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Abstract

Physiological pulsations have been shown to affect the global blood oxygen level

dependent (BOLD) signal in human brain. While these pulsations have previously

been regarded as noise, recent studies show their potential as biomarkers of brain

pathology. We used the extended 5 Hz spectral range of magnetic resonance

encephalography (MREG) data to investigate spatial and frequency distributions of

physiological BOLD signal sources. Amplitude spectra of the global image signals rev-

ealed cardiorespiratory envelope modulation (CREM) peaks, in addition to the previ-

ously known very low frequency (VLF) and cardiorespiratory pulsations. We then

proceeded to extend the amplitude of low frequency fluctuations (ALFF) method to

each of these pulsations. The respiratory pulsations were spatially dominating over

most brain structures. The VLF pulsations overcame the respiratory pulsations in

frontal and parietal gray matter, whereas cardiac and CREM pulsations had this effect

in central cerebrospinal fluid (CSF) spaces and major blood vessels. A quasi-periodic

pattern (QPP) analysis showed that the CREM pulsations propagated as waves, with

a spatiotemporal pattern differing from that of respiratory pulsations, indicating them

to be distinct intracranial physiological phenomenon. In conclusion, the respiration

has a dominant effect on the global BOLD signal and directly modulates cardiovascu-

lar brain pulsations.
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1 | INTRODUCTION

Roy and Sherrington noted in their pioneering 1890 study on animal

cerebral hemodynamics that, in addition to hemodynamic coupling to

electrical stimuli, “the brain expands with each rise of the blood pres-

sure and contracts with each successive fall” during the frequently

detected spontaneous Mayer blood-pressure waves (Roy &

Sherrington, 1890). A decade later, Hans Berger showed that there

were three sources of intracranial brain pressure pulsations, namely

the “ pulsatory, respiratory and vasomotor waves” (Berger, 1901). To
this day, an understanding of the physiological significance of these

pulsations remains elusive. In contemporary studies, conventional

fMRI uses blood oxygen level dependent (BOLD) signals to measure

hemodynamic changes following neuronal brain activity that can be

either cued or spontaneous in nature (Bandettini, Wong, Hinks,

Tikofsky, & Hyde, 1992; Fox & Raichle, 2007; Ogawa, Lee, Kay, &
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Tank, 1990). The BOLD signal changes are also affected by the presence

of broadly synchronous fluctuations, termed as the global signal, which is

thought to contain undesired variance from non-neural sources. There-

fore, regression of a global signal from each voxel is a common method

to remove these signals in a preprocessing step for fMRI data (Erdo�gan,

Tong, Hocke, Lindsey, & deB Frederick, 2016; Fox & Raichle, 2007;

Giove, Gili, Iacovella, Macaluso, & Maraviglia, 2009; Macey, Macey,

Kumar, & Harper, 2004). However, the exact origin of the global signal is

unclear, although it is often attributed to physiological noise (Liu, Nalci, &

Falahpour, 2017; Murphy & Fox, 2017; Power, Plitt, Laumann, &

Martin, 2017). Indeed, it has been difficult to ascribe exact physiological

source of these signals due to the problem of signal aliasing and further

spatiotemporal mixing from interleaved data sampling the BOLD signal,

which is usually sampled at a low frequency.

On the other hand, the recent discovery of the glymphatic brain

clearance pathway driven by brain pulsation has increased the rele-

vance of physiological pulsations, which are emerging as a signal of

interest instead of a mere nuisance noise source. In the glymphatic

system, the physiological pulsations have been shown to drive water

and brain metabolite convection along perivascular spaces and within

the brain interstitium in both mice and men (Kiviniemi et al., 2016;

Meng et al., 2019; Mestre et al., 2018; Wang et al., 2017). Impor-

tantly, a failure of glymphatic convection has been shown to precede

the onset of neurodegeneration (Iliff et al., 2012) and to affect the

clinical trajectory of several diseases such as epilepsy, trauma, and

stroke (Lin et al., 2020; Liu et al., 2020; Rasmussen, Mestre, &

Nedergaard, 2018; Sullan, Asken, Jaffee, DeKosky, & Bauer, 2018).

In line with the emergent concept of glymphatics, physiological

variance of the BOLD signal has increasingly been related to pathology

(Garrett, Kovacevic, McIntosh, & Grady, 2010; Helakari et al., 2019;

Hussein et al., 2020; Jahanian, Peltier, Noll, & Garcia, 2015; Kananen

et al., 2018, 2020; Makedonov, Chen, Masellis, & MacIntosh, 2016).

The cardiorespiratory pulsations have been shown to drive blood and

also cerebrospinal fluid (CSF) flow inside the brain, and measures of

these pulsations thus contain valuable information on flow dynamics

(Dreha-Kulaczewski et al., 2015; Kiviniemi et al., 2016). For example,

there is a significant alteration in the variance of cardiovascular pulsa-

tion in the brain of Alzheimer' disease patients (Rajna et al., 2019,

2021; Tuovinen et al., 2020).

