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Abstract

Kinome microarrays are comprised of peptides that act as phosphorylation targets for protein kinases. This platform is
growing in popularity due to its ability to measure phosphorylation-mediated cellular signaling in a high-throughput
manner. While software for analyzing data from DNA microarrays has also been used for kinome arrays, differences between
the two technologies and associated biologies previously led us to develop Platform for Intelligent, Integrated Kinome
Analysis (PIIKA), a software tool customized for the analysis of data from kinome arrays. Here, we report the development of
PIIKA 2, a significantly improved version with new features and improvements in the areas of clustering, statistical analysis,
and data visualization. Among other additions to the original PIIKA, PIIKA 2 now allows the user to: evaluate statistically how
well groups of samples cluster together; identify sets of peptides that have consistent phosphorylation patterns among
groups of samples; perform hierarchical clustering analysis with bootstrapping; view false negative probabilities and
positive and negative predictive values for t-tests between pairs of samples; easily assess experimental reproducibility; and
visualize the data using volcano plots, scatterplots, and interactive three-dimensional principal component analyses. Also
new in PIIKA 2 is a web-based interface, which allows users unfamiliar with command-line tools to easily provide input and
download the results. Collectively, the additions and improvements described here enhance both the breadth and depth of
analyses available, simplify the user interface, and make the software an even more valuable tool for the analysis of kinome
microarray data. Both the web-based and stand-alone versions of PIIKA 2 can be accessed via http://saphire.usask.ca.
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Introduction

Catalyzed by protein kinases, reversible protein phosphorylation

is the most widespread signaling mechanism in eukaryotes and

plays a critical role in virtually every cellular process. Technologies

for studying phosphorylation-mediated signaling in a high-

throughput manner have the potential to facilitate the discovery

of complex biomarkers, help identify signaling pathways associated

with particular diseases, and provide general information regard-

ing regulatory mechanisms. One such technology is the kinome

microarray, in which natural substrates of protein kinases are

mimicked by short (15-mer) peptides containing the phosphoac-

ceptor site (at the central position) as well as the same surrounding

residues as in the corresponding intact protein. The phosphory-

lation kinetics of these peptides and their corresponding proteins

are similar [1,2]. First proposed in 2002 [3,4], kinome arrays have

since been used to study a large variety of biological systems, such

as the effects of glucocorticoids on the immune system [5],

signaling in chondrosarcoma [6], sugar signaling in plants [7,8],

stem cell differentiation [9], bacterial infections in cows [10,11],

and many others [12].

Previously, researchers using kinome microarrays have analyzed

the resulting data using software designed for DNA microarrays.

However, the chemistry involved in the two technologies is

different, and data processing appropriate for one technology may

not be appropriate for the other. Further, given the smaller

number of spots on a kinome array (,300–1000) versus a DNA

array (,30,000), the use of the same statistical stringency

thresholds commonly employed in DNA array software could

compromise the ability to identify differentially phosphorylated

peptides in kinome arrays and to identify changes in the

modulation of biological pathways. DNA microarray software

also often lacks statistical techniques for ascertaining the consis-

tency of technical and biological replicates. In response to these

concerns, we developed a software program in the R environment

[13] called Platform for Intelligent, Integrated Kinome Analysis

(PIIKA) [14], and showed that it improves the ability to identify

cellular signaling pathways that are upregulated or downregulated

in response to a particular treatment. PIIKA also facilitates the

identification of peptides that have inconsistent responses among

the technical replicates on a single array or among different

biological replicates (e.g. different animals exposed to the same

treatment), ensuring that only high-quality data are used in

subsequent statistical and clustering analyses.

Here, we report the development and release of PIIKA 2, which

contains many additions and improvements to PIIKA, primarily in
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the categories of cluster analysis, statistical analysis, and data

visualization. Among others, PIIKA 2 allows users to perform the

following tasks, which would have been impossible in the original

PIIKA without substantial user effort (e.g. writing of scripts):

N determine the statistical significance of the consistency between

the actual clustering of the data and a hypothesized clustering;

N identify subsets of peptides that induce a particular clustering;

N assess the statistical significance of hierarchical clustering nodes

using bootstrapping analysis;

N quickly access false negative rates and positive and negative

predictive values for the t-tests between pairs of samples;

N easily evaluate the technical and biological reproducibility of

the experiment;

N visualize principal component analysis (PCA) results using a

three-dimensional interactive plot;

N visualize points that are both statistically significant and have

high fold-change values using volcano plots; and

N view the relationships between the normalized signal intensities

in pairs of samples.

In summary, PIIKA 2 improves the ability to answer complex

biological questions about kinome array data and to make

informed decisions concerning statistical thresholds and signifi-

cance. Whereas the original PIIKA was available only as a

command-line tool, PIIKA 2 may also be used via a web-based

interface, which eases the data analysis process for users unfamiliar

with the use of command line tools. A significant advantage of

PIIKA 2 over stand-alone graphical user interface (GUI)-based

tools is that there is no need to click on menu items and change

options for each individual analysis the user would like to perform.

PIIKA 2 performs all analyses that are applicable given the input

provided by the user and outputs the results in the form of

spreadsheet-compatible text files and publication-ready images.

