limiting step in protein syn-
thesis and fundamental to gene regulation (Laursen et al. 2005). In
bacteria and archaea, it begins with attachment of 30S ribosome
subunits to ribosome binding sites (RBS) immediately upstream
of the protein-coding sequence in mRNA (Fig. 1A). Subsequent re-
cruitment of initiator tRNA and 50S subunits leads to formation of
the complete 70S translation machinery. The Shine-Dalgarno se-
quence (SD), typically an AG-rich region in RBS, has been thought
to play a key role in this process (Shine and Dalgarno 1975). SD fa-
cilitates 30S subunit-mRNA binding by base-pairing interaction
with the conserved CU-rich anti-SD sequence (aSD) at the 3′ tail
of the 16S rRNA in 30S subunits. Stable SD:aSD base pairing pro-
motes the translation efficiency, which in turn determines the pro-
tein yield. The mechanism of translation initiation is thought to
be well-understood, but recent surveys of thousands of bacterial
genomes raise questions on this presumption (Nakagawa et al.
2010; Omotajo et al. 2015; Hockenberry et al. 2018). Although
these studies detect AG-rich motifs in the majority of RBS, they
also identify a significant proportion of AG-less RBS. This finding
implies that either the AG-rich rule is not absolute, or there exists
unidentifiedmechanisms besides SD:aSD pairing and the 70S ribo-
some-mediated translation specifically for leaderless mRNA
(Laursen et al. 2005).

A comprehensive understanding of the SD genotype-pheno-
type (G-P) associations is necessary to clarify the processes of trans-
lation initiation, illuminate the patterns of mRNA-rRNA

interaction, uncover factors shaping the RBS diversity among pro-
karyotes, and guide the design of RBS in synthetic circuits (Salis
et al. 2009). Prior experimental andbioinformatic studiesbothcon-
tributed greatly to this subject. Experimental dissection ofmolecu-
lar mechanisms revealed significant functional dependence of SD
on its surrounding RBS context: Besides SD:aSD pairing strength,
translation initiationwas also influenced by the SD:aSD pairing lo-
cation and the accessibility of SD caused by localmRNA folding (de
Smit and van Duin 1990; Chen et al. 1994; Osterman et al. 2013;
Espah Borujeni et al. 2014). However, with limited experimental
throughput, former works were unable to investigate the global ar-
chitecture of SD G-P mapping, such as its phenotype distribution
(Blanco et al. 2019), the distribution of mutational effects (Eyre-
Walker and Keightley 2007), the causes and consequences of epis-
tasis (i.e., functional dependence of mutations on genetic back-
grounds) (Domingo et al. 2019), robustness and evolvability
(Wagner 2008), and how RBS contexts impacted the aforemen-
tioned properties. Alternatively, bioinformatic analyses scanned
endogenous RBS of diverse prokaryotic species for motifs capable
of pairing tightly with aSD (Chang et al. 2006; Nakagawa et al.
2010; Scharff et al. 2011; Omotajo et al. 2015; Hockenberry et al.
2018). By assigning RBS into “SD-led” or “non-SD-led” categories
(i.e., with or without AG-rich motifs, respectively), these studies
identified significant associations between the AG-richness of
RBS and features like local mRNA folding, synonymous codon us-
age, and gene function. Nevertheless, because the observed
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correlation suggests selective pressure acting on gene expression,
inspecting endogenous SD likely samples a biased subset of geno-
types preserved by adaptive evolution. Moreover, as most species
included in these studies lack genome-wide measurement of pro-
tein synthesis rates, research relying on just sequence information
cannot assess the quantitative contribution of the SD genotypic
composition on protein translation.

Here, we performed high-throughput experiments to quanti-
fy the molecular fitness (i.e., efficiency to initiate protein transla-
tion) of 262,144 SD genotypes under distinct RBS contexts in
vivo. Our study illuminated the global architecture of SD fitness

landscapes and thedistributionofmutational effects, yieldednovel
biochemical insights into SD G-P mapping, and uncovered a new
form of epistasis stemming from the nature of RNA base pairing.

Results

Developing a sort-seq platform for SD G-P mapping

We assembled a green fluorescent protein (GFP) expression cas-
sette on plasmids to report the fitness of SD (Supplemental Fig.
S1). To enhance the resolution of quantification, the plasmid
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Figure 1. G-P associations of the SD fitness landscapes. (A) Determining SD G-P associations. SD libraries under three RBS contexts are generated and
assayed in E. coli. Cell sorting divides a library into multiple ranks based on GFP expression. The genotypic composition of each rank is revealed by Illumina
sequencing. The fitness (Log[GFP]) of a genotype is determined by its read count distribution transformed through a linear equation describing the cor-
relation between the rank means and GFP fluorescence. (B) Distribution of the fitness of genotypes (upper) and its correlations (Pearson’s r, t-test) with SD:
aSD base-pairing energy (ΔG,middle) andmRNA folding energy (ΔG, lower). ΔG (predicted values≤0) is shown as absolute values for simplicity. Genotypes
are ranked by fitness and grouped into 20 equal-sized bins. Groupmeans, medians, and interquartile ranges of ΔG are shown as red circles, blue circles, and
green bars, respectively. The fitness of canonical SD (CA), endogenous SD (EN), and genotypes made of nine guanines (9G) and nine uracils (9U) is shown.
(C ) Phenotypic correlation (Pearson’s r, t-test) of 9-nt SD genotypes between fitness landscapes. (D) Phenotypic correlation (Pearson’s r, t-test) of 7-nt SD
genotypes. The 9-nt SD genotypes of each fitness landscape are divided into 47 7-nt genotypic subsets according to the sequence located 7–13 nt up-
stream of the start codon. The mean fitness of 9-nt genotypes in each 7-nt subset is computed and compared between fitness landscapes.
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system was designed to maximize GFP expression while minimiz-
ing its impact on cellular growth (Supplemental Fig. S2A).
Hereafter fitness referred strictly to the translation efficiency of
SD but not the reproductive success of host cells. Transcription
of the cassette produced mRNA bearing a translation insulator
leader sequence (self-folding RNA fragment designed to avoid in-
teraction with RBS), a 30-nt RBS region, and the gfp coding se-
quence (Fig. 1A; Davis et al. 2011). As RNA secondary structure
formed by RBS also affected translation initiation, our experimen-
tal design brought in two endogenous (RBSfepB and RBSdmsC of
E. coli fepB and dmsC genes, respectively) or one artificial RBS
(termed RBSarti) to control for this context effect. The GC contents
of RBSfepB, RBSarti, and RBSdmsC differed greatly (14.3%, 28.6%, and
57.1%, respectively) and gave low to high structure-forming po-
tential. Under each RBS context, we used saturation mutagenesis
to synthesize all possible 262,144 (=49) 9-nt genotypes within an
11-nt SD region (5–15 nt upstream of the start codon) where the
sequence composition strongly influenced 30S subunit-mRNA
binding (Gao et al. 2016). We restricted our mutagenesis scope
to 9 nt for each library (5–13, 6–14, and 7–15 nt upstream of the
start codon for RBSfepB, RBSarti, and RBSdmsC, respectively) to
achieve high genotypic coverage but meanwhile jointly scan the
entire 11-nt SD region. The resulting 9-nt genotype libraries,
FLfepB, FLarti, and FLdmsC, represented three SD fitness landscapes
under distinct RBS contexts. Additionally, we built a FLarti-Y library,
identical to FLarti except using the yellow fluorescent protein re-
porter, to evaluate the credibility of GFP-based fitness quantifica-
tion. As the properties of FLarti-Y turn out to be very similar to
FLarti, the results of its characterization are not discussed but
shown in Supplemental Figure S3. Once constructed, the SD librar-
ies were separately transformed into E. coli and grown in liquid cul-
ture until its optical density (OD) reached 0.55–0.65
(Supplemental Fig. S2). Based on GFP expression, each SD library
was divided into multiple ranks through fluorescence-activated
cell sorting (FACS), and the genotypic composition of each rank
was determined by Illumina sequencing. The fitness of a genotype
was estimated based on its sequencing read distribution across
ranks (Fig. 1A). To quantify the effects of mutations (additive)
and epistasis (nonadditive), we defined the logarithm of GFP ex-
pression (Log[GFP]) as the fitness of SD because themolecular basis
of its G-P mapping, from changes in the SD sequence, the SD:aSD
duplex length, base-pairing energy (ΔG), to the logarithm of pro-
tein production, showed an overall additive relationship (for justi-
fication, see Supplemental Text and Supplemental Fig. S4; for
experimental support, see Fig. 1B). Details of our experimental de-
sign and implementation are described in Methods and
Supplemental Methods.