The increasing interest in physiological brain pulsations from the

perspective of noise correction also has implications for clinical diag-

nostics. Both perspectives call for greater in-depth knowledge on how

to characterize accurately brain pulsations. In this study, we investi-

gated physiological signal sources affecting whole brain BOLD signals

using a high temporal resolution 3D brain scanning with magnetic res-

onance encephalography (MREG). The technique of MREG enables

critical separation of the higher frequency physiological pulsations

from the VLF signal without any need for aliasing (Huotari

et al., 2019; Kiviniemi et al., 2016; Tuovinen et al., 2020). We used

the extended 5 Hz spectral resolution of our method to investigate

and localize physiological sources of BOLD signal variance. In addition

to confirming previously known physiological pulsations, we detected

by this means a novel cardiorespiratory envelope modulation (CREM).

We proceeded to map the amplitudes of the various physiological pul-

sations over the whole brain using a modified ALFF method (Yu-Feng

et al., 2007). Finally, we applied QPP analysis to compare propagation

patterns of the modulatory CREM brain wave with respect to its

effects on respiratory brain waves and conclude with a discussion of

their role in the generation of the whole brain BOLD signal.

2 | MATERIALS AND METHODS

2.1 | Participants

Fifty-three healthy subjects (age: 40.5 ± 17.0 years, 32 females)

entered the MRI scanner and were instructed to lie still, with eyes

kept open and gaze fixated on a cross on the screen while thinking of

anything in particular (eyes open, resting state). Ear plugs were pro-

vided to reduce scanner noise. Cushions were placed beside the ears

to restrict head movement and to further reduce scanner noise. Dur-

ing image preprocessing, three subjects were excluded because of

partial data corruption and two because of excess head motion. Data

from the remaining 48 subjects (age: 40.7 ± 17.2 years, 29 females)

were used in this study. Written informed consent was obtained from

each subject prior to scanning, in accordance with the Helsinki decla-

ration. The study protocol was approved by the regional Ethical com-

mittee of Northern Ostrobothnia Hospital District in Oulu University

Hospital.

2.2 | Data acquisition and preprocessing

Subjects were scanned using a Siemens MAGNETOM 3 T SKYRA

scanner with a 32-channel head coil. Additional cardiorespiratory data

were collected using an MRI-compatible multimodal neuroimaging

Hepta-Scan concept (Korhonen et al., 2014). MREG is a 3D single

shot stack of spirals (SOS) sequence that under-samples k-space to

reach a sampling rate of 10 Hz, thus allowing critical imaging of physi-

ological pulsations (Assländer et al., 2013). The SOS gathers k-space in

60 ms bins with spiral in/out repeating in every other turn continu-

ously in the positive z-direction, thus minimizing the air-sinus off-

resonance artifact (Assländer et al., 2013). The point spread function

of the SOS-sequence is 3 mm, with lesser off-resonance effects com-

pared to other k-space undersampling strategies such as concentric

shells and spokes (Assländer et al., 2013; Zahneisen et al., 2012).

Scanning parameters were TR = 100 ms, TE = 36 ms, flip

angle = 25�,3D matrix = 643, FOV = 192 mm with voxel size of

3 � 3 � 3 mm3, and for anatomical 3D MPRAGE the parameters were

TR = 1900 ms, TE = 2.49 ms, TI = 900 ms, flip angle = 9,

FOV = 240 mm, 0.9 mm cubic voxel. Scans lasted only 5 min. Cardio-

respiratory frequencies were verified with an anesthesia monitor

(GE Date-Ohmeda Aestive 5) and from scanner physiological data

recordings.

MREG data were reconstructed using L2-Tikhonov regularization

with lambda 0.1, where the latter regularization parameter was
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determined by the L-curve method with a MATLAB recon-tool from

the sequence developers (Hugger et al., 2011). T1-relaxation effects

were minimized by deleting the 14 s from the beginning of each scan.

The AFNI 3dDespike function (with options—NEW and—localedit) was

used to remove spikes from the remaining data. Then data were

preprocessed with the standard FSL (Functional Magnetic Resonance

Imaging of the Brain's software library) pipeline (Jenkinson, Beckmann,

Behrens, Woolrich, & Smith, 2012), using high-pass filtration with a

cut-off frequency of 0.008 Hz (125 s). Motion correction was per-

formed using FSL MCFLIRT, and FSL BET was used for brain extrac-

tion. The anatomical 3D MPRAGE images were used to register

MREG data into MNI152 standard space using FSL FLIRT (Grabner

et al., 2006; Jenkinson et al., 2012).

As this study focuses on the sources of physiological BOLD sig-

nals, we wanted as much as possible to retain the physiological pul-

sations in the data. Therefore, CSF, white matter and global signals

were not regressed out of the datasets. Spatial smoothing was also

omitted since it averages the signal between neighboring voxels,

thus degrading spatial resolution of the detection of original pulsa-

tion signals, and this factor of unsmoothed data is also taken into

account in the recently developed LIPSIA-tool that we used to

draw more accurate statistical inferences (Lohmann et al., 2018;

Wu et al., 2011).

