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Purpose: Reactive oxygen species (ROS) are practically essential in radiotherapy to
damage cancer cells; however, they are always inadequate for some malignant entities.
Here, we designed a biodegradable mesoporous silica decorated with hemin and glucose
oxidase (GOD@Hemin-MSN) to generate a chemodynamic therapy in order to enhance
the killing capacity of radiotherapy.

Methods: Mesoporous silica, as an outstanding drug carrier, can deliver hemin and
glucose oxidase to the tumor site. With high level of metabolism activity, cancer cells are
abundant in glucose, which can be oxidized into H2O2 by glucose oxidase (GOD) on site.
The generated H2O2 is subsequently converted into intracellular ROS, especially hydroxyl
radical within the tumor microenvironment, by hemin, which has mimetic peroxidase
properties. By this means, the ROS can be supplemented or enriched to facilitate the
killing of tumor cells.

Results: The chemodynamic therapy induced by GOD@Hemin-MSN produced
quantities of ROS, which compensated for their inadequacy as a result of radiotherapy,
and exhibited remarkable antitumor efficacy, with a tumor inhibition rate of 91.5% in A549
tumor-bearing mice.

Conclusion: This work has validated GOD@Hemin-MSN as a radiosensitizer in
chemodynamic therapy, which showed biocompatibi l i ty and potential for
translational application.

Keywords: mesoporous silica, peroxidase mimetic, reactive oxygen species, radiotherapy, chemodynamic therapy
INTRODUCTION

Compared with conventional enzymes, nanozymes with some enzyme-mimicking properties have
exhibited multiple applications in clinical diagnosis (1–4), bioanalysis (4, 5), biosensors (6, 7), and
disease treatment (8, 9), with advantages of facile synthesis, tunable catalytic activities, and high
stability. Radicals including O−

2 , O
2−
2 , OH·, and OOH·, known as reactive oxygen species (ROS),
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SCHEME 1 | Illustration of biodegradable peroxidases mimicking nanohybrid
GOD@Hemin-MSN for chemodynamic therapy to realize radiosensitization.
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are essentially involved in many processes of cellular metabolism,
and some nanozymes are capable of regulating the level of
intracellular ROS, which provides possibilities for mediating
ROS generation to achieve desired therapeutic outcomes in
clinical practice (10, 11). The tumor microenvironment (TME)
has unique characteristics including mild acidity (6, 12, 13) and
an overexpressed H2O2 (14–16), and a highly complex TME
might impair the catalytic effects of nanozymes, resulting in
failure of obtaining the desired therapeutic outcomes (17, 18).
On the other hand, such features could be utilized by some
H2O2-responsive nanozymes to realize specific antitumor
therapies. These nanozymes should be able to decompose
H2O2 into ROS due to their peroxidase (POD)-mimicking
properties under specific TME conditions, i.e., mildly acidic
(19–21). However, the amount of intracellular H2O2 in tumor
cells is still insufficient to generate enough ROS for achieving the
desired therapeutic outcomes (22). Hence, a good way to treat
tumors is to increase the level of intracellular H2O2 and convert
it into sufficient ROS in tumor cells.