High-throughput experiments reliably determine SD G-P

associations

The fitness of SD genotypes in the FLfepB, FLarti, and FLdmsC libraries
ranged between 0.19 and 3.14, 0.11 and 3.10, and 0.03 and 3.12,
respectively (Fig. 1B). Three replicates of sort-seq experiments
were performed for each library. Through accurate FACS
(76.80%–99.84% purity per rank) and deep sequencing (100.02–
218.49 average reads per genotype), we detected 99.641%–

99.995% of all possible 262,144 genotypes in each library
(Supplemental Figs. S5, S6; Supplemental File S1). The measure-
ment error, defined as the standard deviation of fitness measured
in three replicates, generally declined with an increasing read
count of a genotype (Supplemental Fig. S7A). To ensure the mea-

surement accuracy and genotypic coverage, we considered only ge-
notypes with 25 or more reads and combined the data of three
replicate experiments for analysis (Supplemental Files S2–S4). In
the replicate-combined data sets of FLfepB, FLarti, and FLdmsC, the
measurement errors on average were 0.168, 0.108, and 0.198 (or
15.8%, 19.5%, and 36.6% in terms of the coefficient of variation)
(Supplemental Fig. S7B), respectively. The Pearson’s correlations of
fitness measured by replicate experiments were 0.687–0.937 (P<
10−300) (Supplemental Fig. S7C,D). The high measurement error
of FLdmsC was partly attributed to its highly right-skewed fitness
distribution, which disproportionally inflated the coefficient of
variation (Fig. 1B).

Our quantification method assumed a direct correspondence
between cellular fluorescence andGFP expression, andGFP expres-
sionmainly determined by the influence of SD on protein transla-
tion rather thanmRNA stability. To validate these assumptions, we
performed dot blot experiments for six representative genotypes
(Log[GFP] = 0.43–3.01) and showed a significant linear relation-
ship between the absolute GFP production and cellular fluores-
cence (Pearson’s r=0.997, P< 0.05) (Supplemental Fig. S8). Then
we performed qPCR experiments for 24 representative genotypes
and found that the mRNA level only increased significantly above
a fitness threshold (Log[GFP]≥2.8) (Supplemental Fig. S9A). This
elevated mRNA level likely results from increased mRNA stability
attributable to ribosome shielding and has been noted in another
high-throughput study (Kosuri et al. 2013). We chose not to nor-
malize fitness measurements with respect to the mRNA level
because this could greatly underestimate the fitness of genotypes
(Log[GFP]≥2.8) whosemRNA level increased by three- to fivefold.
Additionally, ribosome shielding affected just a small fraction of
genotypes based on the observed fitness threshold (FLfepB: 15,744
[6.44%], FLarti: 1424 [0.55%], FLdmsC: 1064 [0.41%]), which had a
marginal effect on our conclusion (Supplemental Fig. S9B,C).

SD G-P associations depend strongly on the RBS contexts

To elucidate the relationship between fitness and other molecular
features, we assigned genotypes of each fitness landscape into 20
fitness-ranked groups and reported group characteristics.
Examining the fitness of genotypes in FLfepB, FLarti, and FLdmsC re-
vealed distinct distributions (Fig. 1B, upper panels). Although
most genotypes in FLarti and FLdmsC had fitness below 0.8, the ma-
jority of genotypes in FLfepB was above this value and spread across
the fitness spectrum. In both FLfepB and FLdmsC, the endogenous SD
of RBSfepB and RBSdmsChad fitness higher thanmost genotypes and
the canonical SD (i.e., reverse complement of aSD), suggesting it as
the product of natural selection. Besides the overall fitness distri-
bution, the fitness of individual genotypes across the three fitness
landscapes showed justmoderate correlations (Pearson’s r=0.485–
0.572) (Fig. 1C). One potential cause of lower correlations was the
difference in the physical location of SD genotypes (relative to the
start codon) in RBSfepB, RBSarti, and RBSdmsC (Fig. 1A). To remove
this confounding factor from cross-library G-P comparison, we as-
signed the 9-nt SD genotypes to 47 genotypic subsets based on
their sequence identity in the 7-nt overlapping region (i.e., 6–12
nt upstream of the gfp start codon). Then we compared the mean
fitness of each 7-nt genotypic subset across FLfepB, FLarti, and
FLdmsC. Although the correlations increased significantly after
eliminating the location effect (Pearson’s r= 0.668–0.798) (Fig.
1D), part of this increment was also attributed to averaging vari-
ables (i.e., comparing subsets rather than individual genotypes)
(for extensive analysis, see Supplemental Fig. S10).

SD fitness landscapes
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We used a RNA folding algorithm to predict the influence of
SD genotypes on local mRNA folding and SD:aSD base-pairing in-
teraction (Lorenz et al. 2011). The mRNA folding energy of geno-
types in FLfepB, FLarti, and FLdmsC was −8.88, −10.66, and −12.74
kcal/mol, respectively, on average (Fig. 1B, lower panels). This dif-
ference correlated with the GC contents of the three RBS contexts
and corroborated with the observed fitness distribution. In
contrast, analysis within each fitness landscape showed fitness
correlating strongly with SD:aSD base-pairing energy (Pearson’s
r=0.522–0.701) (Fig. 1B, middle panels)
but hardly with mRNA folding energy
(Pearson’s r=−0.023 to 0.075). These
trends were in agreement with multiple
linear regression, which suggested SD:
aSD base-pairing strength having a high-
er impact on fitness than the SD:aSD
base-pairing location and mRNA folding
energy in our experimental system (Sup-
plemental Text). Examining the charac-
teristics of fitness-ranked groups showed
less fitness dependence of FLfepB on SD:
aSD base-pairing energy than FLarti and
FLdmsC. In FLfepB more than 50% of geno-
types with fitness as 0.64–1.60 showed
detectable GFP expression (the fitness of
a GFP-negative control was 0.45± 0.04)
but was not predicted to form SD:aSD
base pairing (i.e., ΔG= ; blue circles in
Fig. 1B indicate group medians), sug-
gesting SD:aSD base pairing may be non-
essential to translation initiation of
weakly structured RBS. Collectively, re-
sults manifested strong RBS context ef-
fects on SD G-P mapping and indicated
that SD:aSD base pairing played a promi-
nent role in each fitness landscape.