2.3 | Theoretical basics of modulation

Modulation is the act of translating information from a low-

frequency signal to a higher frequency. In the modulation process,

amplitude, frequency and/or phase of a high-frequency signal is

changed in direct proportion to the instantaneous values of the low-

frequency signal (Writer, 1999). In amplitude modulation, the low-

frequency signal modifies and scales the amplitude of the high-

frequency signal and determines the envelope of the waveform.

The method of detecting CREM is based on the heterodyne prin-

ciple; multiplied sinusoidal waveforms can be written as the sum and

the difference of the applied frequencies. In the case of amplitude

modulation, we can detect sidebands on either side of the fundamen-

tal band (Figure 1). The distance between the lower/upper sidebands

peak and fundamental band peak is equal to the modulating signal

respiratory frequency. In our case, we detect two sidebands around

the fundamental cardiac frequency at a distance equal to the respira-

tory frequency (Figures 1 and 2). By defining an envelope of the car-

diac signal, we can obtain a time signal for CREM, which has a

frequency component equal to the respiration frequency (Figure 1,

purple envelope).

2.4 | Analysis of amplitude fluctuation of
physiological signals

The MREG pulsation data have been shown to match accurately the

real physiological pulsations measured simultaneously with monitoring

devices (Kiviniemi et al., 2016; Raitamaa et al., 2018; Tuovinen

et al., 2020). For every subject, the time courses of each voxel from

whole brain MREG data were transformed using AFNI 3dPeriodogram

to the frequency domain via a fast Fourier transformation, which

yielded the voxel-wise power spectrum. A global power spectrum was

then summed from all brain voxels to investigate detectable physio-

logical pulsation bands affecting the global BOLD signal. From the

MREG data spectrum, we obtained frequency peaks of respiratory

(mean: 0.25 ± 0.06 Hz) and cardiac pulsations (mean: 1.10 ± 0.14 Hz).

These MREG signal pulsations frequencies were verified from the

SpO2 and respiratory data from the simultaneously used anesthesia

monitor.

We next used a modified ALFF method to study amplitude fluctu-

ation (AF) of very low frequency (AFVLF), respiratory (AFresp), and car-

diac (AFcard) pulsations (Yu-Feng et al., 2007). The frequency band for

AFVLF was 0.01–0.1 Hz, corresponding to the classical ALFF, while

the bands for AFresp and AFcard were 0.1 Hz wide, centered around

the previously defined individual peaks (i.e., peak ±0.05 Hz indicated

in colors; Figure 2). The square root of the power spectral density was

calculated, and amplitudes calculated over the frequency bands of

interest were summed to obtain a corresponding AF map. The AF

value in a given voxel represents the total voxel-wise amplitude of a

chosen frequency band, which reflects the local features of brain

oscillatory activities (Yu-Feng et al., 2007; Zou et al., 2008).

The amplitude fluctuations of the lower and upper sidebands

(AFlsb and AFusb) were quantified according to heterodyne principle

based on the respiratory and cardiac peaks, using the same band wid-

ths of 0.1 Hz. The amplitude of cardiorespiratory modulation

(AFCREM) was calculated as the sum of AFlsb and AFusb, c.f. Figure 2.

Group average maps for every AF band were calculated (Figure 3).

To quantitate the relative strength of modulation and to remove

any possible scaling effects that could affect AFCREM and/or AFcard,

we also calculated a commonly used signal analysis metric called

amplitude modulation index (AMI), which defines a ratio of the modu-

lated CREM signal with respect to the unmodulated cardiovascular

pulsation signal (AMI = AFCREM/AFcard; Figure 2) (Writer, 1999). AMI

is normalized and unitless as it gives a percentage of the modulation

and tells how much the modulated variable of the signal varies around

its unmodulated level.

To investigate the relative spatial dominance of each pulsation

source that dominates over the other frequencies in the brain, we first

created subject-specific maps where each voxel was assigned to one

of the four pulsation bands defined by which band had the highest AF

value. After this procedure, we created proportional brain maps for

every frequency band over all imaged subjects by calculating the num-

ber of subjects per voxel where the amplitude of the corresponding

frequency exceeded that in any other frequency and dividing the

number of total number of subjects (Figure 4). Voxels, where at least

25% of subjects have the same dominant frequency, were mapped.

Finally, we made a winner takes all (WTA) map, wherein every voxel

was assigned to one of the four band based on which band had the

most subjects; in the rare event of tie, that voxel was not assigned to

any band (Figure 4).
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2.5 | Statistical analysis

Voxel-wise comparisons between different AF maps were performed

by a two-sample t-test using a paired nonparametric threshold-free per-

mutation test (5,000 permutations) implemented in vlisa_twosample

from LIPSIA (Lohmann et al., 2018). We used a whole brain mask

including white matter, gray matter and CSF. The voxel-based statistical

tests were corrected for the family wise error rate at a significance level

of p < .05. First, we compared vasomotor AFVLF maps to the other

maps (Figure 5) and then compared the respiratory AFresp with the car-

diac driven AFcard and AFCREM (Figure 6). Finally, we compared within

cardiovascular pulsations the AFcard and AFCREM maps (Figure 7).