As mentioned, PIIKA 2 is available in two forms: a web-based

version, and a local version that can be installed on the user’s

computer. Both versions are available through the Saskatchewan

PHosphorylation Internet REsource (SAPHIRE) website at

http://saphire.usask.ca. PIIKA 2 is free for academic use; users

interested in PIIKA 2 for commercial purposes should contact the

authors.

The remainder of this paper is divided into three major sections.

The Methods section discusses the methodology associated with

each new feature of PIIKA 2. The Results section gives examples

and figures that illustrate the application of these features to data

from a real kinome microarray experiment. Finally, the Discussion

and conclusion section summarizes the value of PIIKA 2 for

analyzing kinome array data and discusses the utility of kinome

arrays for signaling research in general.

Methods

When dealing with complex data such as those arising from

kinome microarrays, asking non-trivial questions of the data often

requires expertise in mathematics, programming and data

visualization—as well as a significant investment of time.

Ultimately, these often deter users from interrogating their data

to the full extent possible. To address this problem, we have

implemented in PIIKA 2 a rich assortment of analysis tools. These

tools relate to cluster analysis, statistical analysis, or data

visualization. As we receive feedback from users, other function-

ality will be added. This section contains descriptions of the

methodologies used; for examples of the use of these methodol-

ogies, including relevant figures and example outputs, see the

Results section.

Cluster analysis
The original version of PIIKA allowed users to perform

hierarchical clustering on the samples in a given experiment;

however, the tools available to analyze the clusters were limited.

Here, three features new to PIIKA 2 are described that allow users to

perform more detailed analyses of their hierarchical clustering results.

Random tree analysis: statistical significance of the
clustering of a priori groups

In many kinome microarray experiments, the samples or

treatments can be placed a priori in different groups based on

either biological knowledge or specific attributes of the samples or

treatments. For brevity, in the following discussion the members of

these groups will be called ‘‘samples’’, although if each experi-

mental treatment has more than one sample associated with it,

then the members of these groups would more accurately be called

‘‘treatments’’.

In a real experiment conducted by our research group, for

example, one sample was taken from each of 6 biological subjects at

each of 4 time points. These samples were then processed using

kinome microarrays containing 297 unique peptides, each replicated

9 times on the same array. Image analysis software was used to

capture the phosphorylation intensity of each spot as described

previously [15], and the resulting data were processed using PIIKA 2.

The exact nature of the experiment, the samples, and the subjects is

not relevant here (a manuscript describing these data from a

biological perspective is in preparation); in this study, the critical

feature of the example experiment is that we hypothesize that samples

from the same subject will have similar kinome profiles. The original

version of PIIKA included functionality for performing hierarchical

clustering, which allows the similarity of the kinome profiles of the

samples to be ascertained. Although one can get a sense of whether

the expected clustering pattern does indeed exist by visually

inspecting the resulting dendrogram, this does not give a measure

of statistical significance. To remedy this, PIIKA 2 allows the

question, ‘‘Do samples from the same group cluster together better

than would be expected by chance?’’ to be addressed by deriving an

empirical statistical distribution and then reporting a P-value based

on this distribution, where a small P-value indicates that samples

within the same group (in the above example, the same biological

subject) cluster together better than would be expected at random.

Since each step in the process of performing hierarchical

clustering results in a bifurcation, clusterings made in this way can

always be represented as binary trees. For ease of reference, we

therefore convert the dendrogram representation to its corre-

sponding binary tree representation. To evaluate the ‘‘goodness’’

of clustering for a given binary tree T , we define a metric d(T)
wherein larger values denote better clustering. Suppose that, in

our hypothesized grouping of the samples, there are n groups

labeled G1,G2, . . . ,Gn, each containing m samples. In the example

above, n~6 and m~4. Also, let the internal nodes of T be labeled

I1,I2, . . . ,Ik, where k is the number of internal nodes. We define a

function f (i,j) as follows:

f (i,j)~

0 if Ii has any leaves as descendants that

correspond to a group other than Gj

w otherwise, where w is the number of

descendant leaves of Ii corresponding to group Gj

8>>><
>>>:
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Then

d(T)~
Xn

j~1

max
1ƒiƒk

f (i,j) ð1Þ

In other words, to calculate d(T), for each group Gj we find the

internal node Ii with the greatest number of leaves as descendants

that correspond to Gj and that has no leaves corresponding to any

other group. The number of such leaves is added to d(T). Thus,

the maximum possible value of d(T) is nm, and the possible values

of d(T) are the integers between 0 and nm. To make the metric

independent of n and m, it can be expressed as a ratio:

d0(T)~
d(T)

nm
|100. A d0(T) value of 100 indicates perfect

clustering. The Results section contains an example of a tree T

and the calculation of its corresponding score d0(T).