G-P correlations increase both

mutational robustness and

evolvability

A central question of evolutionary
genetics has been how G-P mapping
structure affects the distribution of mu-
tational effects, in other words, the
probability of genotypes to acquire ben-
eficial, neutral, or deleterious mutations
(Orr 2005). Prior studies of fitness land-
scapes addressed this by exploring most-
ly the G-P associations surrounding
wild-type RNA and proteins or variants
showing superior molecular function
(Podgornaia and Laub 2015; Li et al.
2016; Sarkisyan et al. 2016; Domingo
et al. 2018). Our comprehensive G-P
mapping of SD in three RBS contexts
provided an unprecedented opportunity
to reveal general features throughout en-
tire fitness landscapes. Taking each ge-
notype as the reference, we inspected
the relationship between its fitness and
the individual or mean fitness of its 27

mutation neighbors in FLfepB, FLarti, and FLdmsC (Fig. 2A, “Authen-
tic”). We found modest (Pearson’s r=0.549–0.663) and strong
(Pearson’s r=0.883–0.929) correlations for the former and latter
cases, respectively, indicating that overall similar genotypes
showed similar phenotypes, but fitness variation between close
genotypes was substantial. The observed G-P correlations were
biologically significant because such trend was absent among
10,000 G-P–shuffled landscapes generated by randomly pairing
the genotypic and fitness data of the three fitness landscape
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Figure 2. G-P correlation and the distribution of mutational effects. (A) Correlations (Pearson’s r, per-
mutation test) between the fitness of a genotype and the individual fitness (blue) or themean fitness (red)
of its 27 single-mutation neighbors in the authentic fitness landscapes or in a representative of 10,000
G-P–shuffled fitness landscapes. (B) Relationship between the fitness of a genotype and the amount of
beneficial, neutral, and deleterious mutations in this genetic background in the authentic or the repre-
sentative G-P–shuffled fitness landscapes. The 27 point mutations a genotypewould acquire are assigned
into beneficial, neutral, and deleterious categories based on an operational cutoff defined by sort-seq
measurement errors (FLfepB=0.168, FLarti=0.108, and FLdmsC=0.198). Genotypes are ranked by fitness
and grouped into 20 equal-sized bins. Lines and bars indicate group means and standard deviations, re-
spectively. (A,B) Only genotypes with their 27 single-mutation neighbors fully characterized are
considered.
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while keeping their overall fitness distribution identical (Fig. 2A,
“G-P–shuffled”).

To assess the influence of G-P correlations on the distribution
of mutational effects, we classified the 27 point mutations each
genotype would gain as beneficial, neutral, or deleterious (with
respect to the translation efficiency) using one- or twofold sort-
seq measurement errors as the operational cutoff (Fig. 2B;
Supplemental Fig. S11A). Regardless of differences in fitness distri-
bution and measurement errors, FLfepB, FLarti, and FLdmsC showed
similar trends: From low-fitness to high-fitness genetic back-
grounds, we observed a decline of beneficial mutations, an eleva-
tion of deleterious mutations, and neutral mutations peaking at
the fitness range occupied by most genotypes. As expected, high-
fitness genotypes like endogenous SD were more likely to gain
deleterious mutations than beneficial mutations. This result con-
firmed the decreasing availability of beneficial mutations as a
cause of diminishing returns in adaptive evolution (Orr 2005). It
also reflected a restricted view of the distribution of mutational ef-
fects generated by prior wild-type centered mutagenesis studies
(Eyre-Walker and Keightley 2007; Li et al. 2016; Sarkisyan et al.
2016). To investigate the influence of G-P mapping structure on
this distribution, we applied the same analysis to 10,000G-P–shuf-
fled fitness landscapes (Fig. 2B; Supplemental Fig. S11A,B).
Although the overall trends seemed similar between the authentic
andG-P–shuffled fitness landscapes, two unique features emerged:
The authentic fitness landscapes had lower and higher input of
deleterious and neutral mutations, respectively, throughout the
fitness spectrum of genetic backgrounds. Moreover, authentic fit-
ness landscapes showed a steady and higher supply of beneficial
mutations across broad fitness altitudes (around Log[GFP] = 1.0–
3.0). Relative to FLfepB, the stable input of beneficial mutations in
FLarti and FLdmsC at similar fitness altitudes seemed unexpected giv-
en their highly right-skewed fitness distribution (Fig. 1B).
Together, the two properties wouldmake SD bothmutationally ro-
bust and evolvable, granting a better chance to evolve into high-
fitness genotypes.

Guanine contents predict the fitness of synthetic

and endogenous SD

To elucidate the biochemical basis of SD fitness landscapes, we
examined the nucleotide composition of genotypes across the 20
fitness-ranked groups in FLfepB, FLarti, and FLdmsC (Fig. 3A;
Supplemental Figs. S12, S13). From low-fitness to high-fitness
groups, we observed a huge and consistent increase of guanine, a
significant and continuous decrease of cytosine, a moderate
decrease of uracil, and a slight increase of adenine in all the three
fitness landscapes. Although the preceding trends were consistent
with the positive and negative roles of guanine and cytosine, re-
spectively, in SD:aSD base pairing, the conventional view of ade-
nine being critical for SD function was questionable because its
ratio only changed slightly at low fitness (Log[GFP] = 0–0.8) and re-
mained stable beyond this range. To gauge the functional signifi-
cance of adenine, uracil, guanine, and cytosine, we categorized
genotypes in terms of the amount of each nucleotide type and in-
spected the relationship between the nucleotide content and the
mean fitness of genotypes in each category. In all the three fitness
landscapes, we discovered a strong positive correlation between
the guanine content and fitness (Fig. 3B; Supplemental Fig. S14).
Even genotypes made of nine guanines conferred high fitness
(Log[GFP] = 2.58–2.80) (Figs. 1B, 3B). On the contrary, the cytosine
content showed a negative correlation with fitness, and the

influences of adenine and uracil were both minor. We compared
poly(G) tracts and canonical SD motifs with respect to their influ-
ence on the fitness of genotypes. Relative to the whole library, ge-
notypes bearing both types of sequencemotifs showed strong left-
skewed fitness distribution (Fig. 3C). It was noteworthy that the
skewness of distribution appeared to correlate with the guanine
content of thesemotifs, consistent with the result of genotype-lev-
el analysis.