As one of the most widely used and effective treatments for
local control of malignant tumors, radiotherapy (RT) still needs to
be improved in many ways, especially for radiation-insensitive
tumors (23, 24). Radiotherapy causes tumor cells to undergo
apoptosis via the induction of direct and indirect damage on the
DNA, with the indirect damage primarily caused by the ROS
produced during the process of RT (25). Limited by the tolerable
dose of adjacent normal tissues, the delivery of radiation with
sufficient high dose to specific tumor sites is not always achievable,
which seriously impairs the treatment efficacy of RT, especially for
radiation-insensitive tumors (26–28). Improving the treatment
efficacy of malignant tumors using RT still remains a prominent
problem in clinical practice (29), and increasing the energy deposit
of ionizing radiation in the tumor region should be a good solution
(30). To this end, nano-radiosensitizers with remarkable physical
and chemical properties to enhance the killing effect of radiation
on tumor cells have caught the attention of radiation oncologists
in recent years (22, 24), providing significant opportunities for
tumor RT sensitization. Moreover, radiosensitizers with specific
targeting abilities can aggregate inside tumor cells with minimal
adverse effects on normal tissue cells. Some nano-radiosensitizers
enhance the energy deposition on tumor tissues by taking
advantage of high-Z elements, which improves the photoelectric
effect of radiation rays (31–34). Hypoxia, as an obvious
characteristic of the TME, hinders the treatment efficacy of RT,
resulting in radioresistance, a category of radiosensitizers designed
to focus on producing stable radicals in the TME to damage DNA
(35). For example, the overexpression of H2O2 in the TME could
be catalyzed to oxygen by nanozyme radiosensitizers such as
MnO2 (33, 36) and Pt-based nanomaterials (Yan 31, 37), among
others. Besides, RT is usually combined with other therapeutic
methods such as photothermal therapy (38, 39), photodynamic
therapy (40, 41), and chemotherapy (42, 43) to obtain synergistic
therapeutic outcomes. These radiosensitizers contribute directly or
indirectly to ROS generation to induce accumulated tumor cell
apoptosis, enhancing RT performance but maintaining a
lower toxicity.
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ROS can induce indirect tumor cell apoptosis; however, they
can also be eliminated by tumor cells themselves, thereby
resulting in a tumor’s radioresistance (44, 45). Therefore,
incremental amounts of ROS are required to overcome the
radiation tolerance induced by the self-protective mechanisms
of tumor cells. Here, we designed a biodegradable nanohybrid for
radiosensitization by immobilizing glucose oxidize (GOD) and
hemin on the surface of mesoporous silica nanospheres (MSN)
to induce more production of ROS, as shown in Scheme 1.
Initially, the nanohybrid was selectively delivered to the tumor
site via an enhanced permeability and retention effect in the
TME. Then, the GOD on the nanohybrid catalyzes intracellular
glucose into sufficient H2O2, which is decomposed to generate
incremental amounts of ROS due to the intrinsic POD enzyme-
mimicking activity of hemin in order to achieve chemodynamic
therapy. The carrier MSN is biodegradable in vivo and can be
metabolized in the human body to ensure biological safety. By
this means, incremental production of intracellular ROS
facilitates the killing effect of ionizing radiation, with minimal
damage to adjacent normal tissues.
RESULTS AND DISCUSSION

The design of the present nanohybrid includes decorating GOD
and hemin on the MSN. Figure 1A demonstrates spherical MSN,
Hemin-MSN, and GOD@Hemin-MSN. Moreover, GOD@
Hemin-MSN is uniform, with an average size of approximately
190 nm according to particle size statistics (Supplementary
Figure S1), which is consistent with the Z-average diameter
May 2022 | Volume 12 | Article 872502
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(Figure 1B). In addition, no obvious changes in the zeta potential
or Z-average diameter were observed after hemin or GOD, and
hemin was immobilized on the MSN. The X-ray photoelectron
spectroscopy (XPS) measurements of the Si2p orbit of GOD@
Hemin-MSN in Supplementary Figure S2 demonstrate a
binding energy of 103.6 eV, confirming the existence of Si4+.

Subsequently, the POD-like property of GOD@Hemin-MSN
was then evaluated using 3,3′,5,5′-tetramethylbenzidine (TMB)
substrate. TMB is transparent and colorless, but turns blue in the
presence of bothH2O2 and peroxidase. Comparative analyses were
performed in TMB solutions with various combinations, including
H2O2, hemin-MSN, GOD@Hemin-MSN, hemin-MSN+H2O2,
and GOD@Hemin-MSN+glucose, as shown in Figure 1C. No
obvious change in color was observed in TMB in the presence of
H2O2, hemin-MSN, or GOD@Hemin-MSN, proving that they
could not oxidize TMB alone. However, the TMB solution turned
blue when both hemin-MSN and H2O2 were added, suggesting
that TMB was oxidized. Similar changes could be found in the
presence of GOD@Hemin-MSN and glucose. It should be noted
that H2O2 was not added in group 5, where the oxidization of
TMB occurred induced by catalyzing glucose to H2O2 using
GOD@Hemin-MSN. Moreover, time-dependent changes in the
absorbance spectra of the TMB solution in the presence of GOD@
Hemin-MSN and glucose were demonstrated, shown in
Frontiers in Oncology | www.frontiersin.org 3
Figure 1D. The characteristic peaks of the absorbance spectra at
370 and 652 nm increased over time. Comparison experiments of
TMB with various solutions are demonstrated in Figure 1E.
Consistent with the results shown in Figure 1C, negligible
changes were observed regarding the absorbance intensity at
652 nm in the H2O2, hemin-MSN, or the GOD@Hemin-MSN
group. However, both hemin-MSN+H2O2 and GOD@Hemin-
MSN+glucose exhibited remarkable catalytic activity with time
variance. Moreover, we also studied the effects of temperature and
pH on the POD activity of GOD@Hemin-MSN+glucose. The
results are shown in Supplementary Figure S3. It can be inferred
that 37°C was a suitable temperature for POD activity; however,
the group in 50°C exhibited more obvious effects. Meanwhile, the
POD activity was higher in the mildly acidic solution. These
results confirmed the significant enzyme-like properties of GOD@
Hemin-MSN in the conversion of glucose into ROS.

