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Abstract: The cost of next-generation sequencing technologies is rapidly declining, making
RNA-seq-based gene expression profiling (GEP) an affordable technique for predicting receptor
expression status and intrinsic subtypes in breast cancer patients. Based on the expression levels
of co-expressed genes, GEP-based receptor-status prediction can classify clinical subtypes more
accurately than can immunohistochemistry (IHC). Using data from The Cancer Genome Atlas
Breast Invasive Carcinoma (TCGA BRCA) and Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) datasets, we identified common predictor genes found in both datasets
and performed receptor-status prediction based on these genes. By assessing the survival outcomes
of patients classified using GEP- or IHC-based receptor status, we compared the prognostic value of
the two methods. We found that GEP-based HR prediction provided higher concordance with the
intrinsic subtypes and a stronger association with treatment outcomes than did IHC-based hormone
receptor (HR) status. GEP-based prediction improved the identification of patients who could benefit
from hormone therapy, even in patients with non-luminal breast cancer. We also confirmed that
non-matching subgroup classification affected the survival of breast cancer patients and that this could
be largely overcome by GEP-based receptor-status prediction. In conclusion, GEP-based prediction
provides more reliable classification of HR status, improving therapeutic decision making for breast
cancer patients.

Keywords: breast cancer; intrinsic subtype; hormone receptor-status prediction; gene expression
profile; LASSO regression

1. Introduction

Breast cancer is a highly heterogeneous disease that involves several complex molecular
networks [1–7]. Breast cancer can be classified into different subtypes that have distinct clinical behaviors
and prognoses and that require different treatment strategies. Therefore, accurate classification of
breast cancer subtypes is crucial for personalized disease management and for improving patient
outcomes [8,9]. The clinical subtypes of breast cancer are traditionally defined based on the expression
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status of three receptors: estrogen receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2) [10,11]. Thus, the clinical subtypes are classified according to protein
expression, as determined by immunohistochemistry (IHC), as hormone receptor positive (ER and/or
PR positive), HER2 positive, or triple-negative breast cancer (ER, PR, and HER2 negative). Breast cancer
is a hormone-driven malignancy that expresses various sex steroid receptors such as ER beta, PR,
and androgen receptor, in addition to the classical hormonal marker ER alpha [12,13]. These sex steroid
receptors positively or negatively modulate ER signaling and stimulate or inhibit cellular proliferation
via interactions with other signaling pathways [12,13]. The recent discovery of the luminal androgen
receptor subtype of triple-negative breast cancer has highlighted the importance of these sex steroid
receptors in breast cancer classification and therapeutic decision making [13].

With the advent of high-throughput technologies for gene expression analysis, new molecular
subtypes of breast cancer have been described, considering that systematic investigation of the
expression patterns of thousands of genes and their phenotypic correlations could improve breast
cancer classification. In the early 2000s, Perou et al. identified a distinctive molecular portrait of
breast cancer based on variations in tumor gene expression patterns and hierarchical clustering [14,15],
they described a molecular classification system for breast carcinoma consisting of five intrinsic subtypes:
luminal A, luminal B, HER2-enriched, basal-like, and normal breast-like tumors. Several subsequent
studies showed similar intrinsic molecular classifications, despite slight differences in the naming and
numbers of categories and genes [9]. Four major classes distinct from normal breast-like tumors are
currently widely accepted. The clinical significance of these intrinsic breast cancer subtypes has been
highlighted by their ability to predict treatment response and prognosis [4–7,16–23]; hence their use
in clinical practice has increased over recent years. Currently, several gene-signature tests based on
microarray or quantitative real-time PCR (qRT-PCR) are commercially available [9,24,25].

The clinicopathological surrogate definitions of the intrinsic breast cancer subtypes were endorsed
by the 2013 St. Gallen Consensus Recommendations [26]. Luminal A breast cancer is ER and PR positive
and HER2 negative and expresses low levels of the protein Ki-67. Luminal B breast cancer is ER positive
and either HER2 positive or HER2 negative, with high levels of Ki-67. The HER2-enriched subtype is
ER and PR negative and HER2 positive, and the basal-like subtype is ER and PR negative and HER2
negative (triple-negative breast cancer) [27–29]. As clinical features of the four intrinsic breast cancer
subtypes have been extensively studied in the last few years, discordance has been reported between
IHC-based clinical subtypes and intrinsic subtypes in approximately 20%–50% of cases [20,30,31].
This discordance might be due to intratumoral heterogeneity and/or measurement inaccuracies in
subtype profilers, i.e., IHC analysis for ER/PR status and fluorescence in situ hybridization (FISH)
analysis for HER2 status. These inconsistencies could result in administration of the wrong treatment,
subsequently leading to poor survival [32]. Therefore, accurate identification of receptor status or the
intrinsic breast cancer subtype is of high clinical importance.

