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Abstract: In order to avoid erroneous braking responses when vehicle drivers are faced with a
stressful setting, a K-order propagation number algorithm–Feature selection–Classification System (KFCS)
is developed in this paper to detect emergency braking intentions in simulated driving scenarios
using electroencephalography (EEG) signals. Two approaches are employed in KFCS to extract EEG
features and to improve classification performance: the K-Order Propagation Number Algorithm
is the former, calculating the node importance from the perspective of brain networks as a novel
approach; the latter uses a set of feature extraction algorithms to adjust the thresholds. Working
with the data collected from seven subjects, the highest classification accuracy of a single trial can
reach over 90%, with an overall accuracy of 83%. Furthermore, this paper attempts to investigate
the mechanisms of brain activeness under two scenarios by using a topography technique at the
sensor-data level. The results suggest that the active regions at two states is different, which leaves
further exploration for future investigations.

Keywords: brain-computer interface technology (BCI); electroencephalogram (EEG); braking inten-
tion detect; brain network; K-order structure entropy; pattern recognition

1. Introduction

Approximately 3700 traffic participants are killed by road accidents in the world
everyday [1]. Among all of the potential causes, mistakes are commonly made once human
beings are in stressed physical settings. For instance, a driver could step on the accelerator
incorrectly when an emergency happens in front of the moving-fast vehicle when his
original intention was to hit the braking pedal. This erroneous action can cause severe
consequences such as lethal injuries or even mortalities.

Research studies have presented that it is feasible to identify emergency braking inten-
tions by investigating driver’s Electroencephalogram (EEG). For example, Haufe et al. [2]
asked subjects to maneuver simulated driving equipment and drew the conclusion that the
EEG signal at emergency cases can be detected earlier than muscular actions; the former is
about 130 ms faster than the latter, and this leading duration is equivalent to 3.5 m reduced
at the speed of 100 kmph.

The prevailing detection methods generally focus on EEG’s frequency-domain and
time-domain characters. The Fourier families, for example, Discrete-time Fourier transform
(DFT) and Discrete Wavelet Transformation (DWT), are commonly used. Teng et al. [3]
analyzed five frequency bands, and sequential forward floating searches (SFFS) were
deployed as a fresh approach to discover the optimal feature sets. As a result, the accuracy

Brain Sci. 2021, 11, 1424. https://doi.org/10.3390/brainsci11111424 https://www.mdpi.com/journal/brainsci

https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://doi.org/10.3390/brainsci11111424
https://doi.org/10.3390/brainsci11111424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/brainsci11111424
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci11111424?type=check_update&version=2


Brain Sci. 2021, 11, 1424 2 of 15

of detection can be greater than 90%. Nonetheless, the experiment paradigm they designed
took only one special scenario into account, which applied a sudden crossing as the
emergency state when the automobile moved at the speed of 108 kmph.

Similarly, Nguyen and Chung [4] studied five bands’ power spectra by using FFT
at frequency-domain and used auto-regressive (AR) to process time sequences at the
time-domain, which resulted in 91% accuracy and 600 ms outstripping under emergency
scenarios. However, it is regrettable that their driving scenarios are insipid as well: missing
blended data between urban and rural area and nighttime and daytime. On the other hand,
with the exception of studying braking movements on straight roads, Guo et al. [5] also
explored scenarios on curved roads. Moreover, Independent components analysis (ICA)
and power spectral density (PSD) were acquired to pre-treat and process EEG signals
separately.

In addition to capturing EEG features with traditional time and frequency perspectives,
a brain network angle is on the rise as well [6]. This shows that our brain is made up of
hundreds of billions of neurons for which their electrical interactions formed a complex
network [7]. Generally, there are two categorized approaches to model this giant, i.e.,
structural and functional brain networks. The former is related to an anatomical field by
using techniques such as fMRI, and the latter is measured by nodes’ connection defined
by communications within electrical electrodes [8]. Meanwhile, three steps are necessary
to construct the functional model: (1) defining network nodes and edges; (2) computing
the connectivity between edges to generate adjacency matrix; and (3) computing complex
network parameters. Each step is important for gaining results [9]. For the adjacency
matrix, there are two forms, which are weighted and unweighted. In the former, any
diagonal elements in the matrix are nonzero, while the latter can also refer to 0–1, i.e.,
binarized network.