While d0(T) by itself gives a sense of the goodness of clustering,

it does not indicate whether the samples from each a priori group

cluster together better than would be expected at random. To

determine this, 10,000 random trees R1,R2, . . . ,R10000 are

generated (the number of random trees generated can be changed

by the user), and the value of d0 is calculated for each. The random

trees are generated by modifying the original data matrix, wherein

rows represent peptides and columns represent arrays, by

randomly rearranging the values within each column. The values

d0(R1),d0(R2), . . . ,d0(R10000) represent an empirical probability

distribution for d0. Thus, the P-value is simply the proportion of

random trees Ri for which d0(Ri)§d0(T). For each Ri, PIIKA 2

outputs the rearranged matrix that was used to produce that

random tree, visual and text-based representations of the

hierarchical clustering of that matrix, and the value of d0(Ri).

PIIKA 2 also outputs d0(T) and the aforementioned P-value.

Peptide subset analysis: identifying sets of peptides that
support the clustering of a priori groups

Given a set of groups of samples defined a priori based on

biological knowledge or other factors, it may also be of interest to

identify sets of peptides for which the phosphorylation patterns are

similar within samples from the same group and different between

samples from different groups (as described above, the members of

the groups may be either samples or treatments, but for brevity we

will just call them ‘‘samples’’). In other words, one might want to

identify sets of peptides for which the clustering of the samples into

these groups is as close to perfect as possible. For example,

consider a hypothetical experiment in which cell extracts are taken

from mice with a genetic propensity to a certain disease, and that

we divide these mice into two groups—those that eventually get

the disease, and those that do not. If we could identify a set of, say,

10 peptides that have similar responses in mice of the same group,

and different responses between groups, then these 10 peptides

could potentially act as a biomarker for this disease.

PIIKA 2 implements this functionality using a simple local

search procedure. First, the samples (or treatments, if more than

one sample corresponds to a particular treatment) are hierarchi-

cally clustered using a set of exactly two peptides drawn from the

complete set. The score for the corresponding tree (which, again, is

a clustering of the samples, not the peptides), d0(T), is then

determined. This procedure is then repeated for all possible pairs

of peptides. The pair of peptides which results in the tree with the

greatest value of d0(T) is then selected as the ‘‘seed’’. If more than

one set has the same value of d0(T), then one of them is arbitrarily

chosen to be the seed. A third peptide is then added to this list by

scanning the remaining peptides and determining which one—in

addition to the two chosen as the seed—results in the set with the

greatest value of d0(T). Additional peptides are iteratively added in

the same fashion until all peptides have ultimately been added, in

which case the dendrogram is identical to the one created using all

of the peptides. For each iteration, the hierarchical clustering is

performed anew (as opposed to adding the next peptide onto the

structure of the previous tree).

PIIKA 2 outputs, for each i (3ƒiƒp, where p is the number of

peptides), the dendrogram containing i peptides, the score d0(T)
associated with that dendrogram, and a spreadsheet-compatible

table showing the names of those peptides as well as their

normalized intensity values for each sample. The peptides forming

these subsets are those having phosphorylation patterns that are

similar within samples from the same group, but different between

samples from different groups. Depending on the biological

application, it might be of interest to examine small sets of peptides

(say, 5 or 10) that have this property, or it might be more

meaningful to examine larger sets of peptides. The output of

PIIKA 2 allows the user to examine sets of peptides with any

cardinality between 3 and the total number of unique peptides.

Bootstrap analysis of hierarchical clustering
When performing hierarchical clustering, the strength of the

support for each cluster can be ascertained using bootstrapping. As

a complement to the heatmaps produced by PIIKA, PIIKA 2 also

outputs dendrograms showing the hierarchical clustering of the

samples, with each node labeled with two P-values: the bootstrap

confidence P-value (BP) as proposed by Felenstein [16], and the

approximately unbiased P-value (AU) as proposed by Shimodaira

[17,18]. Each P-value ranges between 0 and 100, and represents

the percentage of times that the cluster appears in the bootstrap

replicates. The R package pvclust [19] is used to calculate these

bootstrap values and generate the graphical version of the

dendrogram.

It should be noted that the variables (peptides) are not strictly

independent, largely because a given kinase might catalyze the

phosphorylation of several peptides on the array. This could

compromise the statistical soundness of the bootstrap analysis, as

each resampling of the original data may not reflect the

dependence originally present among the variables. However,

similar bootstrap analyses have successfully been used for DNA

microarrays (e.g. [20–24]), despite the fact that the expression

levels of individual genes may not be independent (due, for

example, to transcription factors that each promote the transcrip-

tion of several genes). This suggests that bootstrap analysis should

be valuable for kinome arrays as well. Nonetheless, the fact that

the peptides are not independent should be kept in mind when

interpreting the results.

Statistical analysis
In the original version of PIIKA, several statistical tests were

provided, including a t-test for comparing treatment-control

combinations, a x2-test for identifying peptides inconsistently

phosphorylated among the technical replicates, and an F-test for

determining the consistency of biological replicates. In this section,

we describe statistical analyses performed by PIIKA 2 that were

not possible to perform in the original PIIKA.