Recently, multi-omics technologies [33], miRNA profiling [34] and principle component
analysis-based iterative PAM50 subtyping [35] have helped to improve the accuracy of breast cancer
subtype classification. However, inconsistencies due to measurement noise remain a challenge in this
classification, especially for tumors with receptor expression levels at the boundary between positive
and negative [35]. With the development of next-generation sequencing (NGS) technologies, the cost
of gene expression profiling (GEP) based on RNA-seq is rapidly decreasing, making it possible to
characterize several clinical and molecular features concurrently using RNA-seq-based GEP at a very
low cost [36,37]. Prediction of the intrinsic subtype and receptor status (ER, PR, or HER2) in breast
cancer using RNA-seq-based GEP would increase the clinical usefulness of RNA-seq technologies in
breast cancer. In this study, we investigated whether RNA-Seq-based GEP could be used for a better
prediction of the status of the three receptors by assessing the survival outcomes under the GEP-based
prediction, thereby improving therapeutic decision making.
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2. Results

2.1. Identification of Predictor Genes

In this study, IHC-based characterization of receptor status in breast cancer was refined by using
co-expressed predictor genes. First, predictor genes were identified; seven genes were selected for
ER status prediction, six for PR, and four for HER2 (Table 1). As expected, the ESR1, PGR, and
ERBB2 genes, which encode the ER, PR, and HER2 proteins, respectively, were among the predictor
genes. Model training and receptor-status prediction were then performed using the selected genes.
The mismatch rate reported in Table 1 is the percentage of cases in which the IHC-based status
differed from the predicted status. Among the predictor genes, TFF1 and NAT1 were included in an
eighteen-gene set previously reported to predict sensitivity to hormone therapy [38,39].

Table 1. Summary of mismatch rates and predictor genes for ER, PR, and HER2 status prediction.

Item
Mismatch Rate [%] *

Predictor Genes
TCGA METABRIC

ER 6.28 6.26 ESR1, AGR3, C1orf64, C4orf7, CLEC3A, SOX11, TFF1
PR 11.43 5.54 PGR, AGR3, ESR1, NAT1, PVALB, S100A7

HER2 11.85 5.17 ERBB2, CPB1, GSTT1, PROM1

* Between the immunohistochemistry (IHC)-based and the predicted receptor status. Abbreviations: estrogen
receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), The Cancer Genome
Atlas (TCGA), Molecular Taxonomy of Breast Cancer International Consortium (METABRIC).

2.2. Macroscopic Landscape

Figure 1 shows uniform manifold approximation and projection (UMAP) plots [40] for receptor
status in The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA BRCA) cohort. Each point
represents a sample; the color of the spots corresponds to the (a) subtype (PAM50 class), (b) ER status,
(c) PR status, and (d) HER2 status of the sample. Receptor status (ER, PR, or HER2) was provided
in the original clinical data based on IHC. The expression of 100 genes selected by LASSO was used
to obtain the two-dimensional UMAP projection. The luminal A and B subtypes were mostly HER2-
and either ER+ or PR+. However, a small percentage of the luminal A and B subtypes exhibited ER-,
PR-, and HER2+. Some patients with HER2-enriched or basal-like subtype breast cancer also showed
some level of discordance, as some HER2-enriched and basal-like subtype samples were ER+ or
PR+. Although most HER2+ and HER2-enriched subtype samples overlapped, some HER2-enriched
subtype samples were found to be HER2-breast cancer that exhibited basal-like subtype features.
As only eight patients exhibited normal breast-like breast cancer in the TCGA dataset, they were not
considered in our analyses.

On the other hand, the HER2-enriched subtype samples were ER+ and/or PR+, representing a
luminal subtype. The UMAP plot of the METABRIC dataset revealed a similar macroscopic landscape
(Figure S1). Considering that the distance between samples (points) in the UMAP projection is only an
approximation of the relative distance in their gene expression profiles and that the receptor status was
not clearly defined for all samples, Figure 1 implies that IHC/FISH-based characterization of receptor
status might result in inaccuracies in breast cancer subtype classification.
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Figure 1. Uniform manifold approximation and projection (UMAP) plot showing the receptor status 
in the TCGA Breast Invasive Carcinoma (BRCA) cohort. Each point represents a sample; the color of 
the spots corresponds to the (a) subtype (PAM50 class), (b) ER status, (c) PR status, and (d) HER2 
status of the sample. The tumor subtype, as well as the status of ER, PR, and HER2, were based on 
the available clinical data. Gray points are samples with no available clinical information. A small 
percentage of the luminal A and B subtypes were ER-/PR- and HER2+. Such discordances were also 
observed in some breast cancer patients with the HER2-enriched and basal-like subtypes. Although 
most HER2+ and HER2-enriched subtype samples overlapped, some HER2-enriched subtype samples 
were found to be HER2-breast cancer and to exhibit basal-like subtype features. Some samples were 
ER+ and/or PR+, representing a luminal subtype. 

On the other hand, the HER2-enriched subtype samples were ER+ and/or PR+, representing a 
luminal subtype. The UMAP plot of the METABRIC dataset revealed a similar macroscopic landscape 
(Figure S1). Considering that the distance between samples (points) in the UMAP projection is only an 
approximation of the relative distance in their gene expression profiles and that the receptor status was 
not clearly defined for all samples, Figure 1 implies that IHC/FISH-based characterization of receptor 
status might result in inaccuracies in breast cancer subtype classification. 