Currently, a number of studies using a brain network to capture EEG features have
been carried out. Firstly, functional brain network methods are trending in the field
of treating neurological diseases, for instance, Ahmadi et al. [10] used functional net-
work parameters to classify epilepsy and psychogenic non-epileptic seizures subjects, and
Fang et al. [11] investigated glioma-related epilepsy patients by using network param-
eters as well. Secondly, beyond neuroscience, the practice of network methods can be
observed in other fields such as educational assessment and cognitive studies. Specifi-
cally, Chang et al. [12] recognized strangers and acquaintance based on brain network
parameters, and 90% accuracy rate in the delta band was realized. Wang et al. [13] de-
signed a lie testing experiment and mainly focused on parameters that can character-
ize small-world properties, which is considered to better model neural systems [14–17].
Thirdly, although a weighted brain network can preserve inclusive information about
the connectivity between electrodes, it significantly increases the complexity of calcu-
lating EEG features, and it may contain a large amount of information redundancy,
which is the so called low signal-to-noise ratio [18]. Thus, finding an appropriate thresh-
old value to binarize the weighted brain network is another important issue in the
task of classifying EEG signals [19–22]. Nonetheless, some studies discussed thresh-
old value selection strategies for binarizing weighted networks, while most did not.
Ahmadi et al. [23]’s approach paralleled former researchers in that both time-domain
and brain network features were treated as input to classify alcoholism; however, the pro-
cess of choosing threshold values was empirical. Ai et al. [24] used a feature fusion scheme,
including network parameter features, to classify four patterns in a motor imaginary trial.
However, the procedures of choosing the threshold values and the applications of the brain
network in the field of safety driving are generally lacking.

Therefore, in order to improve the imperfections of simulated driving environments
in previous studies, this paper will use a more dynamic, true-to-life and comprehensive
simulating driving scenario. Additionally, to fill out the gap in the field of using brain
network features to classify EEG signals, this paper applies brain network features for EEG
braking signal classification, and an original method, i.e., K-Order Propagation Number
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Algorithm, proposed by our team is used to extract network features [25,26]. This method
can measure the heterogeneity and node importance of networks under various network
scales, i.e., it not only considers its local nodes but also takes into account remote ones. Then,
the features are sent to a Support Vector Machine (SVM) in order to obtain results. The
highest classification accuracy rate can be achieved above 90% with the most appropriate
threshold value, and the overall accuracy rate is around 83%.

This paper is arranged as follows: Section 2 introduces the experiment details.
Section 3 explicates the classification of system architecture and the methods that are
used in this paper, particularly the K-Order Propagation Number Algorithm. Section 4
demonstrates the results and analysis. Conclusions and discussions are listed in Section 5.

2. Experiment

Due to the uneasiness of designing experiments and obtaining EEG data in authentic
driving settings, e.g., our EEG cap and amplifier are rather unwieldy than compared
to handy ones in obtaining effective EEG signals, we are driven to test the validity and
performance of K-Order Propagation Number Algorithm in primarily simulated driving
scenarios. Once the feasibility of the algorithm has been proven, then we can further devise
more sophisticated experiment schemes using more portable equipment in real settings.
Hence, we first explicate our experiment equipment.

2.1. Experiment Equipment: Software and Hardware

A driving simulation game developed by SCS Software Inc. (Prague, Czech Republic),
named European Truck Simulator 2, was used as the driving simulation software in the
experiment. Unlike previous studies that only have a few essential road elements such
as pedestrians and crossing vehicles, in this simulation software, subjects need to drive a
truck to complete the task of cargo transportation. Subjects can select more than 60 cities as
the starting location and several transportation routes that are linked with it. The driving
setting generally includes two scenarios: city roads and highways. In each scenario, there
will be situations such as randomly generated speed limit, traffic lights, day or night time
backgrounds, sunny to rainy days and so on, which considerably increased the veracity of
the driving experience.

The driving simulator uses a Logitech G29 driving suite, which includes a steering
wheel and pedal device. The EEG signal acquisition equipment is the 64-channel signal
amplifier, matched EEG cap and Curry software, version 7.0 developed by Compumedics
Neuroscan (Charlotte, NC, USA) (Figure 1).