False positive and false negative probabilities. The

original version of PIIKA allowed the user to select a value for a
(the probability of a type I error; also called the false positive rate)

for the t-tests done between each peptide for a given treatment and
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control. While controlling the type I error rate is important, it is

also important to be cognizant of the type II error rate (denoted b,

and also called the false negative rate). This is particularly true

because subsequent analyses often involving feeding the data into a

program like InnateDB [25], which examines whether a particular

cellular signaling pathway appears to be upregulated or downreg-

ulated based on the increased or decreased phosphorylation of

individual components of that pathway. If the false negative rate is

too high, then peptides that are differentially phosphorylated may

not be correctly identified, causing pathways to be missed that are

in fact differentially regulated in the treatment condition

compared to the control condition. As such, it could be valuable

to the user to display these false negative probabilities.

In its output files that give the t-test results for each peptide for

each treatment-control combination, PIIKA 2 now also includes

the value of b for each peptide. These values are calculated using

the R package pwr. Since b decreases when a is increased, the user

can choose to increase the value of a if the values of b are judged

to be too high. Note that increasing the number of intra-array

technical replicates will also lower the false negative probabilities,

although this is usually not an option at the stage in the experiment

where array data have already been gathered.

Positive and negative predictive values. Let A represent

the event of rejecting the null hypothesis, and let N represent the

event that the null hypothesis is true. Then the false positive

probability a can be defined as P(AjN). While a is a useful

quantity, sometimes it is more meaningful to know the comple-

mentary probability P(NjA) (sometimes called ‘‘positive predictive

value’’)—given that we rejected the null hypothesis, what is the

probability that it is true? P(NjA) can be calculated mathemat-

ically using Bayes’ rule: P(NjA)~P(AjN)|P(N)=P(A). Both

P(AjN) and P(A) are easy to determine: P(AjN):a, which is

supplied by the user, while P(A) is the proportion of peptides

attaining a P-value less than a. Unfortunately, P(N) is more

difficult to determine, as this represents the actual background

probability that a particular peptide will not be differentially

phosphorylated. PIIKA 2 uses a (somewhat arbitrary) default of

0.75 for this value, although this can be changed by the user if

desired.

Similarly, it may also be useful to find the probability that the

null hypothesis is false given that we failed to reject it (sometimes

called ‘‘negative predictive value’’)—that is, P(NjA). Analogous to

the above, this can be determined using Bayes rule:

P(NjA)~P(AjN)|P(N)=P(A). Here, P(AjN):b, while P(N)

and P(A) are the complements P(N) and P(A), respectively.

As with b, the t-test files produced by PIIKA 2 now include the

probabilities P(NjA) and P(NjA) as described above. P(NjA) is

given as a column in the file, as it potentially will differ for each

peptide; however, P(NjA) will have the same value for every

peptide, so it is listed in a separate file.

Technical and biological reproducibility summaries.
To facilitate statistical hypothesis testing, kinome arrays typically

contain between three and nine intra-array technical replicates; in

other words, between three and nine distinct spots are placed on

the array for each unique peptide sequence. In the original PIIKA

publication [14], we described the use of a x2-test to identify

peptides that are inconsistently phosphorylated among the

technical replicates on a single array.

In our own publications describing results from biological

experiments involving kinome microarrays (e.g. [11]), we typically

include a statement summarizing the technical reproducibility of

the phosphorylation signal for all the arrays used in the

experiment. For instance, for arrays that each contain 297 unique

peptides, we might claim that the average number of consistently

phosphorylated peptides on a given array was 288, and that this

value ranged from 282 to 296. In the previous version of PIIKA,

the user would have had to manually calculate these values from

other output. In contrast, PIIKA 2 generates a file containing the

number of consistently phosphorylated peptides for all the arrays

in the experiment, along with the average value and range of

values, making it easy to include this information in a manuscript

describing the experiment.

In addition to summarizing technical reproducibility, PIIKA 2

also summarizes the biological reproducibility if the experiment

involves more than one biological replicate per treatment. The

information presented is analogous to that given in the technical

reproducibility summary: for each treatment, the number of

peptides consistently phosphorylated among the biological repli-

cates is given, along with the average and range of these values.

Data visualization
The original version of PIIKA contained three major data

visualization methods: heatmaps (showing the hierarchical clus-

tering of samples on the x axis and peptides on the y axis), 2-

dimensional and 3-dimensional scatterplots showing the results of

PCA, and a novel visualization method for comparing differential

phosphorylation P-values between two treatment-control combi-

nations [14]. PIIKA 2 provides several additional visualization

methods; these are described below.

PCA visualization using Virtual Reality Modeling
Language. While the first three principal components can be

visualized using a 3D scatterplot, as provided in the original

PIIKA, it can be difficult to comprehend such plots, especially

when there are many samples. The layout of sample labels can also

pose problems in 3D scatterplots. As such, interactive plots created

using virtual reality modeling language (VRML) are an attractive

alternative. PIIKA 2 uses the R package vrmlgen [26]—

specifically, the function cloud3d—to generate 3D scatterplots in

VRML. Using an appropriate viewer, such as Instant Player

(http://www.instantreality.org), the user can rotate and translate

the figure, as well as zoom in and out, making the relationship

between the samples in three-dimensional space easier to

comprehend.