For AMI mapping, we calculated average AMI maps to determine

the lowest possible AMI value (0.5), which was then used as a thresh-

old for individual subjects' AMI maps. Statistical testing was done over

the threshold value and then increased in increments of 0.1 until the

test did not return any significant voxels. A set of binary AMI maps

was created to show statistically significant brain regions for each

threshold (Figure 7). For statistical testing, the one-sample t-test was

performed using non-parametric threshold-free permutation tests

(5,000 permutations) implemented in vlisa_onesample from LIPSIA

(Lohmann et al., 2018).

To understand interindividual variability between subjects, the

AFs and AMI maps were segmented into 11 anatomical regions using

the Harvard-Oxford subcortical structural atlas as implemented in the

FSL toolbox, with threshold of 0.5. These regions were used as ROIs

in which average voxelwise AF and AMI values were calculated for

every subject. Results were plotted using geom_boxplot function in R

library ggplot2, (Figure 8).

2.6 | QPP analysis

MREG data were band-pass filtered using AFNI 3dTproject on individ-

ual respiratory and cardiac bands, including the upper and lower mod-

ulation sidebands. The cardiorespiratory modulation CREM-signal was

derived from the cardiac ± sideband signal for every voxel using

MATLAB envelope (Figure 1). A modified quasi-periodic patterns

F IGURE 1 Time series analysis of cardiorespiratory envelope modulation (CREM). Analysis steps from a representative subject from a 3 mm
diameter spherical region of interest ROI (AP, etc., 12, 6, 18 mm in MNI space) (Left) Time series extracted from the ROI. Extracting mean time
series from the mask (black signal)— >band-pass filtering in cardiac band (red signal)— > taking upper envelope from cardiac bandpass filtered
signal to acquire CREM (purple signal) (Right) Corresponding fast Fourier transformation (FFT) spectrums for every time series during analysis
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(QPPs) algorithm was used to detect respiratory and CREM brain waves

and average them to yield subject-level averaged QPP maps and to

evaluate how they differed in their pulse propagation patterns and

amplitude (Kiviniemi et al., 2016; Majeed et al., 2011). The subject-level

maps were timed to start from the beginning of expiration to the end

of inspiration, synchronized to the individual subject scanner respiration

belt data from each of 38 individuals. A group-level averaged QPP map

was produced by interpolating subject-level average QPP maps into the

same 100 timepoint (10 s) waves for a round number. All subject-level

maps were shifted to the same phase using MATLAB circshift. For pur-

poses of display, the group average maps were z-scored and interpo-

lated to 0.5 mm resolution in MNI space (c.f. Figure 9a).

To test for statistical differences in the amplitudes between sub-

ject CREM and respiratory QPP maps, we first calculated individual

amplitude maps for each subject by reckoning the maximum differ-

ence in the subject's QPP pulsation for every voxel. The resultant

amplitude maps were normalized by dividing the amplitude of each

voxel by the global mean amplitude of the subject. The CREM and

respiration normalized amplitude maps were compared using a paired

t-test using the LIPSIA function vlisa_onesample (Figure 9b).

To study intrasubject variability, we correlated pulsation waves

detected by the QPP algorithm to the subjects' individual average QPP

map. Intersubject variability was calculated by correlating subject-level

average maps to the group average map, using the MATLAB corrcoef func-

tion. Intralevel and interlevel CREM and respiration correlation coefficients

were compared statistically using the nonparametric two-sided, paired-

samples Wilcoxon signed rank test in MATLAB signrank (c.f. Figure 9c).

3 | RESULTS

3.1 | Physiological pulsation amplitudes: AFVLF,
AFresp, and AFcard

In general, all physiological pulsation amplitudes were strong in CSF

spaces, but AFcard signals were especially pronounced in CSF spaces

and brain areas close to major cerebral arteries and venous sinuses,

while AFVLF and AFresp signals were more widely and homogeneously

spread in the brain tissue (Figure 3). The AFVLF was dominant in fron-

tal and posterior midline cortical structures, whereas the respiratory

AFresp dominated in regions such as cerebellum, basal frontotemporal

cortex, white matter, and thalamic structures.

In the WTA-analysis, AFVLF dominated in cortical gray matter

areas. Respiration waves had the widest spatial distribution, being

F IGURE 2 Illustration of the analysis
methods: (Upper) A representative
whole-brain full-band 0–5 Hz fast Fourier
transformation (FFT) spectrum. (Bottom)
A focused 1.4 Hz FFT spectrum window
from the upper spectrum showing bands
taken for calculating amplitude
fluctuations (AF) analysis
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absent only from the ventricles, thalamus, areas and arterial lumen

(Figure 4). The AFresp signal was significantly (p < .05, FDR corrected)

larger than AFVLF and AFcard amplitudes in the entire white matter,

basal gangliae, bilateral hippocampus and amygdala, brain stem, and

cerebellum (Figures 4–7).