To see if observation of our synthetic SD libraries predicted
the biochemical properties of endogenous SD in E. coli, we ap-
plied the same analysis to a published data set reporting the
precisely measured translation rates of 779 endogenous SD
(Gorochowski et al. 2019). We observed a similar relationship be-
tween the translation rate of endogenous SD and its nucleotide
composition despite that each endogenous SD was situated in a
unique RBS context (Fig. 3D). Endogenous SD had an overall el-
evated adenine content, which compressed the variation of other
nucleotides. In contrast, the correlation between the nucleotide
content and the translation rate of endogenous SD was less obvi-
ous (Fig. 3E). From low to high translation rates, endogenous SD
still showed slight increases and decreases in its guanine and cy-
tosine contents, respectively, but the variation was pronounced.
The less significant trends may be attributed to the analytic
method and data composition: Relative to synthetic libraries,
poly(G) and poly(C) tracts were underrepresented in endogenous
SD. Moreover, endogenous SD was enriched for adenine (36.02%
and 34.51% for the 779 and total 4566 endogenous SD, respec-
tively) and guanine (31.06% and 32.29% for the 779 and total
4566 endogenous SD, respectively), hence compressing the vari-
ation of cytosine and uracil (Hayashi et al. 2006). One distin-
guishable feature of endogenous SD was its high adenine
content regardless of the translation rate (Fig. 3D), suggesting cer-
tain functional constraints on sequence evolution. Collectively,
our analysis of both synthetic and endogenous SD showed the
guanine content as an indicator of the translation efficiency.
To our knowledge, this simple relation and efficient translation
initiation by guanine-only SD have not been proposed or exper-
imentally shown before.

Increasing the guanine content of SD enhances mRNA-ribosome

binding

In addition to revealing a positive correlation between the guanine
content and fitness, inspecting FLfepB, FLarti, and FLdmsC identified
significant GFP expression by poly(U) SD in weakly structured
RBSfepB (Figs. 1B, 3B; Supplemental Fig. S9A). Although the poor
SD:aSD pairing capacity of poly(U) SD seemed odd to E. coli
(none of its endogenous SDbore poly(U) tracts longer than five nu-
cleotides) (Hayashi et al. 2006), it resembled the abundant non-
SD-led RBS in bacteroides, cyanobacteria, and plastids (Nakagawa
et al. 2010; Scharff et al. 2011; Omotajo et al. 2015). To investigate
the translationmechanism of non-SD-led RBS and validate the ad-
ditivity of guanine contents on mRNA-ribosome binding and
translation initiation, we modified RBSfepB to create six synthetic
RBS bearing 0–3 guanines in the SD region and quantified their
in vivo fitness and in vitro binding kinetics with 30S subunits in
the absence of initiation factors and initiator tRNA (Fig. 4A,B;
Supplemental Fig. S15). Under the latter condition, the measured
kinetics would reflect the intrinsic 30S-binding activity to
mRNA. Synthetic RBS was designed to minimize the difference
in RNA folding energy (predicted as−6.8 to−9.3 kcal/mol). The fit-
ness and dissociation constants (Kd) of synthetic RBS were
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negatively correlated (Pearson’s r=−0.962, P<0.05) (Fig. 4C).
Except the negative control, all of them, including synthetic RBS
devoid of guanine, bound to the 30S subunit, and their guanine
contents correlated positively with fitness (Pearson’s r=0.969, P
<0.05) and negatively with Kd (Pearsons’ r=−0.923, P<0.05).
Changes in Kd (= koff/kon) were caused by a larger difference in
the RBS-30S subunit dissociation rate (koff) than the association

rate (kon) (Fig. 4D). This result supported the main role of SD:aSD
base pairing in stabilization of the mRNA-ribosome complex
(Rodnina 2016). It also suggested that the non-SD-led RBS of bac-
teroides, cyanobacteria, and plastids might bind to ribosomes
through the regular means as SD-led RBS, but their ribosomes
may have evolved a SD:aSD pairing-independent way to stabilize
the mRNA-ribosome complex. As such, there seems no need to
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nucleotide type and grouped into 10 bins (i.e., 0–9 nt). Lines and bars indicate groupmeans and standard deviations of fitness, respectively. (C ) Influence of
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evoke alternativemechanisms to explain the translation initiation
of non-SD-led RBS.

RNA thermodynamics explains the biochemical principles of G-P

mapping

Following investigation of the RBS-ribosome binding rules, we
studied how these biochemical properties would transform into
the fitness contribution of adenine, uracil, guanine, cytosine, and
their epistatic interactions at each nucleotide position in SD.
Because our experimental data covered the great majority of geno-
types in FLfepB, FLarti, and FLdmsC (Fig. 1B),we applied a variancepar-
tition method to estimating the mean fitness effect of the RBS
context (1 term), the mean fitness effects of single nucleotides
(36 terms: four nucleotide types at nine positions), and those of
pairwise epistasis (576 terms: 36 paired combinations of nine posi-
tions where each position had four nucleotide types) across all ge-
notypes (Eqs. 4–6 in Supplemental Text). The mean fitness effects
of single nucleotides and pairwise epistasis in FLfepB, FLarti, and
FLdmsC were qualitatively similar. For single nucleotides, general
ranking of their mean fitness effects was G>A > U>C across posi-
tions (Fig. 5A). Concerning pairwise epistasis, nucleotides interact-
ed strongly with those in adjacent positions, and pairwise
interactions between four nucleotide types were largely similar re-
gardless of positions (Fig. 5C).Would this pervasive pattern of epis-
tasis stem from SD:aSD base pairing?We applied the same analysis
to the free energyof SD:aSDbasepairingpredictedbyaRNA folding
algorithm (Lorenz et al. 2011). Indeed, results revealed great simi-
larities between in silico predictions and our in vivo data at both
the single-nucleotide and pairwise epistasis levels (Fig. 5B,D).

This congruence highlights the predominant role of SD:aSD base
pairing in translation initiation despite significant RBS context ef-
fects (Fig. 1B,C). Additionally, it shows the capability of our high-
throughput experiments to elucidate RNA thermodynamics de-
spite measuring phenotypic variation at the protein level.

Epistasis contributes greatly to fitness variation

Using an additive model (Eq. 7 in Supplemental Text), we evaluat-
ed the overall contribution of the RBS context, single nucleotides,
and pairwise epistasis to fitness. The additive model predicted the
fitness of each genotype in FLfepB, FLarti, and FLdmsC by summing up
either the mean fitness effects of the RBS context plus 9 single nu-
cleotides, or those of the RBS context plus 9 single nucleotides and
the 36 types of pairwise epistasis. Then we correlated these predic-
tions with experimental data to calculate the explanatory power
(R2) of the additive model (Fig. 5E). The contribution of single nu-
cleotides and pairwise epistasis to SD:aSD binding energy was an-
alyzed similarly except that the RBS context was not considered
(Fig. 5F). The additive model could explain 32.5%–55.7% and
54.4%–67.8% of experimental data, respectively, when consider-
ing the RBS context plus single nucleotides, or the RBS context
plus single nucleotides and pairwise epistasis. Likewise, the addi-
tive model explained 59.3% and 85.8% of predicted SD:aSD bind-
ing energy, respectively, when considering single nucleotides or
single nucleotides plus pairwise epistasis. In both the in vivo and
in silico cases, single nucleotides exerted a greater influence than
pairwise epistasis on fitness. Among the three experimentally
characterized fitness landscapes, the magnitude of explanatory
power of FLfepB resembled that of the in silico predictions most,
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reaffirming the weak structured nature of the RBSfepB context.
Conversely, even after taking the proportion of measurement er-
rors into consideration (Supplemental Fig. S7B), the additive mod-
el was unable to explain 9%–22.3% of fitness variation in FLfepB,
FLarti, and FLdmsC, suggesting the influence of higher-order epista-
sis (i.e., interaction involving more than two nucleotides) or other
uncaptured factors.