Volcano plots. When comparing the level of phosphorylation

between a treatment and a control, two quantities are often of

interest: the P-value corresponding to the t-test, which answers the

question, ‘‘Is there a statistically significant difference between the

phosphorylation level in the treatment and the phosphorylation

level in the control?’’, and the fold-change (FC) value, which

answers the question, ‘‘What is the magnitude of the difference

between the phosphorylation level in the treatment compared to

the control?’’. These quantities are not necessarily meaningful in

isolation: very large or very small FC values may be associated

with a lot of variability in the technical replicates, and thus have an

insignificant P-value according to the t-test; conversely, the

magnitude of the difference between the treatment and control

may be small, but the technical replicates may be highly consistent

within each sample, leading to a small P-value. A useful

visualization method for looking at fold-change values and P-

values simultaneously is the ‘‘volcano plot’’ [27]— a scatterplot

with FC on the x-axis and P-value on the y-axis, and named as

such because the pattern exhibited by the points often resembles

an erupting volcano. Points located in the upper-left or upper-right

corners of the plot are usually of the most interest, as they have

both small P-values and high FC values. PIIKA 2 generates a

volcano plot for each treatment-control combination specified by

the user.
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Scatterplots between pairs of samples. In addition to

visualizing how different samples are from each other using

hierarchical clustering or PCA, it may be useful to compare the

normalized intensity values between two samples at a more fine-

grained level—i.e. by directly visualizing differences in responses

between individual peptides. To facilitate this, PIIKA 2 outputs,

for each possible pair of samples, a scatterplot containing a point

for each peptide, where a point’s x and y coordinates represent

that peptide’s normalized intensity value for the first and second

sample in the pair, respectively. Each scatterplot also contains a

least-squares regression line, the line y~x (for comparison to the

regression line), and a statement giving the Pearson correlation

between the normalized intensity measurements in each sample.

Other features
As a complement to the hierarchical clustering analysis, which

may use either Euclidean distance or (1 - Pearson correlation) as

the distance metric, PIIKA 2 also outputs files containing the

Euclidean distance and Pearson correlation between each pair of

samples, as well as each pair of subtracted treatment-control

combinations. It may also be of interest to consider the distance

between samples or treatment-control combinations by including

in the calculation only peptides that are differentially phosphor-

ylated. PIIKA 2 outputs files containing these data as well, with a

peptide being considered differentially phosphorylated for a given

pair of treatments or treatment-control combinations if the P-value

according to the paired t-test is less than the user-specified

threshold.

While PIIKA 2 contains many features related to the analysis

and visualization of kinome microarray data, some users may want

to perform analyses not available in PIIKA 2 or use their own

visualization software. To facilitate this, PIIKA 2 outputs a file for

each stage in the analysis pipeline containing the processed data at

that stage. Specifically, a file is generated containing the data after

background subtraction; after applying the vsn transformation;

after rearranging the matrix; after averaging the technical and

biological replicates; and after performing biological subtraction (if

applicable). These files can easily be used as input to external

programs.

PIIKA 2 availability
PIIKA 2 is available both as a web server and as a stand-alone

program that the user can run on his or her own computer. Each

version has the same functionality, and can be accessed or

downloaded via the SAskatchewan PHosphorylation Internet

REsource (SAPHIRE) website at http://saphire.usask.ca.

The web-based version of PIIKA 2 is ideal for users who have

limited experience with command line-based tools. To use the

web-based version of PIIKA 2, the user must upload one or more

input files, and enter the value of several parameters (number of

intra-array replicates, number of peptides on the array, and so on).

Detailed instructions for formatting the input files and choosing

Figure 1. Heatmap and hierarchical clustering of kinome microarray profiles from the example experiment. Samples were taken at
four time points from six different subjects, here labeled A-F. The number of the sample from the same subject represents the time point at which the
sample was taken; for example, sample C-3 was taken from subject C at time point 3. The distance metric used for clustering was (1 - Pearson
correlation), while the linkage method used was average linkage.
doi:10.1371/journal.pone.0080837.g001
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parameters are available on the PIIKA 2 webpage. The user must

also enter his or her e-mail address; once the job has finished

running, the user will receive an e-mail containing a link where the

results can be downloaded. A full guide to the output of PIIKA 2 is

available in File S1; a continuously updated version of the output

guide is available via the SAPHIRE website, and is also included

along with the other results files that the user downloads once their

job is complete.

Commercial providers of kinome microarrays usually offer

custom-designed arrays, where the client chooses the number of

unique peptides to include on the array, the number of intra-array

technical replicates per unique peptide, and the sequences of those

peptides. Some providers also offer off-the-shelf arrays, for which

the above attributes are predefined. To ease the submission

process for those using the latter type, the PIIKA 2 website

contains a drop-down menu where the user can select a particular

off-the-shelf array. Once selected, the fields for certain parameters

(the number of unique peptides on the array and the number of

technical replicates per unique peptide) will be automatically filled

in with the appropriate values. To identify off-the-shelf kinome

arrays, we searched the websites of major providers of peptide

arrays, including JPT Peptide Technologies (http://www.jpt.com),

Pepscan (http://www.pepscan.com), Arrayit (http://www.arrayit.

com), and PEPperPRINT (http://www.pepperprint.com).