Figure 2 shows the same UMAP plot based on the predicted values obtained by the linear 
classifiers. Compared with IHC-based receptor-status characterization, the predicted status was more 
consistent with the intrinsic breast cancer subtype classification, especially for the basal-like and 
luminal subtypes. Most of the luminal subtypes were ER+ and PR+, and the numbers of ER+ or PR+ 
samples in the basal-like subtype were much smaller than after IHC-based status characterization. 
The UMAP plot for the METABRIC dataset based on the predicted receptor status (Figure S2) led to 
the same conclusions, except for PR status, which was not IHC-based in the METABRIC dataset. 

Figure 1. Uniform manifold approximation and projection (UMAP) plot showing the receptor status in
the TCGA Breast Invasive Carcinoma (BRCA) cohort. Each point represents a sample; the color of the
spots corresponds to the (a) subtype (PAM50 class), (b) ER status, (c) PR status, and (d) HER2 status of
the sample. The tumor subtype, as well as the status of ER, PR, and HER2, were based on the available
clinical data. Gray points are samples with no available clinical information. A small percentage of the
luminal A and B subtypes were ER-/PR- and HER2+. Such discordances were also observed in some
breast cancer patients with the HER2-enriched and basal-like subtypes. Although most HER2+ and
HER2-enriched subtype samples overlapped, some HER2-enriched subtype samples were found to be
HER2-breast cancer and to exhibit basal-like subtype features. Some samples were ER+ and/or PR+,
representing a luminal subtype.

Figure 2 shows the same UMAP plot based on the predicted values obtained by the linear classifiers.
Compared with IHC-based receptor-status characterization, the predicted status was more consistent
with the intrinsic breast cancer subtype classification, especially for the basal-like and luminal subtypes.
Most of the luminal subtypes were ER+ and PR+, and the numbers of ER+ or PR+ samples in the
basal-like subtype were much smaller than after IHC-based status characterization. The UMAP plot for
the METABRIC dataset based on the predicted receptor status (Figure S2) led to the same conclusions,
except for PR status, which was not IHC-based in the METABRIC dataset.
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Figure 2. UMAP plot showing gene expression profiling (GEP)-based receptor status in the TCGA 
BRCA cohort. Each point represents a sample; the color of the spots corresponds to the (a) subtype, 
(b) ER status, (c) PR status, and (d) HER2 status of the sample. GEP-based prediction was used to 
determine the subtype, as well as the status of ER, PR, and HER2. Compared to the case with IHC-
based approaches, the predicted status of ER, PR, and HER2 was mostly in accordance with the 
corresponding pattern of receptor status for basal-like, luminal A, and luminal B. In contrast, HER2-
enriched subtype tumors were highly heterogeneous. 

2.3. GEP-Based Receptor-Status Prediction is Reliable for the Luminal and Basal-Like Subtypes 

To quantify discordance between the intrinsic subtype and the clinical subtype defined by HR 
and HER2 status, for each intrinsic subtype, we compared the numbers of positive and negative 
instances of HR and HER2 status based on IHC with the numbers obtained using GEP-based 
prediction in the TCGA and METABRIC datasets (Table 2). The rates of discordance for the basal-
like, luminal A, and luminal B subtypes were lower using GEP-based prediction than using IHC-
based status characterization. Specifically, most samples of the luminal A and B subtypes were 
characterized as HR+ by GEP-based prediction (except for two samples in the TCGA BRCA cohort), 
while some luminal A and luminal B breast cancer samples were characterized as HR- based on IHC. 
In breast cancer patients with the basal-like subtype, a smaller percentage of tumors was determined 
to be HR+ using GEP-based prediction (10% in TCGA and 13% in METABRIC) than when using IHC-
based characterization (17% in TCGA and 20% in METABRIC) (Tables S1 and S2). 
  

Figure 2. UMAP plot showing gene expression profiling (GEP)-based receptor status in the TCGA
BRCA cohort. Each point represents a sample; the color of the spots corresponds to the (a) subtype,
(b) ER status, (c) PR status, and (d) HER2 status of the sample. GEP-based prediction was used to
determine the subtype, as well as the status of ER, PR, and HER2. Compared to the case with IHC-based
approaches, the predicted status of ER, PR, and HER2 was mostly in accordance with the corresponding
pattern of receptor status for basal-like, luminal A, and luminal B. In contrast, HER2-enriched subtype
tumors were highly heterogeneous.

