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A growing amount of evidence has suggested that hydrogen sulfide (H
2
S), as a gasotransmitter, is involved in intensive

physiological and pathological processes. More and more research groups have found that H
2
S mediates diverse cellular biological

functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction
between H

2
S and calcium ion channels and transporters, such as L-type calcium channels (LTCC), T-type calcium channels

(TTCC), sodium/calcium exchangers (NCX), transient receptor potential (TRP) channels, 𝛽-adrenergic receptors, and N-methyl-
D-aspartate receptors (NMDAR) in different cells. However, the understanding of the molecular targets and mechanisms is
incomplete. Recently, some research groups demonstrated that H

2
S modulates the activity of calcium ion channels through protein

S-sulfhydration and polysulfide reactions. In this review, we elucidate that H
2
S controls intracellular calcium homeostasis and the

underlying mechanisms.

1. Introduction

Hydrogen sulfide (H
2
S) was thought for hundreds of years

to be a toxic gas that smelled like rotten eggs, but the
gas is now believed to be a molecule involved in inten-
sive physiological and pathological processes [1], such as
protecting the heart against acute myocardial infarction [2,
3] and ischemia/hypoxia injury, regulating blood pressure
[4], mediating smooth-muscle relaxation [5], and inhibiting
insulin release and renin activity [6, 7]. H

2
S, as an endoge-

nous gasotransmitter, can be mainly generated by pyridoxal-
5-phosphate- (PLP-) dependent cystathionine 𝛽-synthase
(CBS) and cystathionine 𝛾-lyase (CSE), which intercon-
vents the sulfuration from intracellular L-methionine and L-
cysteine to produceH

2
S [8]. In addition, 3-mercaptopyruvate

sulfurtransferase (3-MST) and cysteine aminotransferase
(CAT) produce H

2
S from cysteine through the combined

actions of both enzymes [9].

An increasing amount of evidence has demonstrated that
H
2
S regulates cellular biological signaling through modu-

lating calcium ion channels and their related transporters
[10, 11], such as L-type calcium channels (LTCC), T-type cal-
cium channels (TTCC), sodium/calcium exchangers (NCX),
transient receptor potential (TRP), 𝛽-adrenergic receptors,
and NMDA receptors. This review presents the current
research onH

2
S to better understand its regulation of calcium

channels, with a special emphasis on mechanisms.

2. The Regulatory Mechanism of H2S
Interacting with Calcium ion Channels

2.1. Voltage-Dependent Calcium Channels (VDCC). Ca2+
serves as an important second messenger in both excitable
and nonexcitable cells. Voltage-dependent calcium chan-
nels (VDCC), store-operated calcium channels (SOCs), and
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G-protein coupled receptors (GPCRs) are responsible for cal-
cium influx from extracellular fluids. Alterations in intracel-
lular calcium levels trigger physiological responses, including
cardiac muscle contraction, vascular dilatation, hormone
secretion, and neurotransmitter release [12–16].

The family of VDCCs includes L-, T-, N-, and P/Q-
subtypes, which differ in their cellular and subcellular dis-
tributions and functional properties [17, 18]. For example, T-
type calcium channels (TTCCs) are involved in regulating
cellular excitability [19], N and P/Q type channels mediate
fast evoked neurotransmitter release [14], and L-type calcium
channels (LTCCs) mediate excitation-contraction coupling
in the heart and muscles, insulin secretion, and calcium-
dependent gene transcription [20].