2.2. Experiment Paradigm

At the beginning of the experiment, the subjects focused on a reddish cross on a screen
and retained it for 3 s, as shown in Figure 1. Next, they began to start a truck to perform
formal driving from the starting location, usually a warehouse. Then, the subjects drove to
the destination indicated by a map.

When the vehicle passed the urban road, traffic flow was intensive, and red traffic
lights occurred frequently; thus, the subjects had high levels of vigilance. After entering the
highways, however, due to the long route and fewer signal lights, the subjects’ vigilance
level decreased, and they would feel fatigued after a long period of driving, which increased
the possibility of false responses when an emergency event happened.

The emergency braking actions happened at two main circumstances: red lights in
front of the vehicle at crossroads and overtaking vehicles appearing from behind. When
the subject performed emergency braking, the experiment assistant artificially marked
it as a braking event, and this EEG segment lasted for 1 s. The interval between two
emergency incidences is the normal driving period T; the experiment assistant also needs
to take 1 s signal sample from this period as a parallel to the braking EEG samples. This
normal-braking-normal cycle repeated to ensure one trial can obtain copious samples of
normal and braking states.



Brain Sci. 2021, 11, 1424 4 of 15

Nonetheless, given that the completion of a cargo transportation task would some-
times last more than 40 min due to the software program settings, this could add heavy
mental burdens to the subject. For the sake of subjects’ focus ability, once a single simula-
tion driving trial exceed 40 min, the experiment assistant records that trial as a completed
task. However, if one cargo transportation task lasts far less than 30 min, say 10 or 20 min,
the subject has to restart another task until his or her driving duration reached at least
30 min. Then, the subject looked at the reddish cross on the screen for 3 s again, and one
trial is completed.

Normal Driving Period

Emergent Accident 1st

Normal Driving Period

Emergent Accident 2nd

3s

T

1s

T´

1s

3s

Preparation

Pretreat

𝐴 B
 EEG signals

(a) Data collection equipment

𝐶

𝐷

𝐸

(b) Preparation

𝐺

(c)Raw signals

𝐻

(d) Pretreating

Emergent Accident ith

The end of experiment

The start of experiment

Time

T´́

T!!!

1s

𝐹

Figure 1. Experiment paradigm. The reddish diagonal line represents a comprehensive work flow of one experiment,
including firstly the preparation blocks: (a) data collection equipment and (b) experiment preparation. Then, the formal
experiment begins, and the subject drive at two states, i.e., braking and normal driving. When the experiment ends,
technicians download (c) raw EEG signal data and employ algorithms to (d) pre-treat the data for subsequent use.

2.3. Experiment Preparation

Before the formal start of the experiment, the experiment assistant stated detailed
experiment procedures to the subjects and asked them whether they agree with the content.
Based on their willingness, they decided whether to sign the informed consent sheet or not.
Each subject in our experiment is assured that they agreed with the full terms listed on the
informed consent sheet.

To be specific, subjects will understand the gist of the preparation and formal exper-
iment procedures they are involved in. These main points are listed as follows: (1) All
subjects are required to concentrate on the driving task completely, and all scenes as well as
emergency events will occur arbitrarily, which strengthens the validity of the final results.
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(2) After the subjects are completely prepared, the experiment assistants will put on the
EEG cap and prepare the conductive paste for gluing in order to guarantee the resistance of
64 channels that are low enough to collect serviceable EEG signals. (3) To become familiar
with the driving environment and equipment, subjects needed to maneuver the simulation
software twice before the formal trial. However, to avoid extra tiredness, this adaptation
has to be compelted at least 20 min earlier than the formal driving task.

After subjects understood and signed the informed consent sheet, the experiment assis-
tants will begin to help subjects to execute the preparation procedure as mentioned above.

2.4. Subject Information Outline

We invited four male and three female subjects to participate in the experiments (with
an age range from 19 to 23; the average age is 21). All subjects are equipped with skills in
operating a vehicle with manual or automatic clutch and are in good health and have no
ophthalmic deficiency. They all have right-handed preferences.

3. Methods
3.1. KFCS Architecture

An original K-order propagation number algorithm–Feature selection–Classification System
(KFCS) is constructed to detect emergency braking intentions, and it is divided into two
modules, as shown in Figure 2.