The stand-alone version of PIIKA 2 is suitable for users familiar

with command line-based tools, and requires that the R

programming language [13] be installed, as well as several R

packages. A full guide to installing and running the stand-alone

version of PIIKA 2 is included in the download.

Figure 2. Binary tree representation of the dendrogram shown in Figure 1. Leaf nodes are shaded in grey and are labeled according to the
subject and time point as in Figure 1. Internal nodes are labeled I1 through I23, and those internal nodes Ii for which f (i,j) is maximized for some
group Gj (where G1 corresponds to subject A, G2 corresponds to subject B, and so on; see also Equation 1) are shaded in blue.
doi:10.1371/journal.pone.0080837.g002

Figure 3. Empirical distribution of random tree scores. Ten
thousand random matrices R1,R2, . . . ,R10000 were created from the
matrix used to create the sample dendrogram in Figure 1 by randomly
rearranging the peptide intensity values within each sample. For each
score d0(Ri) that was given to at least one random tree, the frequency
of that score is indicated.
doi:10.1371/journal.pone.0080837.g003
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Results

Cluster analysis
Random tree analysis: statistical significance of the

clustering of a priori groups. To demonstrate the algorithm

described in Methods, we use the aforementioned experimental

data consisting of one sample taken at 4 time points from 6

subjects. The kinome array data were processed using the usual

PIIKA pipeline (background subtraction followed by normaliza-

tion and transformation using vsn [28]). Peptides that were

consistently phosphorylated across the technical replicates accord-

ing to a x2-test for all 24 arrays (n = 165) were then subjected to

hierarchical clustering using (1 - Pearson correlation) as the

distance metric and average linkage as the linkage method. The

Figure 4. Heatmap and hierarchical clustering of kinome microarray profiles of samples from the example experiment using 17
peptides chosen according to a local search algorithm. The same distance metric and linkage method were used as in Figure 1. The sample
names are the same as in Figure 1; the peptide names are also indicated on the right side of each row.
doi:10.1371/journal.pone.0080837.g004

Figure 5. Example of a dendrogram with bootstrap values using PIIKA 2. The clustering of the samples is the same as in Figure 1. The red
numbers represent the approximately unbiased (AU) P-values as determined using the method of Shimodaira [17,18], while the green numbers
represent the standard bootstrap P-value [16]. All calculations and the drawing of the figure were performed using the R package pvclust [19].
doi:10.1371/journal.pone.0080837.g005
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resulting heatmap is shown in Figure 1, with the sample (column)

dendrogram showing that samples from the same subject tended to

cluster together quite well, although not perfectly. The question is,

do samples from the same subject cluster together better than

would be expected by chance?

In our technique for ascertaining the statistical significance of

the clustering of predefined groups, a hierarchical clustering is

represented as a binary tree. As an example, the binary tree

corresponding to the clustering shown in Figure 1 is shown in

Figure 2. In applying Equation 1 to this tree, let subject A be G1,

subject B be G2, and so on. Then max1ƒiƒk f (i,1)~3, where k is

the number of internal nodes. This expression is maximized when

i~10, because internal node I10 contains no leaves as descendants

that correspond to any group other than G1 (subject A), and has

three leaves as descendants that do correspond to G1 (the most of

any internal node that satisfies the above condition). Similarly,

max1ƒiƒk f (i,2)~3, max1ƒiƒk f (i,3)~3, max1ƒiƒk f (i,4)~2,

max1ƒiƒk f (i,5)~3, and max1ƒiƒk f (i,6)~3. The sum of these

is 17, and so d(T)~17 and d0(T)~
d(T)

nm
|100~

17

6|4
|100~

70:8.

To generate the distribution of scores that would result by

random chance, 10,000 random trees were generated by randomly

rearranging the normalized intensity values for each peptide

within a given array (column). The value of d0(T) was calculated

for each of these random trees, and the distribution of these data is

shown in Figure 3. The lowest score given to a random tree was 0,

while the greatest was 58.3. As such, none of the random trees had

a score equal to or greater than the score for the actual tree, giving

a P-value of less than 0.0001. This indicates that samples from the

same subject do indeed cluster together better than would be

expected by chance.

Peptide subset analysis: identifying sets of peptides
that support the clustering of a priori groups. The local

search procedure described in Methods was tested using the same

sample data as described above. This procedure was used to

identify sets of peptides that, when subjected to hierarchical

clustering, resulted in a clustering with a value of d0(T) as close to

100 as possible—that is, a clustering where the arrays correspond-

ing to a given subject cluster together, and cluster separately from

arrays corresponding to other subjects. The greatest score d0(T)

Figure 6. Example of a PCA plot generated in VRML format by
PIIKA 2. In this experiment, samples were taken from subjects labeled
A, B, C, D, E, and F. Samples corresponding to subject A are in red,
subject B are in yellow, and so on. The label near the top of the figure is
the result of hovering the mouse over the leftmost red circle, and shows
that the first, second, and third principal components for this sample
had the values 2.46, 1.48, and 1.03, respectively. This image is an
example of the visualization given using the VRML viewer Instant Player
( http://www.instantreality.org ).
doi:10.1371/journal.pone.0080837.g006