The AFcard was significantly larger than both AFVLF and AFresp in

central CSF spaces and near major cerebral arteries (Figure 4). The

AFVLF exceeded AFcard but not AFresp across the neocortex, that is,

respiration and VLF power were of very similar amplitude in cortical

gray matter. In WTA analysis, AFVLF tended to dominate over other-

wise prominent respiration signals in posterior default mode areas and

in the right frontal cortex (Figures 4–7).

3.2 | Cardiorespiratory envelope modulation—
AFCREM

The spatial distribution of the respiratory-driven CREM modulation

naturally matches the modulated cardiac pulsation distribution in

frontal, lateral, and midline ventricular CSF spaces and perivascular

structures along the sinus rectus and major cerebral arteries,

(Figure 3). Additionally, the quadrigeminal cisterns had distinct CREM

pulsations. Notably, in the statistical and WTA analyses, the AFCREM

amplitude was significantly larger than any other physiological pulsa-

tion source in the most central CSF spaces of the lateral and third

ventricles, and the cerebral aqueduct (Figures 4–7). In the posterior

fossa, the CREM dominated in the quadrigeminal cisterns and at the

bottom of the fourth ventricle (Figures 5 and 8). The cardiac pulsation

dominated in CSF at the outer edges of the lateral ventricles and

upper parts of the fourth ventricle.

When normalized to the cardiac amplitude, the AMI was lowest

(0.5, i.e., 50% of the cardiac pulse amplitude) in the areas with strong

cardiac pulses and increased proceeding towards the cortex, especially

in frontal and occipital parts of both the cerebrum and cerebellum

(Figure 7). Also, posterior parts of the lateral ventricles at trigonum

regions and the midline near the pineal gland, the AMI map shows

high intensity (c.f. Figure 8). It is noteworthy that the degree of modu-

lation of the cardiac pulsations exceeded 50% everywhere in the

F IGURE 3 Amplitude fluctuation
(AF) images: Group averages of AF maps
in the four different bands: very low
frequency (VLF), respiration, cardiac and
cardiorespiratory envelope modulation
(CREM), and 5-min representative time-
series signals from the anterior right
cerebral white matter (VLF), right lateral
ventricle (Respiration and cardiac), and

posterior left cerebral white matter
(CREM) for each band of a representative
individual subject: VLF (green), respiration
(blue), cardiac (red) and CREM (purple).
Color bar indicates the AF range of all
group average maps
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brain, and even exceeded 100% in frontal, occipital, and trigonal ven-

tricular areas, that is, red areas in Figure 7.

We performed ROI-based analyses to quantify interindividual pul-

sation amplitude variances; the intersubject variation proved to

depend on anatomical location and frequency, c.f. Figure 8. While

there were some outliers, the variance was insufficient to explain the

amplitude differences between frequency bands or anatomic areas.

AFVLF showed the smallest variation and did not seem to have any

distinct areas with a higher level of inter-individual variation. AFresp

has moderate variation in general, while AFcard and AFCREM showed a

higher range of intersubject variation in the caudate nucleus,

thalamus, and lateral ventricles. The mean amplitude of pulsation

exceeded the whole brain average in those regions, but were below

the global mean in GM, WM, and the bilateral amygdala, putamen and

pallidum in all frequency bands (Figure 8).

3.3 | QPP propagation analysis of CREM and
respiratory brain pulsations

QPP analysis showed that on average there was a wave of cardiore-

spiratory modulation of arterial pulsation amplitude that propagated

F IGURE 4 Proportional whole brain maximum amplitude maps at each band: From top to bottom, the very low frequency (VLF), respiration,
cardiac, and cardiorespiratory envelope modulation (CREM). Colors represent the number of subjects per voxel where the corresponding
pulsation frequency dominates over other frequencies, range: from 12 to the maximum number of subjects per frequency. Winner takes all (WTA)
map at the bottom indicates which physiological pulsation dominates over others in each voxel of the brain
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through the human brain following a unique pattern, distinct from the

patterns of vasomotor and cardiorespiratory brain pulsations, both

temporally and spatially (Kiviniemi et al., 2016). The CREM wave

shares the frequency distribution of the modulating respiration, and

we therefore compare these two pulsation sources.

The most obvious difference between the respiratory and CREM

pulsations was the phase differences with respect to respiration itself.

During inspiration, the respiratory brain BOLD signal intensity increased

in cortical areas, and during expiration it declined symmetrically in a

nearly sinusoidal manner (c.f. Figure 9a). In the CREM wave, the envelope

peak (i.e., cardiac pulsation amplitude maximum) occurred at the cross-

over from inspiration to expiration (c.f. Figure 9a). Notably, the opposite

change (from expiration to inspiration) was associated with a relatively

longer nadir in the CREM wave: the cardiovascular pulsation envelope

remained low for 60% of the time, while the cardiovascular pulsations

peaked only for a relatively short period (40%) over the respiratory cycle

(c.f. Figure 9a). For 3D visualization of the differences between CREM

and respiratory pulsations, please see also supplementary video 1.