Global impacts of higher-order epistasis and the constraint

of RNA duplex stability on mutational effects

To explore the source of unexplained fitness variation, we per-
formed a complementary analysis by surveying the fitness effects
of all point mutations across all characterized genotypes in
FLfepB, FLarti, and FLdmsC. Point mutations in 9-nt genotypes can
be categorized into 108 types in terms of nine nucleotide positions
(Fig. 6A) and 12 nucleotide substitutions. For each point mutation
type, we inspected the relationship between the fitness of each ge-
notype and its fitness change upon gaining the mutation. We se-
lected general trends and presented them as overlaid graphs in
Figure 6 (for a complete analysis, see Supplemental Figs. S16–
S21). From low-fitness to high-fitness genetic backgrounds, we ob-
served diminishing returns in the fitness effect of C→G (marked as
“Experiment” in Fig. 6B), C→A, U→G, U→A, and A→Gmutations,

which were overall beneficial according to Figure 5A. Was such
background dependence caused by higher-order epistasis? We ad-
dressed this by examining the mutational effects predicted by the
additive model (Supplemental Figs. S22–S27). This approach dis-
tinguished the effect of higher-order epistasis as themodel consid-
ered just the fitness contribution of RBS contexts, single
nucleotides, and pairwise epistasis (Fig. 5E). Contrastingly, the ad-
ditive model predicted the beneficial effect of C→G mutations to
increase with background fitness (Fig. 6B), suggesting the involve-
ment of higher-order epistasis in experimental data.We sought the
cause of higher-order epistasis by inspecting the impact of C→G
mutations on SD:aSD base-pairing energy (Fig. 6C; Supplemental
Figs. S28, S29). The RNA folding algorithmoverall predicted the di-
minishing effect of C→G mutations in genetic backgrounds with
strong base-pairing energy (Lorenz et al. 2011). Yet the effect of
C→G mutations on SD:aSD base pairing did not turn deleterious,
unlike the experimental data, which showed a negative fitness ef-
fect in high-fitness backgrounds (Fig. 6B). This differencemight re-
sult from the increasing guanine content inhigh-fitness genotypes
(Fig. 3A), which promoted base-pairing interaction between SD
and its upstream U-rich or C-rich regions (Fig. 1A). Although this
hypothesis was consistent with RNA folding prediction (Fig. 6D;
Supplemental Fig. S30), further investigation would be needed
for verification.

0.34

-0.34

0

0.17

-0.17

0.34

-0.34

0

0.17

-0.17

0.34

-0.34

0

ΔL
og

(G
F

P
)

0.17

-0.17

Nucleotide position
3 5 7 91

Position relative to gfpA
-16 -12 -10 -8 -6 -4-14 -16 -12 -10 -8 -6 -4-14 -16 -12 -10 -8 -6 -4-14

3 5 7 91 3 5 7 91

A U G C

1.2

-1.2

0

0.6

-0.6

Nucleotide position
3 5 7 91

Δ
|Δ

G
| (

kc
al

/m
ol

)

B

E

Lo
g(

G
F

P
)

E
xp

er
im

en
t

0 0.8 1.6 2.4 3.2
0

0.8

1.6

2.4

3.2

0 0.8 1.6 2.4 3.2
0

0.8

1.6

2.4

3.2

0 0.8 1.6 2.4 3.2
0

0.8

1.6

2.4

3.2

Additive model
Log(GFP)

F

C D

Position 1

P
os

iti
on

 2

P
os

iti
on

 2

A UCG
A
U
C
G

-0.34

0

0.34

2 4 5 6 7 83 91

2

4
5
6
7
8

3

9

1

ΔLog(GFP)

A UCG
A
U
C
G

-0.16

0

0.16

2 4 5 6 7 83 91

2

4
5
6
7
8

3

9

1

ΔLog(GFP)

A UCG
A
U
C
G

-0.14

0

0.14

2 4 5 6 7 83 91

2

4
5
6
7
8

3

9

1

ΔLog(GFP)

Position 1
A UCG

A
U
C
G

-1.0

0

1.0

2 4 5 6 7 83 91

2

4
5
6
7
8

3

9

1

ΔG

R2= 0.557 R2= 0.678 R2= 0.350 R2= 0.583 R2= 0.325 R2= 0.544

0 3.5 7.0 10.5 14.0
0

3.5

7.0

10.5

14.0

Additive model
|ΔG| (kcal/mol)

P
re

di
ct

io
n

|Δ
G

| (
kc

al
/m

ol
)

R2= 0.593 R2= 0.858

+0N 1N 2N++0N 1N

262,144 genotypes259,821 genotypes 257,565 genotypes244,401 genotypes
FL fepB FL arti FL dmsC SD:aSD prediction

Figure 5. Fitness contribution of single nucleotides and pairwise epistasis. (A,B) Mean effects of single nucleotides on fitness (Log[GFP]) (A) and SD:aSD
base-pairing energy (ΔG) (B). (C,D) Mean effects of pairwise epistasis on fitness (C) and SD:aSD base-pairing energy (D). Color bars, large heatmaps, and
small heatmaps show measurement scales, nucleotide–nucleotide epistasis across the SD sequence, and the averaged patterns of epistasis between each
nucleotide position and its two upstream and two downstream neighbors, respectively. (E,F) Explanatory power (R2) of the RBS context (N0), single nu-
cleotides (N1), and pairwise epistasis (N2) on fitness (E) and SD:aSD base-pairing energy (F). (B,D,F ) ΔG (predicted values≤0) is shown as absolute values for
simplicity.

Kuo et al.