2.3. GEP-Based Receptor-Status Prediction is Reliable for the Luminal and Basal-Like Subtypes

To quantify discordance between the intrinsic subtype and the clinical subtype defined by HR and
HER2 status, for each intrinsic subtype, we compared the numbers of positive and negative instances
of HR and HER2 status based on IHC with the numbers obtained using GEP-based prediction in
the TCGA and METABRIC datasets (Table 2). The rates of discordance for the basal-like, luminal
A, and luminal B subtypes were lower using GEP-based prediction than using IHC-based status
characterization. Specifically, most samples of the luminal A and B subtypes were characterized
as HR+ by GEP-based prediction (except for two samples in the TCGA BRCA cohort), while some
luminal A and luminal B breast cancer samples were characterized as HR- based on IHC. In breast
cancer patients with the basal-like subtype, a smaller percentage of tumors was determined to be
HR+ using GEP-based prediction (10% in TCGA and 13% in METABRIC) than when using IHC-based
characterization (17% in TCGA and 20% in METABRIC) (Tables S1 and S2).
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On the other hand, considerable discordance was observed in the receptor status of HER2-enriched
subtype breast cancer patients using both IHC-based characterization and GEP-based prediction.
Only 37% and 23% of patients with HER2-enriched subtype breast cancer were HR-/HER2+ in the
METABRIC and TCGA datasets, respectively. Furthermore, 17% and 18% of tumors were triple
negative, and 25% and 9% were luminal-like (HR+ and HER2−) in the METABRIC and TCGA datasets,
respectively. Similar findings were obtained for IHC-based characterization of HR and HER2 status.

In summary, GEP-based prediction was more concordant with the typical receptor-status pattern
of the intrinsic subtypes of patients with the basal-like, luminal A, and luminal B subtypes. However,
this does not necessarily mean that receptor-status prediction based on GEP is more accurate than
IHC-based characterization. The only way to verify the accuracy of the status predictions is to assess
the differences in clinical outcomes among the different clinical subtypes defined by the status of the
three receptors.

Table 2. HR and HER2 status for each intrinsic subtype as determined by (a) IHC- and (b) GEP-based
prediction. Patients with no available IHC-based receptor status were excluded.

Dataset Subtype (a) IHC-Based Characterization (b) GEP-Based Prediction

HR+/− HER2+/− HR+/− HER2+/−

TCGA

Luminal A 222/4 24/130 229/2 4/227
Luminal B 126/1 22/69 127/0 8/119
Basal-like 16/78 6/59 10/87 2/95

HER2-enriched 32/24 40/10 44/14 39/19

METABRIC

Luminal A 680/6 19/283 696/0 19/677
Luminal B 465/1 23/171 474/0 29/445
Basal-like 61/243 14/118 40/268 24/284

HER2-enriched 119/111 50/34 125/111 119/117
Normal breast-like 161/21 11/51 165/19 11/173

IHC: immunohistochemistry; GEP: gene expression profiling.

2.4. GEP-Based Receptor-Status Prediction Had Higher Prognostic Significance in Terms of Patient Survival

To verify the accuracy of the receptor-status predictions, survival outcomes for various
combinations of HR and HER2 status were compared. The significance of the prognostic value
of the predicted and IHC-characterized HR and HER2 status was compared. Separate survival analyses
were performed in the following four patient groups:

(a) HR+ (either ER+ or PR+) group: this group benefited from hormone therapy. According to the
stage and clinical characteristics, these patients often received a combination of hormone therapy
and chemotherapy. For survival analysis, the patients in this group were stratified based on
administration of hormone therapy.

(b) Hormone therapy group: to confirm the benefit of hormone therapy for HR+ patients, only those
who received hormone therapy, with or without chemotherapy, were selected, and the survival of
HR+ patients was compared to that of HR– patients.

(c) HR+/non-luminal subtype group: as shown in Table 2, there were small percentages of
HR+ patients among patients with the HER2-enriched and basal-like subtypes. Hence,
we assessed whether breast cancer patients with the HR+ non-luminal subtype benefited
from hormone therapy.
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(d) HER2+ group: breast cancer patients with the HER2+ subtype benefited from anti-HER2 targeted
molecular therapy (TMT). We assessed the survival of HER2+ breast cancer patients based on
TMT. As no information regarding TMT was available in the METABRIC dataset, this analysis
was performed only for the TCGA BRCA cohort.

Among patients in the TCGA BRCA cohort, GEP-based receptor-status prediction provided a
higher hazard ratio with higher significance in HR– patients (a), implying that GEP-based receptor-status
prediction had higher prognostic value than traditional IHC-based HR status characterization. On the
other hand, in the hormone-therapy group (b), IHC-based receptor-status characterization was found
to be more accurate than GEP-based receptor-status prediction. However, the numbers of samples in
the test group (HR- patients) were only 11 and 19 for receptor-status characterization based on IHC
and GEP, respectively. Among patients with HR+ non-luminal subtype breast cancer (c), IHC-based
receptor status had no significant prognostic value, in contrast to GEP-based receptor-status prediction.
This finding highlighted that HR+ breast cancer patients benefited from hormone therapy, even if
they were diagnosed with non-luminal subtype tumors. Among HER2+ patients (d), IHC-based
receptor-status characterization exhibited higher prognostic value when considering only the p-value.
However, the numbers of patients with IHC-based receptor-status data in the test group (HER2+

patients with TMT) were only 22 and 18 based on IHC and GEP, respectively, and all patients that
received TMT survived; hence, the hazard ratio could not be precisely determined (Figure 3 and
Table 3). The small differences between p values shown in Figure 3b,d may have been caused by the
very small target sample sizes, whereas that shown in Figure 3a is likely meaningful, since the sample
sizes were large (control group, ~430; test group, 300). The difference between p values shown in
Figure 3c was sufficiently large to conclude that the GEP-based status was more accurate than the
IHC-based status, regardless of the small sample size. Survival analyses in the METABRIC cohort
(excluding patients with a pathological stage of I) showed similar findings, implying that GEP-based
receptor-status prediction had higher prognostic significance in terms of patient survival compared to
traditional IHC-based receptor-status characterization (Figure 4 and Table 3).