Figure 7. Example of a volcano plot generated using PIIKA 2. Points for which FC §2 and P-value ƒ0:1 are coloured red, while those with FC
§2 but P-value v0:1 are pale red; Similarly, points with FC ƒ{2 and P-value ƒ0:1 are green, while those with FC ƒ2 but P-value v0:1 are pale
green. All other points are coloured black. The horizontal and vertical blue lines represent the P-value and FC cutoffs, respectively. All coloured points
are accompanied by labels showing to which peptide the point corresponds.
doi:10.1371/journal.pone.0080837.g007
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given to a dendrogram for some number of peptides i was 91.7,

which was the case for 11ƒiƒ17. In other words, for each i

between 11 and 17 inclusive, a dendrogram could be created with

i peptides that had a score of 91.7. The dendrogram correspond-

ing to i~17 is shown in Figure 4. Figure 4 shows that, as its score

suggests, the clustering with these 17 peptides is almost completely

concordant with the ‘‘ideal’’ clustering by subject. Specifically,

subjects A, B, C, and F all clustered together perfectly, while three

out of the four samples from each of subjects D and E clustered

together. As such, these 17 peptides were consistently phosphor-

ylated within the same subject, but differentially phosphorylated

between subjects.

Bootstrap analysis of hierarchical clustering. One

caveat with hierarchical clustering is that clusters are always

produced, even in the extreme case where there is no relationship

among any of the samples; as such, dendrograms containing

bootstrap values represent valuable tools for assessing the strength

and significance of the clusters produced. PIIKA 2 uses the R

package pvclust [19] to generate dendrograms with bootstrap P-

values on each node. These P-values are actually displayed as

confidence values on the plot; for instance, a value of 99 means

that the null hypothesis (‘‘the cluster is not real’’) can be rejected at

a significance level of 0.01. An example of such a dendrogram,

which was created using the same data and clustering method-

ology as the sample (column) dendrogram in Figure 1, is shown in

Figure 5. For some of the subjects, the samples from the second,

third, and fourth time points clustered together, while the sample

from the first time point was an outlier (e.g. subject A). Figure 5

shows that, for some subjects, we could be very confident in the

clustering of the latter three samples. For example, the cluster

containing samples from the second, third, and fourth time points

for subject A had a confidence value of 100. Conversely, there was

somewhat less confidence for subject F, with the cluster containing

the same three time points having an approximately unbiased

confidence value of 95 but a standard bootstrap value of just 72.

Statistical analysis
False positive and false negative probabilities. As

described in Methods, PIIKA 2 now outputs values for b (the

false positive rate) for each peptide for each treatment-control

combination. These are present in the same files that contain the

fold-change and t-test results. An example of such a file is given as

Supplementary File S2.

Positive and negative predictive values. In addition to

values for b, PIIKA 2 now also outputs positive and negative

predictive values—the former being specific to a given treatment-

control combination, and the latter being specific to each peptide

within a given treatment-control combination. Like b, the negative

predictive values are present in the file containing the fold-change

and t-test results; see Supplementary File S2 for an example. Since

the positive predictive value does not depend on the peptide, a

separate file containing just the positive predictive value is

generated for each treatment-control combination.

Technical and biological reproducibility summaries.
As it is often of interest to determine and summarize the level of

reproducibility of the intra-array technical replicates in a kinome

Figure 8. Example of a sample-sample scatterplot generated using PIIKA 2. Each point represents a peptide, and the x and y values of that
point represent the normalized intensity values for that peptide for the first sample (A-1) and the second sample (A-2), respectively. The blue line
represents the best fit using least squares, whereas the red line simply shows the diagonal (y~x). The Pearson correlation between the two samples
is also indicated.
doi:10.1371/journal.pone.0080837.g008
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Figure 9. Screenshot of the user interface of the PIIKA 2 web server.
doi:10.1371/journal.pone.0080837.g009
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microarray experiment, PIIKA 2 outputs a file containing the

number of peptides for which the phosphorylation signal was

determined to be consistent according to a x2-test for each array,

as well as the range and average of these values. Supplementary

File S3 contains an example of one of these files. If the experiment

involves more than one biological replicate per treatment, then the

level of reproducibility of these replicates may also be of interest;

an example of such a summary can be found in Supplementary

File S4.

Data visualization
PCA visualization using Virtual Reality Modeling

Language. A (static) picture of a VRML plot generated by

PIIKA 2, as rendered by the visualization software Instant Player,

is shown in Figure 6, and the corresponding VRML file is

available as Supplementary File S5. The user has the option of

assigning colours to each point in order to categorize them by

treatment group, subject, etc. The user can also hover their mouse

pointer over a given point to reveal the label corresponding to that

point, as well as its coordinates (a three-tuple representing the

values corresponding to the first, second, and third principal

components, respectively). Collectively, these features allow users

to more easily identify patterns in their data.

Volcano plots. For a given treatment-control combination, a

volcano plot allows the user to easily identify peptides that both

have a large FC value and have a significant P-value according to

a t-test. An example of a volcano plot generated by PIIKA 2 is

given in Figure 7. Each point has a specific colour depending on its

FC value and P-value (see figure legend). In addition, all points

having jFCj§2 are labeled with their respective peptide names,

allowing the user to easily identify peptides of interest.