Cytotoxicity analysis was performed on a normal human lung
fibroblast (NHLF) cell line using the CCK-8 assay. To assess the
cytotoxicity of GOD@Hemin-MSN, we incubated NHLF cells
with GOD@Hemin-MSN at various therapeutic concentrations
(12.5, 25, 50, 100, 200, and 500 mg/ml); the group without any
treatment was set as the control group. As shown in Figure 2A,
the cell survival rate decreased slightly with the increase of
GOD@Hemin-MSN concentration. It is notable that the cell
A B

C ED

FIGURE 1 | Characterization. (A) TEM images of mesoporous silica nanospheres (MSN), hemin-MSN, and MSN decorated with hemin and glucose oxidase
(GOD@Hemin-MSN) (from left to right). (B) Zeta potential and Z-average diameter measurements of MSN, hemin-MSN, and GOD@Hemin-MSN. (C) Images of the
reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) solution (0.1 mM) to (1) H2O2, (2) hemin-MSN, (3) GOD@Hemin-MSN, (4) hemin-MSN+H2O2, and (5) GOD@Hemin-
MSN+glucose. (D) UV–vis spectra of the reaction of TMB solution to GOD@Hemin-MSN+glucose with time variation. (E) Time-dependent changes of the
absorbance of TMB solution at 652 nm with various solutions.
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survival rate still reached more than 60% even at the highest
concentration (500 mg/ml), indicating that GOD@Hemin-MSN
exhibits no obvious cytotoxicity and good biocompatibility.
Subsequently, to verify its killing effect on tumor cells
(Figure 2B), A549 cells, human lung adenocarcinoma cells,
were treated with 6 different treatment combinations: 1)
control, 2) RT, 3) hemin-MSN, 4) GOD@Hemin-MSN, 5)
hemin-MSN+RT, and 6) GOD@Hemin-MSN+RT. The RT
dose was 6 Gy, and the equivalent concentration of hemin-
MSN was 50 mg/ml. No obvious cytotoxicity was observed in the
control, RT, and hemin-MSN treatment groups. In the hemin-
MSN+RT and GOD@Hemin-MSN+RT treatment groups,
Frontiers in Oncology | www.frontiersin.org 4
however, apparent cell death was observed, while the GOD@
Hemin-MSN+RT treatment group exhibited muchmore obvious
cytotoxicity than did the hemin-MSN+RT treatment group. The
confocal laser scanning microscopy (CLSM) images of the live/
dead staining assay further confirmed these results
(Supplementary Figure S4). These results indicate that GOD
is capable of oxidizing glucose to produce abundant amounts of
H2O2, which, when combined with endogenous H2O2, was
catalyzed by hemin to produce incremental amounts of ROS,
realizing chemodynamic therapy for a greater killing effect on
tumor cells in addition to standard RT. We also noticed, after
6 Gy radiotherapy, that the cell killing rate of the GOD@Hemin-
A B C
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F

FIGURE 2 | Cell experiments. (A) Cell viability of normal human lung fibroblast (NHLF) cells after incubation with mesoporous silica decorated with hemin and
glucose oxidase (GOD@Hemin-MSN) at various concentrations. (B) Cell viability of A549 cells after various treatments. (C) Confocal laser scanning microscopy
(CLSM) images of g-H2AX staining. (D) CLSM images of reactive oxygen species (ROS) staining. (E) Colony formation. (F) Transwell experiments after various
treatments. (G) Wounding assay. 1, control; 2, radiotherapy (RT); 3, hemin-MSN; 4, GOD@Hemin-MSN; 5, hemin-MSN+RT; and 6, GOD@Hemin-MSN+RT. Data are
presented as the mean ± SD using one-way ANOVA with Tukey’s multiple comparison tests. ***p < 0.001; **p < 0.01.
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MSN+RT group was significantly higher than that of RT alone,
indicating that GOD@Hemin-MSN plays a synergistic role with
RT and improves the therapeutic effects. DNA double-strand
break (DSB) is the major form of lesion caused by RT that
induces the apoptosis of tumor cells. Gamma-H2AX (g-H2AX), a
well-known sensitive DNA damage molecular marker, was used
for fluorescence staining to indicate DSBs. As shown in
Figure 2C, g-H2AX foci (red fluorescence) were observed in
the cell nuclei, and remarkable amounts of DNA damage were
found in the GOD@Hemin-MSN+RT group. Corresponding
quantitative analysis was conducted using ImageJ software. It is
worth noting that hemin-MSN with RT caused 34.4% of the g-
Frontiers in Oncology | www.frontiersin.org 5
H2AX foci; however, GOD@Hemin-MSN combined with RT
caused 78.2% of the g-H2AX foci, indicating the impressive
radiosensitization ability of the nanohybrid (Supplementary
Figure S5). In order to confirm and clarify whether ROS were
really produced incrementally, the cells were incubated with
dichlorodihydrofluorescein diacetate (DCFH-DA) to examine
the ROS production in the different groups (Figure 2D). The
GOD@Hemin-MSN group showed green fluorescence,
confirming that GOD@Hemin-MSN can consume glucose to
produce H2O2 and, further, to generate ROS. The GOD@Hemin-
MSN+RT group showed stronger fluorescence, indicating a
higher ROS production. In other words, the GOD@Hemin-
A B