718 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260182.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260182.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260182.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260182.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260182.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260182.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260182.119/-/DC1


Conversely, from low-fitness to high-fitness backgrounds, ex-
perimental data showed the aggravating trends of G→C (Fig. 6E),
G→U,G→A, A→C, and A→Umutations, whose effects were overall
deleterious. Part of the tendency could be explained by the addi-
tive model, but the strongly negative correlation between the mu-
tational effect and background fitness suggested the influence of
higher-order epistasis. In addition, the negative correlation
seemed more pronounced at the internal than the edge positions
in SD. We propose a mechanistic model termed “chain-breaking”
to explain these two related phenomena (Fig. 6H): The fitness of
genotypes increases generally with the SD:aSD duplex length
(Supplemental Fig. S4B). A deleterious (i.e., mismatch) mutation
thus has a greater chance to interrupt the SD:aSD base-pairing

chain when it occurs in high-fitness genetic backgrounds or at
the center of SD. Consequently, this chain-breaking mutation de-
stabilizes the SD:aSD duplex in addition to the base mismatch,
causing a significant drop in fitness. To verify this model, we ap-
plied the same analysis to SD:aSD base-pairing predictions.
Indeed, the in silico trends of G→Cmutations bore striking resem-
blance to those found in vivo, with regard to either SD:aSD bind-
ing energy (Fig. 6F; Supplemental Figs. S28, S29) or the duplex
length (Fig. 6G; Supplemental Figs. S31, S32). To investigate the
generality of chain breakage in RNA base pairing, we mathemati-
cally described the probability of chain-breaking mutations (i.e.,
mismatch mutations interrupting RNA duplexes) as a function of
the mutation position and the duplex length formed by two

987654321

Nucleotide position
5’ 3’

A

I

0
9630

20

75

100

C
ha

in
 b

re
ak

in
g 

(%
)

50

Duplex length (bp)

H

0 

ΔG1 

ΔG2 

ΔG1 

B

F

SD:aSD |ΔG|

S
D

:a
S

D
 Δ

|Δ
G

|

0 7 14
-8

-6

-4

-2

0

G
C

G

-6

-4

-2

0

Le
ng

th
 c

ha
ng

e 
(b

p)

Duplex length (bp)
9630

G
C

E Experiment

FL fepB FL arti FLdmsC

0

Δ
Lo

g(
G

F
P

)
G

C

-2.7

-1.8

-0.9

0.9

0 1.6 3.2 0 1.6 3.2 0 1.6 3.2
Genotype - Log(GFP)

FL fepB FL arti FLdmsC

0 1.6 3.2 0 1.6 3.2 0 1.6 3.2

++(N0 N1 N2)Additive model

Experiment 

0

Δ
Lo

g(
G

F
P

)
C

G

-2.1

-1.4

-0.7

1.4

0.7

0 1.6 3.2 0 1.6 3.2 0 1.6 3.2
Genotype - Log(GFP)

FL fepB FL arti FLdmsC

0 1.6 3.2 0 1.6 3.2 0 1.6 3.2

++(N0 N1 N2)Additive model

20

15

10

5
0 3 6 9

F
ol

di
ng

 |Δ
G

|

FL fepB

FLarti

FLdmsC

Guanine content (nt)

D

SD:aSD |ΔG|

S
D

:a
S

D
 Δ

|Δ
G

|

0 7 14
0

2

4

6

C
G

C

GenotypeGenotype

Genotype

FL fepB FL arti FLdmsC

Figure 6. Global spectrum of mutational effects. (A) Markers of nucleotide positions. (B,C) Relationship between the fitness (Log[GFP]) (B) and SD:aSD
base-pairing energy (ΔG) (C) of genotypes and the effects of C→G mutations. (D) Relationship between the guanine content of SD and the RNA folding
energy (ΔG) of 30-nt RBS. Genotypes are ranked by the guanine content and grouped into 10 bins. Lines and bars indicate group means and standard
deviations, respectively. (E–G) Relationship between the fitness (E), SD:aSD base-pairing energy (F), and SD:aSD duplex length (G) of genotypes and
the effects of G→C mutations. (B,C,E–G) Genotypes are ranked by the considered phenotypes and grouped into 20, 20, 20, 20, and 10 equal-sized
bins, respectively. For each phenotype-ranked group, themean phenotypic effects ofmutations at each nucleotide position in SD are computed and shown
by lines styled according to A. (C,D,F) The predictions of ΔG are≤0 and shown as absolute values for simplicity. (B,E) The additivemodel predictsmutational
effects based on the fitness contribution of RBS contexts (N0), single nucleotides (N1), and pairwise epistasis (N2). (H) Chain-breaking model. Mismatch
mutations occurring at the internal (red) and the edge (blue) of a RNA duplex are highlighted: (ΔG1) energy penalty caused by base-pairing mismatches;
(ΔG2) energy penalty caused by breaking the base-pairing chain. (I) Probability of chain-breakingmutations as a function of the nucleotide position and the
duplex length formed by two 9-nt position-aligned RNA strands made of any sequences. The chain-breaking probability at each nucleotide position is
shown by lines styled according to A.

SD fitness landscapes

Genome Research 719
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260182.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260182.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260182.119/-/DC1


single-stranded RNA made of any sequences (Eqs. 8–10 in
Supplemental Text). As expected, the probability function pre-
dicted chain-breaking mutations more prevalent at the center of
RNA strands and in genetic backgrounds with longer duplex
length (Fig. 6I).

Discussion

Through exploring the entire genotypic space of SD under three
RBS contexts, we generated empirical data sets valuable for study-
ing prokaryotic translation initiation, guiding bioinformatic
analysis of synthetic and endogenous RBS, and illuminating the
fundamentals of fitness landscapes and molecular evolution.
Despite the distinct fitness distribution of FLfepB, FLarti, and
FLdmsC, we showed that the underlying trends of mutational ef-
fects, biochemical principles, and epistatic interaction were simi-
lar. In addition to canonical AG-rich motifs frequently found in
endogenous SD (e.g., “GGAGG” frequency= 327/4566), we also
observed strong and weak translation initiation by SD bearing
poly(G) and poly(U) tracts, respectively, both of which were un-
common in E. coli (e.g., “GGGGG” frequency=73/4566 and
“UUUUU” frequency=0/4566) (Hayashi et al. 2006). This suggests
that endogenous SD represents the evolutionary product, and its
sequence features do not necessarily reflect the full recognition ca-
pacity of E. coli ribosomes. Therefore, future bioinformatic studies
of SD or other genetic elements should consider approaches alter-
native to scanning canonical sequence motifs.

The positive effect of poly(G) tracts onmRNA-ribosome bind-
ing and translation initiation likely results from G·U wobble base
pairing between SD and aSD (Varani and McClain 2000). Unlike
AG-rich motifs that establish tighter but strict Watson-Crick base
pairing with the aSD, poly(G) tracts form weaker wobble pairing
with aSDbut permitmultiple base-pairing configurations. The cor-
relation between the guanine content and the translation efficien-
cy of SD seems straightforward given the CU-rich nature of aSD,
but it has not been reported previously. The capability to experi-
mentally synthesize and characterize massive genotypic libraries
likely overcomes the limitation of prior work, which mainly stud-
ies endogenous SD with narrower sequence and function varia-
tion. Uncovering this “G-more” rule will simplify the task of
designing RBS for building synthetic gene circuits or genomes
(Salis et al. 2009; Bonde et al. 2016). Conversely, in vitro and in
vivo assays showed that E. coli ribosomes were able to use poly(U)
SD for translation initiation. Synthetic RBS examined here resem-
bles weakly structured RBS in bacteroides and cyanobacteria
(Nakagawa et al. 2010; Hockenberry et al. 2018) but differs from
those in prior studies concerning the interaction between poly(U)
tracts and the ribosomal protein S1 (Boni et al. 1991; Zhang and
Deutscher 1992; Duval et al. 2013). In these studies, RBS forms
strong secondary structure, the poly(U) tract sits upstream of the
SD region, and the SD region contains AG-richmotifs. Future char-
acterization of our synthetic RBS will providemechanistic insights
into the translation initiation of non-SD-led RBS.