LTCCs are integral in excitation/contraction coupling
and are one of the main channels for extracellular Ca2+ influx
in myocardial cells. In 2002, Zhao and Wang first reported
that H

2
S could directly inhibit calcium influx from LTCCs

in smooth-muscle cells [21]. Moreover, in 2009, Sun et al.
further demonstrated that H

2
S, as a novel inhibitor of LTCC,

has negative inotropic effects in rat cardiomyocytes [22]. In
a recent study, Avanzato et al. investigated the role of H

2
S in

regulating VDCCs and the related functional effects on the
cardiomyoblast cell line H9c2. They found that H

2
S inhibits

LTCCs and TTCCs in H9c2. Pretreatment with NaHS (a
donor of H

2
S) prevented cell death via H

2
O
2
through

inhibiting LTCCs. Their results were the first to demonstrate
that H

2
S protects rat cardiomyoblasts against oxidative stress

through inhibition of LTCCs [23]. In addition, Tang et al.
suggested that exogenous and endogenous H

2
S inhibited

pancreatic insulin secretion by inhibiting LTCCs activity.
They confirmed that NaHS reversibly decreased LTCC cur-
rent density in a concentration-dependent manner in CSE
WT pancreatic beta cells. Furthermore, they observed that
DL-propargylglycine (an inhibitor of CSE) increased the
basal LTCC activity in beta cells from CSEWTmice, but not
in pancreatic beta cells from CSE-KO mice. Pancreatic beta
cells from CSE-KO mice displayed a higher LTCCs density
than those from WT mice. These results suggested that a
novel mechanism for regulating insulin secretion was related
to the CSE/H

2
S system, which controlled LTCC activity [24].

Recently, some data showed that exogenous and endoge-
nous H

2
S can modify cystein residues of different proteins

through S-sulfhydration. The –SH from sulfhydryl donor is
transformed to free cysteine sulfhydryl and forms covalent
persulfide (–SSH) [25, 26]. In 2012, Zhang and his coworkers
showed that NaHS inhibited the peak amplitude of the L-type
calcium current in a concentration-dependent manner and
could be partly inhibited by the oxidant sulfhydryl modifier
diamide (DM). They explained that dithiothreitol (DTT), a
reductant that transforms disulfide bridges into sulfhydryl
groups in cysteine-containing proteins, could significantly
reverse NaHS-induced inhibition of calcium current from
LTCCs. Their results suggested that H

2
S inhibited L-type

calcium currents depending on the sulfhydryl group in rat
cardiomyocytes [27] (Figure 1).

TTCCs are classified into three T-type channel subtypes,
Cav3.1, Cav3.2, and Cav3.3. There have been reports about

the T-type channels being activated by H
2
S in neurons [28–

30]. In the pain pathways, Cav3.2 in the peripheral terminals
of nociceptors and dorsal horn spinal neurons appears
to promote peripheral nociception and central nociceptive
sensitization [28]. H

2
S may function as a neuromodulator in

sensory transmission. There is evidence that chemotherapy-
induced neuropathic pain is blocked by ethosuximide, which
is known to block TTCCs. Systemic administration of
dl-propargylglycine and 𝛽-cyanoalanine, irreversible and
reversible inhibitors of CSE, respectively, also abolished
neuropathic pain. Okubo et al. demonstrated that Cav3.2 and
CSE at the protein level are upregulated, which induced a
significant increase in H

2
S level. H

2
S facilitated pain sensa-

tion by targeting Cav3.2 TTCCs. The H
2
S/Cav3.2 pathway

appears to play a role in the maintenance of surgically
evoked neuropathic pain [31]. Intraplantar administration
of NaHS causes mechanical hyperalgesia in rats, an effect
reversed by mibefradil (a T-type Ca2+ channel blocker), and
also enhances membrane currents through the TTCC in
NG 108-15 cells and mouse dorsal root ganglion neurons
[29, 30]. Their data suggested that spinal and peripheral
NaHS/H

2
S facilitates the expression of Cav3.2 TTCCs in the

primary afferent and/or spinal nociceptive neurons, leading
to sensitization of nociceptive processing and hyperalgesia
[31]. Sekiguchi et al. demonstrated that endogenous and
exogenous hydrogen sulfide facilitate T-type calcium channel
currents in Cav3.2-expressing HEK293 cells [32]. In contrast,
Elies et al. reported an inhibitory effect with high doses
of NaHS on Cav3.2-overexpressing HEK cells [33]. Their
data were the first preliminary evidence that H

2
S negatively

modulates endogenously expressed TTCCs in a myoblast cell
line. In spite of the opposite opinion in the effects of NaHS
on TTCCs in different research groups, H

2
S regulating the

activity of TTCC has been confirmed widely. However, most
of the evidence suggests that H

2
S elevates the activities of

TTCCs and increases the amplitudes of T-type Ca2+ currents
in different cell lines.