The first module is used to forward classify pretreated EEG signals, that is, generating
SVM results using node importance features. The general descriptions of blocks in the
first module are enumerated as follows. (a) The signal preprocessing block is used to
pre-process raw EEG signals to obtain classifiable data. (b) This block is used to construct
a brain network by using Cross-Sample Entropy (CsEn) algorithm, which is employed
to compute the connectivity of each pairwise electrodes in order to obtain adjacency
matrix A of the brain network. (c) Given that A is a weighted network, this block uses
adaptive threshold values that are determined by traversing to binarize A. (d) The K-Order
Propagation Number Algorithm block is a novel method proposed by our team and is used
to extract features of brain networks. (e) The SVM classification algorithm block.

The second module’s function is to select threshold values with respect to different
subjects that could produce the best classification results: (f) The K-fold Cross Validation
method is used to calculate the overall classification accuracy at each threshold, and the
result is used to select the appropriate binarization threshold. (g) The K-nearest Neighbor
(KNN) algorithm. (h) The Leave-one-out Cross Validation (LOOCV) algorithm.

For the sake of clarification, the first forward module has to be run at least once before
the second module plays its part, and two modules do not work in parallel; instead, the
second one is functions more similarly to a sub-module relative to the first one, and it helps
the first module in increasing the total classification accuracy rate.

3.2. Raw EEG Data Preprocessing

Given the fact that the strength of the EEG signal is very weak that its magnitude
fluctuation range will normally not exceed tens of microvolts, which is easily submerged by
various noises and artifacts [27], the purpose of preprocessing is, therefore, to (a) eliminate
artifacts, which consist of unrecognizable segment caused by muscle movement. Moreover,
Independent Component Analysis (ICA) is used here [28] to (b) cancel out the frequency
component, including unusually high and low frequency bands. Normally, the frequency
range of noise is considered to be within the range of 50–60 Hz; in our experiment, 0.5–45 Hz
is considered to be the effective range of EEG signals.
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Figure 2. KFCS architecture: two modules. The first one is the Forward classification module, which is the main module. The
second Feature selection module adjusts the threshold value in order to improve classification results in the first module.
(a) Signal preprocessing block, which is used to preprocess raw EEG signals. (b) Cross-Sample Entropy (CsEn) algorithm is
used to construct brain network. Block (c) is used to binarize weighted network obtained by CsEn. (d) K-Order Propagation
Number Algorithm is employed to extract brain network features. (e) Support Vector Machine algorithm is the classifier.
(f) K-fold Cross Validation method is used to calculate the overall classification accuracy and select the appropriate
threshold. (g) K-nearest Neighbor (KNN) algorithm and (h) Leave-one-out Cross Validation (LOOCV) algorithm are used
to do feature selection. X(t) is raw EEG data sequences generated from different sensor channels; X

′
(t) usable EEG data

after preprocessing; A is weighted network adjacency matrix calculated by using CsEn algorithm; A
′

is binarized (0–1)
matrix; f is the feature vector computed by using K-Order Propagation Number Algorithm; accuracy% is the classification
accuracy rate measured in percentile.

3.3. Construct Brain Network Using Cross Sample Entropy

Currently, there are many effective signal processing approaches for converting physi-
ological micro electrical activity into local cortical connections, for instance, Phase locking
value (PLV) [29], Granger Causality, Cross Approximate Entropy (CsApEn) and Cross
Sample Entropy (CsEn) [30].

CsEn is employed in this paper to calculate the quantity of connection between two
electrodes because of its good noise cancellation performance and relatively high accuracy
results with respect to relatively less EEG data.

The CsEn is defined as follows:

Cross_SampleEntropy(π, r) =
−ln(Wm(dt)(x(t)||y(t)))

Zm(dt)(x(t)||y(t)) (1)



Brain Sci. 2021, 11, 1424 7 of 15

where π is the feature dimension, r is the distance threshold, x(t) and y(t) are different time
sequences, dt is the given distance threshold and Wm and Zm are two reference parameters.
The formula of CsEn determines that the brain network generated by each sample sequence
is undirected and weighted; however, in order to reduce computational complexity, the
weighted connectivity network has to be binarized.