From the G-P mapping between or within FLfepB, FLarti, and
FLdmsC, we discerned pervasive epistasis and its profound influence
(Figs. 1C, 5C). Epistasis convolutes G-P mapping, intensifies the
ruggedness of fitness landscapes, andhas been shown to decelerate
or constrain adaptive evolution (Weinreich et al. 2006; Chou et al.
2011; Tokuriki et al. 2012; Harms and Thornton 2014). Epistasis is
frequently noted in large-scale G-P mapping, but elucidating its
molecular basis remains challenging (Li et al. 2016; Sarkisyan
et al. 2016; Aguilar-Rodríguez et al. 2017). Through global analysis

of mutational effects, we revealed the exacerbation of deleterious
mutations in high-fitness genotypes (Fig. 6). Supported by RNA
base-pairing prediction, our chain-breaking model suggested the
negative tendency partly attributed to mismatch mutations dis-
rupting the SD:aSD duplex irrespective of the exact sequence com-
position. This chain-breaking epistasis is unique in that it stems
from the stability constraint of macromolecules, analogous to
the effect of stabilizing/destabilizingmutations on protein folding
(Tokuriki and Tawfik 2009). Chain-breaking epistasis may pro-
foundly impact the evolution and function of RNA splicing,
microRNA/lncRNA regulation, and CRISPR-Cas immunity, as
these RNA-mediated processes all involve base pairing.

Extending the implication beyond protein translation and
RNA function, our SD G-P fitness landscapes provide an exciting
paradigm to investigate the principles of evolutionary genetics.
In Maynard Smith’s essay concerning the protein sequence space,
he conjectured that similar genotypes more likely showed similar
phenotypes, and such G-P correlation would facilitate adaptive
evolution of fit genotypes by reducing their deleterious mutation
load (Maynard Smith 1970). More recently, Wagner and others
showed that G-P correlations promoted evolution of promiscuous
function by creating neutral networks for DNA, RNA, and proteins
to accumulate cryptic genetic variation (Gupta and Tawfik 2008;
Hayden et al. 2011; Payne and Wagner 2014). Besides reaffirming
the aforementioned attributes, our results further suggest that G-P
correlations may support adaptive evolution by the stable supply
of beneficial mutations over broad altitudes of fitness landscapes.
This feature may be particularly important for biological systems
in which adaptation is not supported because of the dispropor-
tional scarcity of high-fitness genotypes, like FLarti and FLdmsC

(Fig. 1B). As more comprehensive G-P mapping data are becoming
available, soon we will be able to tell if this trend of beneficial mu-
tations is SD-specific or intrinsic to biology.

Methods

Primers, plasmids, and strains

All primers were synthesized by Integrated DNA Technologies
(Supplemental Table S1). The procedures for constructing plas-
mids (Supplemental Table S2) were described in Supplemental
Text. Four strains of E. coli, 10G (Lucigen), MG1655 (Chou et al.
2015), EK222, and MRE600 (Kurylo et al. 2016), were used in
this study. E. coli 10G was applied to plasmid construction and
generation of the SD sequence variant libraries. Plasmids and SD
variant libraries were then transformed into E. coli MG1655 via
electroporation to examine cellular expression of GFP or YFP
(Cormack et al. 1996; Nagai et al. 2002). E. coli EK222 served as
the negative control for quantification of cellular GFP production.
EK222 was constructed via the λ-Red-mediated gene replacement
(Datsenko and Wanner 2000). A 1.4-kb fragment, containing the
ykgC::kan allele of E. coli JW5040 (Baba et al. 2006), was amplified
by PCR using primer pair HCEp165/HCEp166 and transformed
into E. coli MG1655 via electroporation. Successful allelic replace-
ment of the chromosomal ykgC locus was screened in terms of
kanamycin resistance and confirmed by PCR amplification using
primer pairs K1/HCEp168 and K2/HCEp167. E. coli MRE600 was
used for purification of ribosomal subunits.

Construction of SD variant libraries

All enzymes were purchased from Thermo Fisher Scientific unless
specified otherwise. Three replicates of the FLfepB, FLarti, and FLdmsC

SD variant libraries and one replicate of the FLarti-Y library were
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constructed by the following procedures. Construction of these
four libraries began with inverse PCR of template plasmids
pYC09, pYC08, pYC20, and pHC199v by Q5 DNA polymerase
(NEB) using primer pairs YC09SDRf/YC09SDRr, YC08SDRf/
YC08SDRr, YC12SDRf/YC12SDRr, and 199vSDRf/YC08SDRr, re-
spectively. For each of these primer pairs, the 5′ ends of the forward
and reverse primers consisted of five and four randomized nucleo-
tides, respectively, which jointly formed the 9-nt SD sequence up-
stream of GFP or YFP genes later on. The 5′ ends of these primers
were phosphorylated to facilitate the ligation step. Following in-
verse PCR, the reaction product was purified by the Zymo DNA
Clean & Concentrator and went through DpnI (NEB) digestion.
The remaining 4.4-kb linear DNAwas self-ligated by T4DNA ligase
to form circular plasmids. Circular plasmids were transformed into
E. coli 10G via electroporation. Cells were revived in the manufac-
turer’s recoverymedium for 1 h and thenwere grown in 12.5mL of
LBK medium at 37°C and 225 rpm overnight. The amount of via-
ble transformants, estimated by serial dilution, ranged from 6.3×
107 to 3.2 ×108 cells per library. Total plasmids in E. coli 10G
were extracted by the Qiagen Plasmid Miniprep Kit and retrans-
formed into E. coliMG1655 via electroporation. The amount of vi-
able transformants at this step was 1.0–5.5 ×108 cells per library.
Cells were revived in SOC medium for 1 h and then were grown
in 12.5 mL of LBK medium at 37°C and 225 rpm. Next day
E. coliMG1655 cells in the overnight culturewere collected by cen-
trifugation and resuspended in 1 mL of PBS containing 25% gly-
cerol (v/v). This cell suspension was stored at −80°C as 20 equal
aliquots. Individual genotypes isolated directly from these libraries
were assigned a unique serial number beginning with “pLK”
(Supplemental Tables S2, S3).

FACS experiments

SD variant libraries hosted by E. coliMG1655were revived by inoc-
ulation of one aliquot of frozen cell suspension into 20 mL of
LBKG medium. Meanwhile, spike-in variants (Supplemental
Table S3), individual genotypes with known sequences and trans-
lation efficiencies, were revived by inoculation of 1 μL of frozen
stocks into 1mL LBKGmedium. Both SD libraries and spike-in var-
iantswere grownovernight at 37°C and 225 rpm. Subsequently, 50
μL and 2.5 μL of the library and spike-in precultures were trans-
ferred to 20 mL and 1 mL LBKG medium, respectively. Both
cultures were grown at 37°C and 225 rpm until their OD reached
0.55–0.65, during which cell fluorescence was relatively steady
(Supplemental Fig. S2B). All spike-in variants were evenly pooled
together and added into the library culture in a 1:2500 ratio
(v/v). This mixture was diluted 10-fold with PBS and was stored
on ice.