Table 3. A summary of the hazard ratios and associated statistical significance obtained from survival
analyses using IHC-based receptor status (IHC) or the predicted status (pred.). For the survival analysis,
data from the TCGA and METABRIC datasets were used.

Patient Group Conditions
Compared

# of Samples p-Value Hazard Ratio

IHC Pred. IHC Pred. IHC Pred.

TCGA

(a) HR+ H vs. NH 727 (438, 289) 735 (430, 305) 0.00031 2.11·10−05 0.89 1.0
(b) Hormone therapy HR+ vs. HR– 449 (438, 11) 449 (430, 19) 3.15·10−08 3.38·10−07 2.23 2.0
(c) HR+ in HER2e/Basal H vs. NH 44 (23, 21) 50 (21, 29) 0.48 0.045 0.65 1.88
(d) HER2+ T vs. NT 150 (22, 128) 77 (18, 59) 0.021 0.042 19.4 19.6

METABRIC

(e) HR+ H vs. NH 564 (477, 87) 566 (470, 96) 0.76 0.12 0.06 0.28
(f) Hormone therapy HR+ vs. HR– 511 (477, 34) 511 (470, 41) 0.18 0.047 0.36 0.49
(g) HR+ in HER2e/Basal H vs. NH 73 (55, 18) 71 (48, 23) 0.66 0.022 0.18 0.77

HR: hormone receptor; H: with hormone therapy regardless of chemotherapy; NH: without hormone therapy; T:
with targeted molecular therapy regardless of hormone/chemotherapy; NT: without targeted molecular therapy.
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panel) or GEP-based (right panel) receptor status in the following four patient groups: (a) HR+ (either 
ER+ or PR+) group, (b) hormone therapy group, (c) HR+/non-luminal subtype group, and (d) HER2+ 
group. Patients were stratified to those who received hormone therapy (H) and those who did not 
(NH), or those who received targeted molecular therapy (With TMT) and those who did not (No 
TMT). (a) GEP-based receptor status prediction had higher prognostic significance in terms of patient 
survival compared to IHC-based HR status. (b) IHC-based receptor-status characterization was found 
to be more accurate than GEP-based receptor-status prediction. However, the numbers of samples in 

Figure 3. Kaplan–Meier survival analysis of patients from the TCGA dataset using IHC-based (left
panel) or GEP-based (right panel) receptor status in the following four patient groups: (a) HR+ (either
ER+ or PR+) group, (b) hormone therapy group, (c) HR+/non-luminal subtype group, and (d) HER2+

group. Patients were stratified to those who received hormone therapy (H) and those who did not
(NH), or those who received targeted molecular therapy (With TMT) and those who did not (No TMT).
(a) GEP-based receptor status prediction had higher prognostic significance in terms of patient survival
compared to IHC-based HR status. (b) IHC-based receptor-status characterization was found to be



Cancers 2020, 12, 1165 9 of 17

more accurate than GEP-based receptor-status prediction. However, the numbers of samples in the
test group (HR–patients) for receptor-status characterization based on IHC and GEP were only 11
and 19, respectively. (c) IHC-based receptor status had no significant prognostic value, in contrast
to GEP-based receptor-status prediction. (d) The statistical significance of IHC-based receptor-status
characterization indicated higher prognostic value. However, the numbers of patients with IHC-based
receptor-status data in the test group (HER2+ patients with targeted molecular therapy, TMT) were
only 22 under IHC and 18 under GEP, and all patients who received TMT survived; hence, the hazard
ratio could not be precisely determined. H, hormone therapy; NH, no hormone therapy; TMT, targeted
molecular therapy.
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Figure 4. Kaplan–Meier survival analysis in patients of the METABRIC dataset with a pathological
stage of II or III (excluding pathological stage I). The analysis was performed using IHC-based receptor
(left panel) or GEP-based receptor (right panel) status in the following four patient groups: (a) HR+

(either ER+ or PR+) group, (b) hormone therapy group, and (c) HR+/non-luminal subtype group.
Patients were stratified to those who received hormone therapy (H) and those who did not (NH).
GEP-based receptor-status prediction had higher prognostic significance in terms of patient survival
compared to traditional IHC-based receptor-status characterization. H, hormone therapy; NH, no
hormone therapy.
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2.5. Patients with Non-Matching Receptor Status Had Significantly Worse Survival