3.4. Binarize Weighted Brain Network

After obtaining connective measuring matrix, a threshold value Tri is introduced to
binarize the matrix in order to obtain an unweighted and undirected brain network; the
sparsity of the network is largely affected by Tri: the greater the value, the stricter it is with
respect to forming a connection between two channels mathematically and vice versa. The
ranges of different Tri under various subjects are determined by the min-max values in the
CsEn matrices; then, step size is settled based on the tradeoff between low computational
complexity and better result accuracy.

Each subject’s brake and non-brake classification accuracies under different threshold
Tri are given by SVM, and the highest accuracy with its corresponding Tri can be obtained
by ranking. However, various subjects’ accuracy rate and corresponding Tri are of great
inconsistency; therefore, extra work had to be performed in order to guarantee robust
methods, that is, the feature selection module is about to play its part and will be provided
in detail in Section 3.6. Before coming into Section 3.6, however, as introduced above,
the forward classification module has to function independently at least once; thus, the
next section introduces a newly developed approach to extract features from a network
perspective.

3.5. Extract EEG Features Using K-Order Propagation Number Algorithm

The K-Order Propagation Number Algorithm is a novel method proposed by our team,
and it is used to compute the node importance feature of a complex network. One remark,
however, is that the K-order Structure Entropy that was first introduced by Huang et al. [25]
and then Tang et al. [26] was combined with Weighted Ranking algorithms in order to
derive this K-Order Propagation Number Algorithm. The inspiration of this algorithm
is from the problem of modeling infectious disease propagation, which is mentioned as
follows.

Modelling the propagation of infectious disease is a classic problem, but it is still of
great pragmatic significance. Every outbreak of infectious disease has profound impacts on
human society, such as the transmission of cholera in London in 1849 and the COVID-19
global pandemic [31,32]. Various methods have been employed to model the mechanism
of infectious diseases propagation, such as classical SIR model and its improved versions
based on coupled differential equations; statistical model and computational simulation
approaches utilizing the power of modern computers and vast amount of data distribution;
and network perspective models based on node-edge topological analysis, which is the
main focus in this paper [33].

Considering the individual differences of propagation ability in the transmission
model of infectious diseases and simultaneously viewing each infected biological entity,
say a person, as a node in the network and this person’s propagation ability as the step
size K, i.e., the population can be infected by that patient in one unit time, then each node’s
relative importance is obtained by calculating information entropy of all Ks, with each
node’s step size K varying. Consequently, when combining all nodes’ relative importance,
the heterogeneity of the network can be measured. Intuitively, if all nodes’ importance
parameters are have low variance distribution, then there is no eminent node in the network;
as a result, we cannot say that this network is of great heterogeneity and vice versa.

Compared with other methods that measure the heterogeneity of networks, such as
DD entropy and Wu entropy, this method has apparent superior advantages in that it can
more precisely describe the communication characteristics of a network [25]. Moreover,
when using a deliberate attack scheme to destroy a network, the K-Order Propagation
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Number Algorithm can make a network at a low communication efficiency state operate
faster than other approaches [26]. However, as mentioned before, the K-Order Propagation
Number Algorithm can only be operated under unweighted and undirected networks.

The steps to derive K-Order Propagation Number Algorithm are explained as follows:

(1) Computing brain network adjacency matrix: Let each channel be a node vi . Based on
the connectivity parameter eij between two channels calculated in the previous section,
i.e., CsEn, the weighted network G(V, E) is given, where V = {v1, v2, v3, . . . , v64} , 64
nodes in total. In E = {e11, e12, . . . , eij} , eij denotes the edge between vi and vj. A is
the weighted adjacency matrix of the network.

(2) Defining the K-order neighbourhood number: In the brain network, the number of nodes that

a particular node vi can reach under the step size K is NK
vi

and NK
vi
=

n

∑
i=1

I(lij ≤ K) + 1,

where lij denotes the shortest path between two nodes vi and vj; n = 64 in this paper.
When lij ≤ K , the indication function is I(·) = 0; otherwise, it is I(·) = 1. With the
propagation step size K, if the number of nodes that vi can reach is higher than vj,
then we have reason to believe that the influence of vi is greater than vj, i.e., vi is
more important.

(3) Derivation of the K-Order Structure Entropy formula: By combining the K-order neigh-
borhood number NK

vi
with the information entropy formula, the K-Order Structure

Entropy formula can be derived as follows:

HK = −
n

∑
i=1

NK
vi

n
∑

j=1
NK

vj

log

 NK
vi

n
∑

j=1
NK

vj

, K ∈ {0, 1, . . . , d} (2)

where d is the diameter of the network, i.e., the number of nodes that comprises the
longest route in the network.