In spatial analysis, the CREM and the respiratory waves differed

significantly from each other (Figure 9b). The respiratory pulsation

induced a relatively peripheral pulse affecting predominantly the corti-

cal gray matter and entire white matter, while the CREM was more

dominant in the areas of strong cardiac pulsatility in, major vessels

CSF conduits, and in the ventricles. The spatial similarity/stability of

CREM and respiratory waves also differed significantly; within sub-

jects the mean correlation of each CREM wave was 0.540, while with

respiratory pulsations the correlation was significantly higher .882

(p < .001). The intersubject spatial similarity, on the other hand, had a

higher correlation in CREM pulsations (0.413) versus respiratory pul-

sations (0.342; p < .05) (Figure 9c).

4 | DISCUSSION

Several findings in the present study contribute to a better under-

standing of physiological brain pulsations. Due to the critical 10 Hz

F IGURE 5 Statistical amplitude of very low frequency fluctuation (AFVLF) comparison maps. Statistical comparison of AFVLF to amplitude of
respiratory fluctuation (AFresp)(top), amplitude of cardiac fluctuation (AFcard) (middle) and amplitude of cardiorespiratory envelope modulation
(AFCREM) (bottom). Colors in the maps represent where AFcard (Red), AFresp (blue) or AFCREM (Purple), respectively, are higher compared to AFVLF.
(green) indicates where AFVLF dominates over the compared frequency. (FDR corrected, p < .05 with respective z-score encoding). Note the
missing difference in the amplitudes between respiration and VLF in the cortex
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F IGURE 6 Statistical amplitude of respiratory fluctuation (AFresp) comparison maps. Statistical comparison of AFresp to amplitude of cardiac
fluctuation (AFcard) (top) and amplitude of cardiorespiratory envelope modulation (AFCREM) (bottom). Colors in the maps represent areas where
AFcard (Red) or AFCREM (Purple), respectively are higher compared to amplitude of respiratory fluctuation (AFresp) (Blue), and vice versa. (FDR
corrected, p < .05 with respective z-score encoding). Comparison between amplitude of very low frequency fluctuation (AFVLF) and AFresp was
done in the previous Figure 5. The respiratory pulsation dominates widely in the brain

F IGURE 7 (Top) Statistical comparison between amplitude of cardiac fluctuation (AFcard) and amplitude of cardiorespiratory envelope
modulation (AFCREM). Colors in the maps represent where AFcard (Red) or AFCREM (Purple) are significantly higher. (FDR corrected, p < 0.05 with
respective z-score encoding) (Bottom) Amplitude modulation index (AMI) images. Binary image of statistically significant brain regions with
threshold between 0.5 and1.4 with 0.1 increments (p < 0.05, FDR corrected)
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whole brain sampling rate, the current study offers a new view on

physiological sources affecting whole brain BOLD signals in the

absence of aliasing. The extended frequency spectral analysis revealed

a new form of physiological brain contrast, CREM, which illustrates

how strongly respiration modulates the amplitude of cardiovascular

brain pulsations. We used the ALFF method to map the spatial distri-

bution of all fundamental physiological signal sources in the brain and

compared their amplitudes relative to each other.

4.1 | Spatial distributions of physiological
pulsations

Our AFVLF maps showed dominance in peripheral cortical gray matter

regions that are virtually identical to findings in previous resting-state

ALFF BOLD studies (Huotari et al., 2019; Yu-Feng et al., 2007; Zou

et al., 2008). The AFresp maps extended over the whole brain, being

especially pronounced in the periventricular white matter, cerebellar,

and midline structures, as noted previously by Windischberger and

co-workers in 2002 (Windischberger et al., 2002). The AFcard maps

dominated in major arterial venous, perivascular, and frontal CSF

spaces, which has also been detected previously by multiple groups

(Dagli, Ingeholm, & Haxby, 1999; Kiviniemi et al., 2016; Tong &

Frederick, 2014; Weisskoff, Chesler, Boxerman, & Rosen, 1993).