2.2. 𝛽-Adrenergic Receptors. Cardiac excitation-contraction
coupling is under the direct control of the adrenergic
nervous system. In the heart, the 𝛽-adrenergic receptor
(AR), a G-protein coupled receptor, activates the associ-
ated adenylyl cyclase (AC)-cAMP-protein kinase A (PKA)
pathway [34]. 𝛽-Adrenoceptor-coupled stimulatory G pro-
teins lead to an increased intracellular cAMP level and
stimulate protein kinase A (PKA) to mediate phosphory-
lation of LTCCs and finally increase contractile function
[35–37]. Some reports have observed that H

2
S content in

the heart was significantly reduced in a cardiac ischemia
[38] and overstimulation of the 𝛽-adrenergic system by
isoproterenol (ISO, 𝛽-adrenoceptor agonist) models [39].
Yong and his coworkers revealed that H

2
S may negatively

modulate 𝛽-adrenoceptor function via inhibiting adenylyl
cyclase activity [40]. They found that ISO (10−9–10−6M),
in a concentration-dependent manner, increased the twitch
amplitude of ventricular myocytes, which was attenuated by
NaHS (10−5–10−3M) in a dose-dependentmanner.The ampli-
tudes and maximal velocities (±dL/dt) for myocyte twitch
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Figure 1: Hydrogen sulfide regulating L-type calcium channels by S-sulfhydration. LTCC consists of a pore-forming 𝛼 subunit which contains
four homologous domains (I–IV), each with six transmembrane segments (S1–S6). The S1–S4 segments are the voltage sensor, and the S5-S6
segments form the channel pore and selectivity filter. The cartoon demonstrated that H

2
S modifies the –SH from sulfhydryl donor which is

transformed to free cysteine sulfhydryl and forms covalent persulfide (–SSH).

and EI-[Ca2+]i transient amplitudes were enhanced by ISO,
forskolin (an adenylyl cyclase activator), 8-bromoadenosine-
3,5-cyclic monophosphate (an activator of protein kinase
A), and Bay K-8644 (a selective LTCC agonist). Administra-
tion of NaHS (100 𝜇M) significantly attenuated the effects of
only ISO and forskolin. Moreover, NaHS reversed the ISO-
induced cAMP increase and forskolin-stimulated adenylyl
cyclase activity.Thus, they postulated thatH

2
Smaynegatively

regulate𝛽-AR function through inhibition of the cAMP/PKA
pathway. In addition, some studies found that the plasma
concentration of H

2
S in patients with coronary heart disease

[41] and in the setting of ISO overstimulation significantly
decreased endogenous H

2
S production, which implies that

a reduced H
2
S level caused by ischemia and 𝛽-adrenoceptor

overstimulation may result in impairment of the negative
modulation of H

2
S on the 𝛽-adrenoceptor system and hence

calcium overload.