(4) Derivation of K-Order Propagation Number Algorithm: The entropy values HKof node
vi under all step sizes K are comprehensively computed; then, they are normalized
and weighted in order to obtain the node importance parameter Qvi of vi:

Qvi =
d

∑
K=0

cK · SK
vi

(3)

where SK
vi

is the normalized result of NK
vi

, and cK is the weighted coefficient, which
employs a mathematical treatment to focus more on K moments when there exist
great node importance differences and can downplay the specific K moment when
the node importance difference is small. It is defined by the following:

SK
vi
=

NK
vi
−min(NK)

max(NK)−min(NK)
, NK = {NK

v1 , NK
v2 , · · · , NK

vn } (4)

and the following.

cK = 1− HK −min(H)

max(H)−min(H)
, H = {H0, H1, · · ·, Hd} (5)

(5) The feature vector f is evaluated by sorting all nodes’ importance parameters
Q = {Qv1 , Qv2 , . . . , Qvn}, n = 64. Repeat the above steps for the brain network’s
adjacency matrix at each sample moment (brake or non-brake instance), and then all
the feature vectors f1×64 of one trial (a 30–40 min simulated driving) can be calculated.
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3.6. Feature Selection Module

To improve KFCS’s robustness, that is, we hope to find a threshold value that can
ensure that all subjects can have relatively high classification accuracy rate, in this paper,
this value is termed as the General Optimal Threshold Value (GOTV). After the first-round of
operations by the forward classification module, the 10-fold cross-validation method [34] is
used to compute this GOTV. As a result, the threshold value adaptive to one subject can be
easily found based on GOTV. Therefore, the classification time could be greatly saved for
developing a personalized brake intention detection system.

Meanwhile, by considering 64 channels as nodes in our paper, they are of higher
feature dimensions, and with small sample sets, a larger feature dimension could worsen
the result [35]. Thus, the number of nodes that is used to extract features should be reduced
as much as possible but without sacrificing high classification rate.

K-nearest Neighbor (KNN) and Leave-one-out Cross Validation LOOCV are employed
here to select features. The main idea of KNN is that each feature can be represented by its
k-nearest neighborhood feature, i.e., grouping a series of regional nodes as a feature set
Mi, i ∈ {1, 2, 3, . . . , 64} [36]. Then, the core node vc is selected from different feature sets by
using LOOCV [37]. Thus, in the latter rounds of SVM classification, these core nodes can
substitute the original 64 nodes.

4. Result Analysis

In this experiment, approximately 400 braking samples were collected through all
subjects, i.e., 400 one-second EEG braking signal segments and another 400 normal driving
samples as counterpart.

4.1. CsEn Analysis

By analyzing all normalized CsEn adjacency matrices of all subjects corresponding
with two driving states, a great difference can be observed in the matrix diagrams; that is,
the entropy value during the braking state is lower than the normal driving state. Since
the lower the entropy value, the stronger the correlation between two channels [30], this
means that, generally, the brain activity in the particular regions where the subject was
performing a braking action is stronger. We extracted nearly 50% CsEn samples of each of
the seven subjects at two driving states and normalized the values of each matrix point
after averaging them; the CsEn matrices of the two states at group level are shown in
Figure 3. After normalization, the mean values of CsEn matrix at two states are 0.8395 in
the normal driving state and 0.7819 during the braking condition, respectively.

The mean CsEn values of all seven subjects under two driving states are shown
in Figure 4. The CsEn values in normal driving condition are greater than those in the
emergency braking condition as a whole. The overall mean CsEn value of normal driving
state is 0.975273, and for emergency braking states, it is 0.933746.