As far as we are aware, the relative differences of the pulsation

amplitudes have not previously been statistically quantified through-

out the brain. Our results indicate that the cardiac pulsation domi-

nates in the major cerebral arteries and tissue areas surrounding them,

in the CSF ventricles, and the venous sinuses. Interestingly, the CREM

had a larger power than its carrier wave, the cardiac pulsation, in most

central areas of the CSF ventricles, and in the frontal and occipital cor-

tices (Figures 4–7). Spatially the most dominant source was the

F IGURE 8 Quantitative analysis of 11 Oxford-Harvard subcortical atlas regions of interest (ROI) from amplitude fluctuations (AF) (very low
frequency (VLF), respiratory, cardiac and cardiorespiratory envelope modulation (CREM), with same color coding as in Figure 3). Data indicating
low variability from each of the 11 ROIs (top) for each AFs are presented as box plots (bottom). Orange line indicates the whole brain mean AF of
the boxplot
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respiratory pulsation, which extended from the periventricular white

matter all the way to the cortical gray matter (Figures 4–8). In cortical

gray matter, respiratory and VLF were equally strong sources of the

BOLD signal, with no statistically significant difference between them

(Figure 5). Interestingly, in a winner takes all map, the VLF dominated

in the default mode areas, while in the areas of primary sensorimotor

areas resembling task positive areas, it was the respiration that tended

to dominate. As previously shown, slow 0.03 Hz variations in respira-

tion (RVT) depth correlate with BOLD signal in the very same gray

matter areas (Birn, Diamond, Smith, & Bandettini, 2006; Wise, Ide,

Poulin, & Tracey, 2004). The present results suggest that the respira-

tory brain pulsations can compete as a source of signal variance

equally with VLF BOLD signal in the gray matter and are strongly pre-

sent in all parts of the brain.

4.2 | Cardiorespiratory amplitude modulation in
brain BOLD signal

To the best of our knowledge, this is also the first study to quantify

respiratory modulation of cardiovascular brain pulsation amplitude,

namely the CREM, in the human brain. The described modulation has

been previously detected in fMRI research, but it had not been inves-

tigated in depth. The interaction between respiratory and cardiac fre-

quency pulsations were previously demonstrated for spinal canal CSF

and jugular venous blood flow in other critically sampled BOLD fMRI

studies (Brooks et al., 2008; Friese, Hamhaber, Erb, & Klose, 2004). In

the EPI scan, the modulation has been studied with respect to the ret-

rospective image correction (RETROICOR) method, which revealed it

to be a significant source of physiological noise in the brain stem

(Harvey et al., 2008). However, when modeling physiological noises

using interleaved echo-planar imaging (EPI, TR = 2,800 ms) sequences

at the whole-brain level, the modulation had not been captured accu-

rately, as it was only present in a small number of voxels (Beall, 2010).

Physiologically, the respiratory pulsations modulate the cardiac pulsa-

tions of the arterial blood pressure, heart rate, and stroke volume inside

the thorax based on the closely intertwined relationship between breathing

and circulation (Larsen, Tzeng, Sin, & Galletly, 2010; Lewis, 1908). Based

on this modulation, respiration pulses can thus also be quantified from fin-

gertip arterial pulsation data with photoplethysmography (PPG) data, with-

out requiring two separate measures for both cardiorespiratory signals

(Charlton et al., 2017; Karlen, Raman, Ansermino, & Dumont, 2013). The

F IGURE 9 Quasi-periodic patterns (QPP) waves: (a) 3D time lapsed, group averaged, and phase-matched QPP waves of respiration and
cardiorespiratory envelope modulation (CREM) pulsations triggered to the respiratory belt inspiratory maximum. The color bars indicate group
average normalized z-score values (b) Brain regions significantly different with respect to spatial distribution of amplitude between respiration
and CREM QPP waves (p < .05, FDR corrected). The color bars indicate the z-stat values. Red denotes higher amplitude in CREM and blue
indicates higher amplitude in respiration (c) Violin plots show the average spatial correlation between intra- and inter-subject level correlations of
respiration and CREM. Student t-test: * p < .05, *** p < .001
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PPG results can reflect the microvascular tissue blood oxygenation modula-

tions caused by respiration driven intrathoracic pressure oscillations similar,

which are analogous to what BOLD signal can measure from within the

brain (Meredith et al., 2012; Nitzan, Faib, & Friedman, 2006). The PPG liter-

ature suggests that the CREM signal originates mainly from the intratho-

racic flow modulations.

In terms of the intracranial space, the CREM signal seems to be

more complex. If the source of CREM modulation were only arising

from the thoracic pressure oscillations, it should then be a uniform

phenomenon throughout the brain, or at least it should directly follow

respiratory induced brain pulsations. However, the present statistical

AMI maps show that the cardiac pulsations are least modulated within

large arteries and most modulated in the frontal cortex, CSF dorsal

horns of the lateral ventricles, and in occipitoparietal areas (Figure 7).

The QPP analysis further shows that CREM moves as a wave over the

brain, starting from the posterior fossa close to fourth ventricle rather

than arising in an arterial area where the modulated cardiovascular

pulse first arrives in the brain.