D

C

E F G

FIGURE 3 | Radiosensitization in vivo in tumor xenograft mice. (A) Tumor volume changes. (B) Tumor weights. (C) Hematoxylin–eosin (H&E) staining of the tumor
slices [group 1, control; group 2, radiotherapy (RT); group 3, hemin-MSN; group 4, GOD@Hemin-MSN; group 5, hemin-MSN+RT; and group 6, GOD@Hemin-
MSN+RT]. (D) Immunofluorescence staining. (E) Body weights in each group. (F) Pharmacokinetic curves. (G) Biodistribution at 1, 12, and 24 h and at 3 days post-
injection of GOD@Hemin-MSN [the same groups as in (C)]. Data are presented as the mean ± SD using one-way ANOVA with Tukey’s multiple comparison tests.
***p < 0.001; **p < 0.01.
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MSN nanohybrid can be combined with RT to improve the
therapeutic effects by producing incremental amounts of ROS.
The results of colony formation are shown in Figure 2E. A
marked inhibition of the proliferation of tumor cells was
observed in the GOD@Hemin-MSN+RT group. The
sensitization enhancement ratio of GOD@Hemin-MSN was
calculated as 1.60, which was notably higher than that of
hemin-MSN (1.32). All these results provided proof that
chemodynamic therapy mediated by GOD@Hemin-MSN can
substantially improve the killing efficiency of RT through more
ROS production. Cell invasion occurs in the process of
metastasis of malignant cells. Therefore, studying the
mechanisms involved has important implications on a variety
of physiological/pathological processes. The invasion and scratch
experiments (Figures 2F, G) also showed similar results, in
which the GOD@Hemin-MSN+RT group had the widest gap
among all groups, indicating the strongest suppression on the
invasion and the lowest cell fusion rate of A549 cells. With these
data, it was deduced that GOD@Hemin-MSN can inhibit A549
cell metastasis by affecting its adhesion, invasion, and migration.

On account of the promising in vitro data, the in vivo
antitumor efficacy of GOD@Hemin-MSN combined with RT
was assessed on A549 tumor xenograft mice. When the tumor
volume reached approximately 200 mm3, the mice were divided
equally into 6 groups and subjected to various treatments, as
follows: 1) control [200 µl phosphates-buffered saline (PBS)]; 2)
RT (6 Gy); 3) hemin-MSN (50 mg/ml); 4) GOD@Hemin-MSN
Frontiers in Oncology | www.frontiersin.org 6
(50 mg/ml); 5) hemin-MSN (50 mg/ml) + RT (6 Gy); and 6)
GOD@Hemin-MSN (50 mg/ml) + RT (6 Gy). The day the mice
were first treated was recorded as day 1. Then, every third day,
the body weights and tumor volumes of the mice were monitored
and recorded. All mice in the 6 groups were euthanized on
day 16. As demonstrated in Figures 3A, B and Supplementary
Figure S6, the tumor volume in the control group increased
significantly, reaching an average of 6.3 times on day 16
compared with that on day 1. Most of the mice in the GOD@
Hemin-MSN+RT group survived. The tumor volumes in the RT,
hemin-MSN, and GOD@Hemin-MSN groups were moderately
suppressed. Notably, mice treated with hemin-MSN+RT
exhibited remarkably reduced tumor volumes, which was
consistent with the results of the in vivo experiment, indicating
that hemin-MSN imposed a synergistic killing effect when
combined with RT on the tumor region; that is, it sensitized
RT by producing incremental amounts of ROS. However, this
synergistic effect was still restrained by the limited H2O2 in
tumor tissues. Therefore, GOD@Hemin-MSN compensated for
the shortage of H2O2 in the TME and exhibited a much higher
synergistic damage to the tumor in mice administered with
GOD@Hemin-MSN followed by RT, achieving tumor
inhibition rates as high as 91.5%. Hematoxylin–eosin (H&E)
staining (Figure 3C) of the tumor tissue sections of each group
also further confirmed our conclusion, as it could be seen that
there were significant and abundant areas of necrosis and nuclear
pyknosis in the tumor tissues of the GOD@Hemin-MSN+RT
A B