4.2. Node Importance Feature and Explanation

Similarly, by generating topography graphs of brain connectivity density network of
all EEG samples under various threshold values, a notable difference is displayed between
two driving states. We randomly chose two EEG samples with respect to each driving
state of subject No.6, as shown in Figure 5 for comparison. We used Z-score to measure
the deviation of the threshold value from the average level. At each state, brain network
connections corresponding to 3 Z-scores were presented, which are Z = 1, Z = 1.5 and
Z = 2. When Z-score varies from a small value to a larger one, the threshold value increases
from the small level to a high level accordingly. Therefore, as shown in the Figure 5, under
a small threshold (a small Z-score), there are more edges in the brain network. At larger
thresholds (larger Z-score), the network becomes sparser, reflecting where the brain is
active at a given state (at the sensor-level).
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Figure 3. Two CsEn adjacency matrices generated by a group of sampled data with mean CsEn value after normalization
under two driving states. CsEn matrix diagram of sampled group data at normal driving condition is shown on the left
hand side; CsEn matrix diagram of sampled group data at braking condition is shown on the right hand side. The greater
the CsEn value, the lesser the correlation degree between two time series and vice versa [30]. The mean CsEn value of this
group of sampled data at braking states is lower than the normal driving state, which indicates that brain activities are
generally more intense at braking states in these two samples.

Figure 4. Seven subjects’ brain network mean CsEn values between braking and normal driving states. The overall mean
CsEn value of all 7 subjects at normal driving states is greater than at braking states; the values for normal driving and
braking state are 0.975273 and 0.933746, respectively. Moreover, each subject’s general mean CsEn value at normal states
was greater than at braking states as well, which shows good consistency.
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For subject No.6, the most intensively connected brain nodes during braking states
were generally located in the right occipital lobe region, an area known to be associated
with vision, image recognition and perception [38]. The brain nodes with the highest
connectivity during periods of normal driving were generally positioned at the junction
between the left occipital lobe and the left parietal lobe regions. The function of the left
occipital lobe is thought to be related to muscle and skin sensation, while most unconscious
movements can be attributed to parietal lobe regions [38].

（a）Z-score of 1 

（b）Z-score of 1.5 

（c）Z-score of 2 

（d）Z-score of 1 

（e）Z-score of 1.5 

（f）Z-score of 2

Figure 5. Brain network connectivity density of subject No.6 changed with the variation of threshold
during normal driving state (a–c), and the density changed with the variation of threshold during
the braking state (d–f).

A possible explanation can be used to explain the mechanism of uneven distribution of
the most intensive connection nodes. Body movements controlled by the brain are mainly
divided into unconscious and conscious. Unconscious movements are those acts that do
not require much awareness; most of acts in our daily life are unconscious, such as blinking.
On the other hand, movements requiring ’high-level’ brain involvement are categorized as
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conscious, for example, taking water from a cup requires central nerves system to receive
and send signals. Moreover, conscious acts can transform into unconscious acts by massive
training [39].

Therefore, when the subject is at a normal driving state, several conscious acts such
as holding the acceleration peddle transformed into unconscious acts, and parietal lobe
regions are responsible for it. However, in both driving conditions, emergency braking acts
particularly required more visual attentions; as a result, the left occipital lobe region of the
subject is somehow active.

4.3. Classification Result Analysis

The mean GOTV of seven subjects is achieved at 0.75; the highest was 0.89 for subject
No.6, and the lowest was 0.68 for subject No.5. Each subject’ optimal threshold value fell
within an interval centered at GOTV with a standard deviation of 0.073, as observed in
Table 1.

Table 1. GOTV of 7 subjects and each subject’s optimal threshold value.

Subject No. 1 2 3 4 5 6 7

Optimal Threshold Value 0.75 0.69 0.79 0.7 0.68 0.89 0.75
Mean 0.75

Standard Deviation 0.073

The highest classification results of SVM are achieved after the improvement of feature
selection, and they are shown in Figure 6. The mean classification accuracy of seven subjects
was 83%, and the highest mean classification accuracy was 87% in subject No.1. Meanwhile,
the best classification performance of a single trial can be achieved at 100%, which is also
by subject No.1. After feature selection, the classification accuracy of each subject was
improved to a greater extent, with a relative accuracy improvement rate of 19.85% in subject
No.1 and an overall average improvement rate of 7.83% for all other subjects.