The type of adjuvant therapy is based mainly on the status of the three receptors. Hence, accurate
characterization of receptor status is of high clinical importance. As shown in Figure 5, patients with
matching receptor status had longer overall survival (OS) compared to those with non-matching status
(hazard ratios 0.6 and 0.79 for the TCGA BRCA and METABRIC cohorts, respectively). Assuming higher
accuracy for GEP-based receptor-status prediction, these results highlight the impact of inappropriate
treatment due to errors in receptor-status characterization. Although it is unlikely that GEP-based
receptor-status prediction is 100% accurate, it can identify patients who can benefit from hormone
therapy more reliably than the traditional IHC-based method.
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3. Discussion

IHC-based assessment of the expression of a specific protein is undoubtedly an important tool for
detecting biomarkers in clinical practice. However, this procedure entails severe limitations, including
variations in the IHC procedure that can influence the results and their interpretation. As an alternative,
biomarker characterization could be performed at the mRNA level; unfortunately, high mRNA levels
do not necessarily translate into high levels of the corresponding protein. Additionally, characterization
based solely on the expression levels of a single gene or protein inevitably entails the risk of noise.
To overcome these limitations, we considered the potential use of GEP-based receptor-status prediction
for molecular characterization of breast cancer subtypes. Changes in the expression of a gene should
be reflected in those of co-expressed genes; therefore, prediction based on the expression of correlated
genes may outperform molecular characterization based on a single gene.

In the era of biomarker-assisted targeted therapy, the method used to assess biomarker
expression is crucial, as it can improve the prognosis for patients with breast cancer and other
malignancies. Several challenges remain to be overcome in biomarker-assisted targeted therapies,
such as IHC-determined borderline HR-positivity, equivocal HER2 amplification, and discordance
between IHC-based subtypes and intrinsic subtypes. Previous studies have shown significant
discordance between clinical subtypes and intrinsic subtypes, which affects the prognosis of breast
cancer patients. Kim et al. reported that discrepancies between the IHC-based subtype and the
intrinsic subtype were associated with poor survival, highlighting the limitations of current IHC-based
classification methods [32]. A previous study reported that 27% of ER+ tumors were non-luminal
breast cancer, and that the intrinsic subtype added significant prognostic and predictive values to
standard clinical markers [20]. A subsequent study found that 58.3% of the ER+/HER2 subcohort had
the luminal A subtype and 77.3% of the ER-/HER2 subcohort had the basal subtype [30]. Among the
HER2+ breast cancer cases, 51% showed the HER2-enriched subtype, and the complete pathologic
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response rate to HER2-targeted neoadjuvant therapy was significantly higher in the HER2-enriched
subtype than in the luminal A and B subtypes [31]. Consistent with these results, we confirmed the poor
survival of patients with non-matching subgroup classifications in both the TCGA and METABRIC
datasets. These results emphasize the clinical importance of establishing more accurate classification
methods. Herein, we evaluated the concordance between the intrinsic subtype and the predicted status
of ER, PR, and HER2 using GEP. We found a higher concordance rate between the intrinsic subtype and
GEP-based receptor-status prediction compared to receptor status as characterized by IHC. This was
consistent in all breast cancer subtypes except for the HER2-enriched subtype. These findings imply
that GEP-based HR status prediction could be a promising alternative approach to IHC.

Both IHC-based receptor-status characterization and GEP-based status prediction resulted in
considerable discordance between HER2-positivity and the HER2-enriched subtype. Although the
HER2-enriched subtype is the predominant type of HER2+ breast cancer, three other subtypes exist.
A recent study analyzing data from four prospective neoadjuvant trials reported that the percentages
of the luminal A, luminal B, HER2-enriched, and basal-like subtypes among HER2+ breast cancer
patients were 24%, 20%, 47%, and 9%, respectively [41]. This finding may be partly explained by high
intratumoral heterogeneity. Previous genomic analyses have revealed that HER2+ breast cancer is
extremely clinically and biologically heterogeneous [42,43]. The HER2-enriched subtype is also highly
heterogeneous, rendering IHC/FISH- and PAM50-based subtyping challenging.

Furthermore, the HER2-enriched subtype can have a distinctive transcriptional landscape
independent of HER2 amplification. Analyses in TCGA showed that the HER2-enriched subtype
was characterized by the highest number of DNA mutations, including in TP53 and PIK3CA [28].
Recently, Daemen A et al. performed genomic and transcriptomic profiling of HER2-enriched tumors;
they concluded that HER2 was not a cancer subtype but rather a pan-cancer phenomenon and that
HER2+ tumors are hormonally driven [44]. Even though further stratification of HER2-enriched breast
cancer might be beneficial, it might be difficult to achieve further characterization based on GEP.
To overcome the limitations of macroscopic GEP, different microscopic prediction approaches could be
used, including laser dissection of specimens for transcriptomic analyses of subcellular populations,
precise reconstruction of transcriptome data and use of single-cell RNA-seq. These approaches might
achieve more in-depth characterization of the molecular subtypes.