2.3. Sodium Calcium Exchanger (NCX). The sodium calcium
exchanger (NCX) is one of the key players in the regula-
tion of intracellular calcium homeostasis. In a physiological
condition, NCX, a nonselective cation channel, may induce
the influx of 3 Na+ into cells in exchange for the efflux
of 1 Ca2+ [42]. However, in pathological conditions, such

as ischemia/reperfusion, hypoxia, and heart failure, NCX
function could be reversed, with one Ca2+ moving inward
and three molecules of Na+ going out of the cell [43]. H

2
S

may stimulate Ca2+ influx into endothelial cells (ECs) by
recruiting the reverse-mode for theNCX [44–46]. To confirm
the role of NCX in NaHS-dependent Ca2+ signaling, KB-
R 7943 (20𝜇M), a selective inhibitor of the reverse-mode,
was used in the experiment. Moccia and his coworkers’ data
showed that NaHS failed to elicit a [Ca2+]i elevation in ECs
pretreated with KB-R 7943. In addition, the amplitude of
the Ca2+ response was significantly lower in ECs activated
by the H

2
S donor in the presence of KB-R 7943. Taken

together, these findings hinted at NCX as a key mediator
of NaHS-elicited Ca2+ inflow in rat aortic ECs. To further
determine the effect of sulfide signaling on the NCX, sev-
eral studies investigated NCX expression and function in
HeLa cells. They observed increased levels of NCX1 mRNA,
protein, and activity after 24 h of GYY4137 (morpholin-4-
ium-4-methoxyphenyl(morpholino) phosphinodithioate, a
slow releasing H

2
S donor) treatment. This increase was

accompanied by elevated cAMP due to GYY4137 treatment,
which was completely abolished when NCX1 was silenced.
An increased cAMP level would point to upregulation of
the 𝛽-adrenergic receptors. Thus, Cheng et al. investigated
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the relationship of 𝛽-adrenergic receptors with the NCX1
in the presence and/or absence of H

2
S and determined the

physiological importance of this potential communication
using GYY4137 [47]. Indeed, GYY4137 increased expression
of the 𝛽1 and 𝛽3 (but not 𝛽2) adrenergic receptors, suggesting
that sulfide signaling played a role in regulating theNCX1 and
𝛽1 and 𝛽3 adrenergic receptors and their colocalization.

2.4. Transient Receptor Potential (TRP) Channels. A growing
body evidence has shown that H

2
S and neuronal excitation

induce calcium ion influx in astrocytes, and the interaction
between neurons and astrocytes regulates synaptic activity
[48–50]. TRP channels were found to mediate the responses
to H
2
S in the urinary bladder and sensory neurons [51].

Although the effects of H
2
S on transient receptor poten-

tial (TRP) channels are not completely clear, Kimura et
al. demonstrated that polysulfides of H

2
S-derived signaling

molecules stimulated TRP channels in the brain [52]. They
suggested that H

2
S induced Ca2+ influx in astrocytes through

generating polysulfides of TRP. They administered sodium
polysulfides, Na

2
S
3
, in their experiments, which induced

Ca2+ influx in a concentration-dependent manner. They
also confirmed that this astrocyte response to H

2
S was

suppressed by the TRP channel blockers La3+ and Gd3+.
To further reveal the mechanism for Na

2
S
3
-induced TRP

channel opening, the TRPA1 channel inhibitors HC-030031
and AP-18 and TRPA1 siRNA were used. Their data showed
that, in the presence of the inhibitors or TRPA1 siRNA,
Na
2
S
3
could not induce Ca2+ influx through the TRPA1

channel. Liu et al. showed that H
2
Smaintainedmesenchymal

stem cell function via regulation of Ca2+ channel sulfhy-
dration [53]. They found that NaHS-treated bone marrow
mesenchymal stem cells (BMMSCs) inducedCa2+ influxwith
a limited contribution from intracellular Ca2+ storage. They
also found that DTT, by reducing the disulfide bonds in
proteins and increasing the number of residual sulfhydryl
proteins, elevated NaHS-induced Ca2+ influx in BMMSCs.
Diamide, by reducing the number of sulfhydryls and 2-
sulfonatoe-methanethiosulfonate (MTSES), a nonpermeable
reagent able to reduce free sulfhydryls only on the outer
cytomembrane, could reduce NaHS-induced Ca2+ influx in
BMMSCs. These results revealed that free sulfhydryls affect
NaHS-induced Ca2+ influx. The above results suggested that
polysulfides, as H

2
S-derived bioactive molecules, stimulate

TRP channels, providing a new molecular mechanism for
sulfide-induced signaling.