Figure 6. Box plot of 7 subjects’ classification accuracy rate. The overall classification accuracy results
of 7 subjects are largely distributed within the approximate range from 75% to 90%. The highest
overall mean classification accuracy was 87% achieved by subject No.1; the mean classification
accuracy of 7 subjects was about 83%. Each ‘+’ means one outlier result of this group.
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5. Conclusions and Discussion

In this paper, EEG data of seven subjects in a simulation driving experiment were used
to construct a CsEn brain network, and a novel method proposed by our research team,
K-Order Propagation Number Algorithm, was used to analyze the features of the brain
network under two states, i.e., braking and non-braking, and also to detect drivers’ in-
tention during emergency braking. Meanwhile, a series of feature selection schemes are
employed to (1) work out a General Optimal Threshold Value (GOTV); and (2) to improve
classification results by reducing feature dimension. All of the EEG signal processing
blocks and feature selection algorithms constitute a robust system, KFCS.

In comparison with current research, several virtues of this paper are highlighted as
follows: (1) In addition to time-domain and frequency-domain approaches, we employed
an entropy-based method to extract EEG feature; that is, the EEG features of subjects
are calculated from a novel network perspective. This method assists practitioners in
gaining insights of brain mechanisms intuitively, especially in helping to determine the
activeness of brain regions under specific circumstances. (2) A comprehensive procedure to
calculate threshold values of subjects’ feature networks was demonstrated as a paradigm
for future practitioners to refer to. (3) Moreover, it is worth mentioning again that the
threshold values have been calculated twice before obtaining final results. For the first time,
a GOTV is computed, which is significant not only as being constructive in this paper but
it can also be beneficial for achieving an average threshold level when there is a group of
subjects who are waiting in line to obtain their own threshold value in other experiments.
Based on GOTV, a set of adaptive thresholds with regard to specific subjects can then be
quickly obtained; this two-step procedure can save a great deal of time if there is a real-time
system requirement. (4) The simulated driving experiment scenarios in this paper are more
dynamic and more realistic in terms of mimicking real-world driving situations, vehicles,
landscape background and weather conditions, etc. Moreover, it can provide drivers with
a fantastic driving experience, which could in turn validate the results.

However, there are some limitations in this work that need to be considered in subse-
quent studies. First, since we used simulation driving equipment to collect EEG data, many
potential factors could deteriorate the results, such as fluctuations generated by vehicles
on uneven paved roads and freer body movements differing from laboratory conditions
than those that are mandatory in a real car situation, are beyond the scope of this paper.
Second, the features that are chosen as SVM’s inputs are not sufficiently wide-ranging. Only
EEG features that are extracted from the brain network are used as input to classifier, but
multimodal data or MultiModal Machine Learning (MMML) methods can actually be more
effective when portraying the target digital event; in this case, we neglected to use EMG
and facial recognition data to improve classification accuracy [40,41]. Third, the real-time
performances have not been studied well enough. On the one hand, the time that is needed
to process the entire KFCS is not available. On the other hand, laboratory equipment such
as the 64-channel brain cap and signal amplifiers are unwieldy, which cannot be easily
transfered from location to location. Fourth, the qualification of subjects should be further
determined [42]. In this paper, the subjects were selected randomly from a narrow range,
i.e., mainly from our university. However, diverse age ranges and skillfulness in driving
are also effective with respect to the results since the activeness of brain regions can be
reasonably different during conscious and unconscious body movements. Fifth, another
problem was the connectivity that we measured, which was at sensor-level. Due to the
volume conduction (field spread) effect, there will always be some spurious-free interac-
tions between different brain regions; thus, any attempt to investigate brain connection
mechanisms will be somewhat biased [43,44].

Our future investigations will address the following issues: (1) Real car settings ought
to be used to design and carry out the experiment, including various road conditions, speed
and other traffic signal indicators; (2) extracting a wider range of digital data, including but
not limited to visual data, EMG and Eye movement signal, etc., to construct a multimodal
data platform. Meanwhile, we will carry out EEG frequency dynamic analysis when the
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brain performs certain tasks. (3) We hope to design and test an integrated embedded
system with high real-time performance and a system that is highly adaptive in order to
minimize emergency braking detection time for drivers from a wide range class. (4) We
also wish to design a more stable and portable EEG signal acquisition device with fewer
channels in the future so that we can perform our experiment in real-time settings. (5)
Finally, we hope to solve the problem of volume conduction and since our data has good
spatial resolution, we will try to measure connectivity at the source level so that we can
better explore the mystery of the most important organ of human body, the brain, according
to Schoffelen and Gross [44].
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