FIGURE 4 | (A) Light views of the main organs (heart, liver, spleen, lung, and kidney) with hematoxylin–eosin (H&E) staining. (B) Detection of the blood biochemical indicators.
ALB, Albumin; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; BUN, Blood urea nitrogen; CREA, Creatinine; TP, Total protein; HCT, Hematocrit; HGB,
Hemoglobin; RBC, Red blood cell; WBC, White blood cell; MCH, Mean corpuscular hemoglobin; MCV, Mean corpuscular volume.
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group. As shown in Figure 3D, the strongest green fluorescence
was observed in tumor specimens of the GOD@Hemin-MSN
+RT group. The underlying mechanism can be explained as
follows: GOD on the GOD@Hemin-MSN nanohybrid catalyzed
the intracellular glucose to produce abundant H2O2, which was
subsequently catalyzed by hemin to produce incremental
amounts of ROS. On the other hand, with the presence of
GOD@Hemin-MSN, the ROS produced by ionizing radiation
can also be further enhanced, leading to a spike in the ROS levels
in the tumor region. Ki-67 and terminal deoxynucleotidyl
transferase dUTP nick-end labeling (TUNEL) assays of the
tumor tissue specimens of the GOD@Hemin-MSN+RT group
further confirmed the enhanced killing efficiency, as indicated by
the remarkable proliferation inhibition and tumor cell apoptosis
in vivo. All treatment methods exhibited no obvious influence on
the body weight of mice in all groups within 16 days, as shown
in Figure 3E. The pharmacokinetic curves in Figure 3F
demonstrated a blood circulation half-life of GOD@Hemin-
MSN of approximately 2.1 h. However, the concentration of
Si dropped to 3.5 mg/ml at 24 h post-injection, indicating that
GOD@Hemin-MSN was metabolized quickly. The major
accumulation of GOD@Hemin-MSN was observed in the
kidney and liver at 24 h post-injection, revealing the renal and
liver clearance pathway of GOD@Hemin-MSN (Figure 3G).
With this method, GOD@Hemin-MSN could be a promising
radiosensitizer administered with standard precise intensity-
modulated radiotherapy (IMRT) to improve treatment effects
or overcome radioresistant tumors for better therapeutic clinical
outcomes, such as for the treatment of cancers impossible to be
cured by standard RT, although this still needs to be validated in
clinical trials.

The biocompatibility of the GOD@Hemin-MSN nanohybrid
in vivo will be the major concern before it becomes clinically
practicable. The main organs including the heart, liver, spleen,
lung, and kidney of mice administered PBS, hemin-MSN, and
GOD@Hemin-MSN were collected for observation with H&E
staining (Figure 4A). There was no significant variance in the
morphology of all the main organs in the three groups observed,
indicating the satisfactory histocompatibility of hemin-MSN and
GOD@Hemin-MSN. Peripheral blood was also collected from
each group for routine blood biochemical test. As shown in
Figure 4B, no significant difference was found for all blood
indicators among the three groups. The results indicate that
the GOD@Hemin-MSN nanohybrid and its synergistic RT
sensitization strategy are highly biocompatible.
CONCLUSION

The radioresistance of tumors can sometimes account for the
self-clearance of ROS by the tumor cells themselves, which
hinders the therapeutic efficacy of RT clinically. POD-like
enzymes can catalyze overexpressed H2O2 in the TME, which,
however, is always insufficient to produce enough ROS to
damage the target DNA. We successfully synthesized a novel
Frontiers in Oncology | www.frontiersin.org 7
nanohybrid, GOD@Hemin-MSN, with proven biosafety and
biodegradability. GOD@Hemin-MSN can be delivered inside
tumor cells and catalyze oxidized glucose to produce abundant
H2O2. The H2O2 is then converted into sufficient ROS to induce
chemodynamic therapy, which synergistically works with the
direct and indirect DNA damage of RT to perform the killing of
tumor cells more efficiently. Our data from both in vitro and in
vivo experiments suggest that GOD@Hemin-MSN overcomes
the shortcomings of a standard RT and could be a promising
radiosensitization strategy in clinical practice to reverse
radioresistance or provide a more efficient therapy for cancer,
but with minimal damage to adjacent normal tissues.
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