FACS was performed by a BD FACSJazz cell sorter, and cells
were maintained at 4°C throughout. The sensitivity of the photo-
multiplier tube (PMT) was calibrated based on two negative con-
trol strains (E. coli MG1655 bearing pTK03 or pTK06) and two
positive control strains (E. coli MG1655 bearing pYC08 or
pHC199v) for GFP and YFP, respectively. The PMT was adjusted
such that the GFP and YFP signals of strains bearing pYC08 and
pHC199v centered upon 2.86 and 2.81, respectively, in the loga-
rithmic scale. The fluorescence distribution of each library was di-
vided into eight ranks except that the third FLfepB replicate library
was divided into 15 ranks for technical comparison (Supplemental
File S1). Ranks were numbered in the ascending order according to
the fluorescence intensity. For GFP-based libraries with eight
ranks, the fluorescence peak positions of pTK03 and pYC08 set
the lower and upper bounds of a range in which Ranks 2–7 were
evenly spaced; Ranks 1 and 8 were defined as the zones below
and above this range, respectively. The eight ranks of the FLarti-Y li-

brary were defined similarly except using pTK06 and pHC199v, re-
spectively, as the lower and upper bounds of Ranks 2–7. For the
third FLfepB replicate library, the fluorescence peaks of pTK03 and
pYC08, respectively, set the lower and upper bounds of a range
in which Ranks 2–13 were evenly spaced. The zone below this
rangewas defined as Rank 1, and the zone above this rangewas fur-
ther divided into Ranks 14 and 15 in terms of the peak position of
spike-in variant pLK170110v71. A total of 10,000,000 cells were
collected per sort-seq experiment, and the amount of cells collect-
ed for each rank was proportional to its relative abundance in the
library (Supplemental File S1). After FACS, cells of each rank were
immediately grown in 10 mL of LBKG medium at 37°C and 225
rpmovernight. Subsequently plasmids of each rank were extracted
by the Qiagen PlasmidMiniprep Kit. To inspect the FACS purity of
each rank, 5 μL of overnight cultures were inoculated to 2 mL of
LBKG medium incubated at 37°C and 225 rpm. The fluorescence
distribution of each culture was examined by the cell sorter
when its OD reached 0.55–0.65. The FACS purity of a rank was de-
fined as the percentage of 50,000 cells falling in that rank and its
bordering ranks because the latter likely represented phenotypic
variation of individual genotypes rather than sorting errors
(Supplemental Text).

Deep sequencing

The SD genotypes on plasmids were sequenced by the Illumina
HiSeq 2500 system. Preparation of sequencing libraries followed
the Illumina two-step PCR procedure. A 0.3-kb fragment including
the 24-bp 5′ reporter gene, RBS, and the further upstream plasmid
region of the FLfepB, FLarti, and FLdmsC libraries, was amplified by
amplicon PCR using KAPA HiFi DNA polymerase (Roche), one for-
ward primer ILp2, and four reverse primers ILp6, ILp6a, ILp6b, and
ILp6c. Amplicon PCR of the FLarti-Y library was performed in a sim-
ilar manner except for four reverse primers ILp1, ILp1a, ILp1b, and
ILp1c. For each rank, amplicon PCR products were purified by
AMPure XP Beads (Beckman) and then were subjected to index
PCR using KAPA HiFi DNA polymerase and a unique pair of index
primers from theNextera XT Index Kit (Illumina). IndexPCRprod-
ucts of each rank were purified by AMPure XP Beads, and their
DNA concentrations were measured by a Qubit fluorometer
(Thermo Fisher Scientific). Index PCR products of each rank in a
SD library were pooled together in terms of its relative abundance
in that library. This multiplexed sample was subjected to 50-nt
single-read sequencing. Deep sequencing generated about
50,000,000 reads per sort-seq experiment. All of the raw data
passed the FastQC quality control score (Q=25). The amount of
reads in each rank should be proportional to its library abundance
measured by the cell sorter (Supplemental File S1). In cases in
which the library percentage of the former was lower than that
of the latter by 10%, a rank was subjected to resequencing, and
the original and resequencing reads of that rank were merged for
data processing and analysis.

Fitness calculation using sort-seq data

Sequence hard-matching by the Linux grep command removed ir-
relevant or indel-containing reads from raw sequencing data. In-
house scripts (Supplemental File S6) were then executed to extract
the 9-nt SD sequence from each read and count the occurrence of
each genotype in each rank (Sanner 1999; R Core Team2019). One
read count table summarizing the results was generated for each
sort-seq experiment. The read distribution of each genotype across
ranks was used to estimate its fitness. The rank mean, defined as
the averaged rank value of a genotype weighted by its read counts
in each rank, was computed (Eqs. 1 and 2 in Supplemental Text).
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Following identical procedures, the rank means of spike-in SD
variants were computed. Linear regression of the rank means of
spike-in variants and their fitness measured separately by the cell
sorter was performed to generate a standard curve (Supplemental
Table S4). Based on this standard curve, a linear equation con-
verted the rank mean of each genotype to fitness (Eq. 3 in
Supplemental Text). We combined fitness quantified by three
sort-seq experiments with 25 or more reads into a union table
for FLfepB, FLarti, and FLdmsC libraries (Supplemental Files S2–S4).
The fitness of a genotype was reported as the average of one to
three replicate measurements. The fitness of genotypes in FLarti-Y
is available in Supplemental File S5.

Prediction of SD:aSD base pairing and local mRNA folding

SD:aSD base pairing and mRNA folding were predicted by
the Vienna RNA package (Lorenz et al. 2011). Base pairing
between each of the 262,144 9-nt SD genotypes and aSD
(5′-ACCUCCUUA-3′) was predicted by the RNAsubopt program.
SD:aSD base pairing energy (ΔG) was predicted at 37°C with a con-
tribution from dangling ends. For each SD genotype, we accepted
the prediction with the lowest ΔG. Based on the predicted base-
pairing pattern, we calculated the length of the SD:aSD duplex.
We operationally defined the duplex length as the longest base-
pairing region uninterrupted by mismatches for two reasons.
First, the predicted minimal ΔG of SD:aSD base pairing was
−13.0 kcal/mol. Empirically, the RNAsubopt program assigned a
large energy penalty (3∼4 kcal/mol) per internal mismatch such
that the predicted ΔG of a mismatch-containing duplex was quan-
titatively similar to that of the longest uninterrupted base-pairing
region of the same duplex. Second, it was technically difficult to
convert internal mismatches into the measure of the duplex
length. The influence of SD genotypes on mRNA folding was pre-
dicted by the RNAfold program. Unless indicated otherwise, we
used the 60-nt sequence, containing both the 30-nt regions up-
stream of and downstream from the gfp start codon, as the input
and accepted the predicted structure with the lowest ΔG.

Data access

The sequencing data generated in this study have been submitted
to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/
bioproject/) under accession number PRJNA516114.
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