2.5. N-Methyl-D-aspartate Receptors (NMDARs). N-Methyl-
D-aspartate receptors (NMDARs) form glutamate-gated ion
channels that are widely expressed in the central nervous
system and are highly permeable to calcium ions, which
are essential for regulating synaptogenesis, use-dependent
synaptic remodeling, and long-termplastic changes in synap-
tic strength [54]. H

2
S, as a neuromodulator, elevates the

activity of N-methyl-D-aspartate (NMDA) receptors to facil-
itate the induction of hippocampal long-term potentiation
(LTP), a synaptic model of memory formation [48, 55].

Nagai et al. demonstrated that H
2
S enhances the neuronal

response to glutamate and induces Ca2+ waves in astro-
cytes [49]. Glial cells communicate with surrounding cells
by increasing the intracellular concentration of Ca2+ and
propagating the signal as Ca2+ waves that occur in glia, and
neurons show Ca2+ oscillations and intracellular Ca2+ waves.
Because astrocytes elicit intracellular Ca2+ waves by electrical
stimulation and application of NMDA in mixed cultures of
neurons and astrocytes, astrocytes have been suggested to
respond directly to a neurotransmitter released from neurons
excited by NMDA or electrical stimulation [56–59]. La2+

and Gd3+block Ca2+ waves and inhibit Ca2+ channels; La2+
and Gd3+may inhibit the exocytosis of glutamate or some
factor from neurons when neurons are stimulated byNMDA.
However, La2+ and Gd3+block H

2
S-initiated waves in pure

astrocyte culture, showing that Ca2+ is most likely involved
in the propagation step. H

2
S released in response to neuronal

excitation may activate Ca2+ channels to induce Ca2+ waves
in astrocytes. H

2
S may therefore mediate signals between

neurons and glia. H
2
S is released from neurons or glia by

neuronal excitation and increases the intracellular concen-
tration of Ca2+ by activating Ca2+ channels in astrocytes
and to a lesser extent causes release from intracellular Ca2+
stores. An elevated intracellular Ca2+ triggers the induction
of Ca2+ waves that propagate to the neighboring astrocytes
[60–63]. H

2
S enhances the activity of NMDA receptors by

reducing the cysteine disulfide bond in the hinge region of the
ligand-binding domain of NMDA receptors, and polysulfides
further enhance this activity by adding bound sulfane sulfur
to the receptors. Polysulfides activate the TRPA1 channels
in astrocytes to induce Ca2+ influx, which facilitates the
release of the gliotransmitter D-serine to enhance the activity
of NMDA receptors. By these integrated mechanisms, H

2
S

along with polysulfides may facilitate the induction of LTP
[64].

3. Conclusions and Perspective

An increasing amount of evidence has clearly demonstrated
that H

2
S is associated with relevant biological processes, such

as cardiac systolic function, sensory transduction, antiapop-
totic function, and neuroprotection [65]. These functions are
closely related toH

2
S regulating various calcium ion channels

and transporters [66]. Many studies cited in this review
investigated the fact that polysulfides of calcium ion channels,
which are modified by H

2
S, have been found to elevate the

activity of TRP, TTCC, and NMDARs and to inhibit LTCC
through the mechanism of sulfhydration. Furthermore, H

2
S

could upregulate the activities of the NCX1 and 𝛽1 and 𝛽3
adrenergic receptors and their colocalization. Altered effects
of H
2
S on calcium ion channels under different pathophysi-

ological conditions are being investigated. Extensive research
on the mechanisms of H

2
S modulation of calcium signaling

will provide new insights into the physiological function of
H
2
S.
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