To investigate the clinical relevance of GEP-based prediction of ER, PR, and HER2 receptor status,
we performed survival analysis of HR+ patients who did or did not receive hormone therapy, as well as
of HR+ and HR– patients treated with hormone therapy. GEP-based receptor-status prediction showed
a more significant association between treatment outcomes and HR status compared to IHC-based
receptor-status characterization. Of note, some benefit was achieved from hormone therapy by patients
who were identified as HR+ non-luminal breast cancer using GEP-based prediction, in contrast to
when IHC-based HR status characterization was performed. These results imply that GEP-based
receptor-status prediction can better identify patients who can benefit from hormone therapy, even in
patients with non-luminal subtype breast cancer. Some studies have shown that adjuvant or palliative
hormone therapy is less effective in patients with HR+ breast cancer of the non-luminal subtype [45,46].
However, there is limited evidence regarding which HR+ non-luminal breast cancer patients will benefit
from hormone therapy. Future studies are needed to determine whether GEP-based receptor-status
prediction can address these clinically important questions. In contrast to the HR status, we did not
observe improvement in HER2 status prediction; this may be attributed partially to the small number
of patients who received targeted molecular therapy for HER2.

4. Materials and Methods

The theoretical basis for using GEP to improve predictions of hormone receptor status (i.e., ESR1,
PGR, and ERBB2 gene expression statuses) is that other genes have highly correlated expression levels
that indirectly reflect the expression levels of the target genes. Although the measured expression
levels of these genes contain independent noise, this noise may be reduced according to the correlation
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between relevant genes and their expression levels. Several machine learning techniques can be
applied for this purpose, e.g., extreme gradient boost (XGB) [47] or support vector machine (SVM) [48]
methods. In this study, we used logistic regression with a LASSO penalty; this approach is suitable
for the prediction of hormone receptor status as well as the selection of co-expressed predictor genes.
The workflow of this study is shown in Figure 6. Our analyses were performed in three steps.
First, we identified common predictor genes from two different gene-expression datasets. Second,
we predicted ER, PR, and HER2 status based on the shared predictor genes. Finally, we compared
survival outcomes according to IHC-based and GEP-based predictions of receptor status.
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4.1. Datasets

For this study, we used breast cancer patients’ gene-expression-profile and clinical data acquired
from The Cancer Genome Atlas (TCGA) [http://firebrowse.org/] and the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) databases [https://www.cbioportal.org/] [27].
Both datasets include information on the history of adjuvant treatment, which was a critical element in
the survival analyses performed in this study. A summary of the data contained in the two datasets is
shown in Table 4.

Table 4. A summary of data availability in the TCGA BRCA cohort and METABRIC dataset.

Item TCGA BRCA Cohort METABRIC Comment

Gene expression profile Yes Yes
PAM50-based subtype Yes (partially) Yes

ER status Yes (IHC) Yes (IHC, non-IHC) Used IHC-based status
PR status Yes (IHC) Yes (non-IHC) Used for receptor status

HER2 status Yes (IHC) Yes (IHC, non-IHC) Used IHC-based status
RPPA measurements Yes No

Types of drug treatment
Chemo, hormone and

targeted molecular
therapy

Chemo and hormone therapy Used for survival analysis

Age at initial diagnosis Yes Yes Used for sample selection
Pathological stage Yes Yes Used for sample selection

PAM50: prediction analysis of microarray 50 genes; RPPA: reverse phase protein array; ER: estrogen receptor; PR:
progesterone receptor; HER2: human epidermal growth factor receptor 2.

The TCGA BRCA dataset contained data from tumor samples (n = 1092 patients) and adjacent
normal tissues (n = 112 patients). The METABRIC dataset contained data from 2506 tumor samples,

http://firebrowse.org/
https://www.cbioportal.org/
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including GEP data from 1904 patients. The TCGA and METABRIC datasets also contained clinical
data, including ER, PR, and HER2 status, as well as histories of surgery, radiation-therapy, and drug
treatments; however, clinical data were not available for all of the patients. Information regarding the
tumor subtype was available for some samples in the TCGA BRCA dataset; PAM50 mRNA profile
information was available for 523 of 1092 patients [26]. To ensure consistency between the two datasets,
information on ER and HER2 status as determined by IHC was used for patients in the METABRIC
dataset. Non-IHC-based PR status was used for the METABRIC cohort because the PR status was not
assessed by IHC in these patients.

4.2. Prediction Model and Gene Selection

Based on GEP and the status of the three receptors, logistic regression with LASSO penalty was
performed in a supervised mode to identify predictor genes for each of the two datasets. This analysis
was performed using the R package glmnet [49–51]. In the TCGA BRCA dataset, the expression
levels of 17,202 genes were log2-transformed and normalized. In the METABRIC dataset, already
normalized mRNA expression data were used. To identify the common predictor genes and minimize
overfitting-related errors, LASSO penalty weights were selected for a set of predefined genes (e.g.,
10, 20, 40, and 60), and for each number, the penalty weight that led to the closest number of selected
genes was chosen. This approach was conducted separately for the TCGA and METABRIC datasets.
Common predictor genes between TCGA and METABRIC were then identified to avoid dataset-related
dependencies. After inspecting the overall number of shared genes, 40 genes were selected; these
contained 7, 6, and 4 common predictor genes for ER, PR, and HER2, respectively, as summarized
in Table 1. Subsequently, logistic regression was performed again to train the models for ER, PR,
and HER2 status prediction for both TCGA and METABRIC. The mismatch rate was obtained by
fivefold cross-validation.