Scatterplots between pairs of samples. Figure 8 shows a

sample scatterplot produced by PIIKA 2. The red and blue lines

represent the diagonal (y~x) and the least squares regression line,

respectively. The Pearson correlation coefficient is also shown

below the x-axis label.

PIIKA 2 availability
PIIKA 2 is available as a web server and as a stand-alone

version, both of which can be accessed via http://saphire.usask.ca.

Figure 9 contains a screenshot of the web server. As described in

Methods, the web interface includes an option for the user to select

an off-the-shelf kinome array purchased from a commercial

provider, which allows the fields for certain parameters to be filled

in automatically. Of the commercial providers mentioned in

Methods, only JPT and Pepscan appeared to offer off-the-shelf

kinome arrays, with JPT offering one array appropriate for use

with PIIKA 2 and Pepscan offering three. Details on these arrays

are given in Table 1. This feature will be expanded as more off-

the-shelf commercial arrays become available.

Discussion and Conclusion

Many cellular processes can be regulated independently of

changes in transcription or translation through post-translational

modifications, the most important of which is kinase-mediated

protein phosphorylation. Protein kinases play critical roles in

regulating complex systems, underlie various pathologies, and

represent high-priority drug targets; as such, there is considerable

interest in defining and characterizing their biological roles.

Kinome analysis offers three key advantages over traditional

profiling of gene and/or protein expression: 1) individual kinase

activities are often reliable indicators of phenotypic changes, 2)

kinase profiling offers insight into cellular responses at the level of

signaling networks, and 3) as kinases are highly ‘‘druggable’’,

increased understanding of their biological roles could aid

therapeutic design and development.

The growing interest in kinases in both basic and translational

research has driven efforts to develop technologies that facilitate the

characterization of phosphorylation-mediated signal transduction.

Peptide arrays are a relatively inexpensive technology that can be

applied to study phosphorylation-mediated cellular signaling in a

high-throughput manner. We and other groups have previously

demonstrated the utility of kinome arrays for addressing a wide

range of biological problems (e.g. [5–9,15,29,30]). Given the

substantial volume of data generated by kinome arrays, the ability

to employ them effectively requires the existence of appropriate

analysis methods. In this paper, we have described PIIKA 2, which

is a powerful suite of tools for analyzing kinome microarray data.

The new analysis tools have significant breadth, covering cluster

analysis, statistical analysis, and data visualization. Further, we have

provided an online submission platform that allows researchers to

easily use PIIKA 2 for their own kinome investigations.

In this paper, the new features in PIIKA 2 were illustrated using

a dataset derived from the application of kinome microarrays to

real biological samples. However, few details about these samples

were given, as this paper focuses on illustrating the capabilities of

PIIKA 2, rather than reporting biological conclusions stemming

from the analysis of this dataset. However, it should be emphasized

that the value of PIIKA 2 lies primarily in its ability to help

provide insight into biological systems. A concrete example of this

is a recent study by our group that examined the kinome profiles of

calf intestinal segments that were either infected or not infected

with the bacterium Mycobacterium avium subsp. paratuberculosis [11].

In this study, PIIKA 2 was used to show that a given calf’s kinome

responses clustered into one of two groups, and the specific group

to which a given calf belonged correlated with whether the animal

exhibited primarily an antibody immune response or primarily a

cell-mediated immune response.

As with any software package, future work will relate to the

improvement or expansion of existing features, as well as the

addition of new ones. Several of the additions and improvements

to PIIKA 2 were inspired by, or have been useful for, our own

Table 1. Off-the-shelf kinome microarrays that the PIIKA 2 web interface allows the user to select.

Company Array name Product code # technical replicates # peptides

JPT Annotated Phosphosites-Kinase KIN-MA-PhK 9 720

Pepscan PepChip Kinomics Array PCKINOM01 3 1024

Pepscan PepChip Kinase Array PCKF00020 2 1184

Pepscan Kinase Evaluation Slide PCKT00010 2 192

doi:10.1371/journal.pone.0080837.t001
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research involving the application of kinome microarrays to

biological problems. However, some of the questions other

researchers wish to address may be different from our own. As

such, we are interested in hearing from users of PIIKA 2 regarding

ideas for additional features, as well as ways to improve the

software in general.

Supporting Information

File S1 A guide to the output of PIIKA 2, listing all of the
files produced by PIIKA 2, how they are organized, and
what information is contained in each file.
(PDF)

File S2 A sample file containing results of a statistical
comparison (fold-change values, P-values resulting from
a paired t-test, values of b, etc.) between a pair of
samples from the example experiment.
(TXT)

File S3 A sample file containing a summary of the
technical reproducibility of the arrays in the example
experiment.
(TXT)

File S4 A sample file containing a summary of the
reproducibility of the biological replicates in the exam-
ple experiment.

(TXT)

File S5 A file in VRML format containing a 3D
scatterplot of the first three principal components
resulting from principal component analysis. This file

can be viewed using any VRML viewer, such as Instant Player

(http://www.instantreality.org).

(VRML)
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