Pairwise correlations of gene-expression levels between the selected genes are shown in Figures
S3, S4, and S5. Of note, PR predictor genes included ESR1 and AGR3, which were also ER predictor
genes. Furthermore, among the four HER2 predictor genes, CPB1, GSTT1, and PROM1 showed only
small correlations with ERBB2, implying that HER2 status prediction was determined predominantly
by ERBB2.

4.3. Survival Analysis for Accuracy Evaluation and Sample Selection

The survival analyses were performed for various group/condition pairs; significance (p-value)
was used as an accuracy criterion. Cox’s proportional hazard model was used to determine overall
survival [52]; the analysis was repeated using the IHC-based status and the predicted status. For the
survival analysis based on IHC-based receptor status, we used those samples for which IHC-based
receptor status was available. For the survival analysis based on predicted-receptor status, we used
the same set of samples without considering discrepancies between the predicted status and the
IHC-based status. As shown in Table 1, in 5%–12% of cases, the predicted status differed from the
IHC-based status.

Additionally, for the survival analyses, patients were selected according to the following criteria:
(1) pathological cancer stage I, II, or III and (2) age <80 years at initial diagnosis. Subsequently, patients
were stratified according to adjuvant drug treatments. The characteristics of the patients included in
the survival analyses are summarized in Table 5.
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Table 5. A summary of the samples available in the TCGA and METABRIC datasets.

Variable Conditions
The Number of Available Samples

In TCGA In METABRIC

Age ≤80 years 1039 1783

Pathologic stage:
I 170 464
II 598 736
III 232 105

Therapy applied:

Chemotherapy 578 393
Hormone therapy 495 1084

Both chemo- and hormone therapy 324 181
Targeted molecular therapy 30 NA

ER status:
Positive 760 1339

Negative 230 418
NA 2 0

PR status:
Positive 663 946

Negative 324 837
NA 4 0

HER2 status:
Positive 159 114

Negative 524 647
NA 182 27

ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2. For ER, PR,
and HER2 status; ‘indeterminate’ and ‘equivocal’ were reported as NA.

5. Conclusions

Therapeutic decision making in breast cancer is heavily based on the clinical subtype defined by
HR and HER2 expression status. NGS-based approaches could allow more accurate characterization
of the various molecular and clinical features of breast cancer. GEP-based receptor-status prediction
could provide a better understanding of breast cancer pathology and guide physicians in decision
making. To improve the performance of GEP-based prediction models, data from larger cohorts are
required for standardization of the procedure. In addition, a more comprehensive analysis of receptor
status should be performed to identify the characteristics that affect the positivity or negativity of
the status of the three receptors, as well as the mechanisms responsible for the discordance between
intrinsic subtype and clinical subtype.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/5/
1165/s1, The following materials contain some of TCGA and METABRIC clinical data and the new
predictions on the 3-receptor status, which were used for the survival analyses in this work: Table S1.
TCGA_BRAC_clinical_data_n_pred_status.csv, Table S2. METABRIC_clinical_data_n_pred_status.csv. Figure S1:
UMAP plot showing receptor status of patients in the METABRIC dataset. The tumor subtype and ER, PR,
and HER2 status were based on the available clinical data. Gray points are samples with no available clinical
information. The UMAP plot of the METABRIC dataset revealed a similar macroscopic landscape to that for
TCGA. Figure S2: UMAP plot showing receptor status of patients in the METABRIC dataset. GEP-based prediction
was used to determine the subtype, as well as the status of ER, PR, and HER2. Similar to TCGA, the predicted ER
and HER2 status (but not PR) was mostly in accordance with the corresponding pattern of receptor status for the
basal-like, luminal A, and luminal B subtypes. Figure S3: Scatter plots and Pearson’s correlation coefficients of
seven predictor genes for ER status prediction in the TCGA BRCA cohort (a) and METABRIC dataset (b). Blue:
ER+; red: ER–; empty circle: NA. ER status characterization was based on IHC. Figure S4: Scatter plots and
Pearson’s correlation coefficients of six predictor genes for PR status prediction in the TCGA BRCA cohort (a)
and METABRIC dataset (b). Blue: PR+; red: PR–; empty circle: NA. The PR status of TCGA samples was based
on IHC, whereas that of METABRIC samples was not based on IHC. The PR-status predictor genes included
ESR1 and AGR3, which were also predictor genes for ER status. Figure S5: Scatter plots and Pearson’s correlation
coefficients of four predictor genes for HER2 status prediction in the TCGA BRCA cohort (a) and METABRIC
dataset (b). Blue: HER2+; red: HER2–; empty circle: NA. CPB1, GSTT1, and PROM1 showed weak correlations
with ERBB2, implying that HER2 status prediction was determined predominantly by ERBB2.
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