Recent work shows that respiratory inhalation drives venous out-

flow from brain and also induces a counterbalancing CSF inflow,

exactly following the Monro–Kellie doctrine of relative compartment

changes inside the incompressible cranium (Dreha-Kulaczewski

et al., 2017; Vinje et al., 2019). And indeed, the CREM wave moves

forward from the posterior fossa along the trajectory of CSF inflow

into the cranium from the spinal canal (see also supplementary video

1). However, the respiratory pulsation propagates in a completely dif-

ferent manner than the CREM wave (Figure 9). This indicates that the

CREM manifests as a unique physiological entity inside the cranial

space. While the cardiovascular intra-arterial pulsations are first mod-

ulated inside the thorax directly by the respiration, inside the brain tis-

sue and CSF spaces, the cardiovascular pulsations become further

modulated by the inflowing CSF/venous blood pulsations also driven

by respiratory changes inside the spinal canal and jugular veins.

4.3 | The source of physiological BOLD signal
fluctuations

The pulsatile and propagating nature of the cardiac and respiratory waves

and as well as the modulatory CREM pulsation along brain and CSF struc-

tures suggest that they are distinct physiological phenomena (Birn

et al., 2006; Huotari et al., 2019; Kiviniemi et al., 2016;Windischberger

et al., 2002; Wise et al., 2004). The arterial pressure impulse becomes

absorbed into a convective force, pushing blood within the vasculature

and CSF along paravascular spaces (Mestre et al., 2018; Rajna et al., 2021).

The cardiovascular pulses dominate around arteries, where respiratory

modulation is of small but detectable magnitude (Berger, 1901; Mestre

et al., 2018; Santisakultarm et al., 2012). The cardiovascular impulses accel-

erate water protons, causing them to drop momentarily their regional pro-

ton spin coherence within both arteries/arterioles and the paravascular

(glymphatic) space. The momentary BOLD signal drop can be then

detected as a cardiovascular pulse propagating within the brain (Kiviniemi

et al., 2016; Posse et al., 2013; Rajna et al., 2019).

During inhalation, deoxygenated venous blood is drained from

brain, which increases the BOLD signal (Windischberger et al., 2002;

Wise et al., 2004). At the same respiratory phase, CSF flows into the

intracranial CSF spaces to compensate for the reduced venous blood

volume, as dictated by the Monro–Kellie doctrine stating that any

increase in volume of one of the cranial constituents (blood, CSF, or

brain tissue) must be compensated by a decrease in volume of the

another (Mokri, 2001). The combined effects of the CSF inflow/

venous blood outflow together induce the propagating respiratory

brain pulsations previously detected using fast MRI scans (Kananen

et al., 2018, 2020; Kiviniemi et al., 2016).

Respiration is also a source of rigid body head motion in BOLD

scans, especially along the MRI bore B0-field z-direction, but rigid

body motion-related changes dominate in susceptibility gradient areas

at the edges of the brain. However, bulk motion does not follow CSF

spaces in the manner of respiratory pulsations, nor does it follow

arterial paths, as do the cardiovascular brain pulsations (Figure 3).

Therefore, the respiratory brain pulsation seems to be a flow-

dependent effect. Respiration also induces dynamic variations in bulk

magnetic susceptibility via thoracic volume changes inside the MRI

bore (Glover, Li, & Ress, 2000; Noll & Schneider, 1994). We minimized

these susceptibility issues and magnetic field inhomogeneities caused

by respiration through the use of dynamic off resonance correction of

k-space (DORK) for MREG data during image reconstruction, and then

used AFNI 3dDespike to remove excess high spikes from the data in

addition to applying standard MCFLIRT motion correction (Pfeuffer,

de Moortele, Ugurbil, Hu, & Glover, 2002; Zahneisen et al., 2014).

Let us suppose that the source of the respiration signal and

CREM were both caused by rigid body head motion. The displace-

ment of a voxel due to respiratory motion would then instantaneously

affect the amplitude of both cardiorespiratory pulsations over the

whole brain. If rigid body motion were the only source, then both

respiratory and the CREM pulsations should have their highest ampli-

tudes in the same voxels, with identical temporal waveforms. This is

clearly not the case (Figure 9). However, the pulsations quantified by

QPP indicate that the respiratory and CREM pulsations have different

spatial distribution and temporal dynamics, as seen in Figure 9a,b.

There are also differences in intrasubject and intersubject level pulsa-

tion variability (Figure 9c). These results shows explicitly that respira-

tion and CREM waves cannot be both solely induced by a bulk head

movement.

4.4 | The physiological sources of global BOLD
signal

The results of this study are in line with previous findings that there

are several physiological sources contributing to the global BOLD sig-

nal (Liu et al., 2017; Power et al., 2017). The direct respiratory-

induced brain pulsations are themselves a strong source of global sig-

nal (see Figures 4–7 for spatial distribution of respiratory pulsations

and supplementary Figure 2 for group average global signal FFT spec-

tra). In a largely overlapping area over the whole gray matter,
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respiratory power equals the VLF power that is related to neuronally

coupled, classical BOLD signal activity (Bandettini et al., 1992; Zou

et al., 2008). Although the cardiac pulsations and CREM dominate in

CSF and vascular areas, they also affect the signal widely across the

brain and affect the global signal.

In order to improve specificity of BOLD signal to neurovascular

activation or in functional connectivity studies, the physiological sig-

nals should be cautiously removed from the cortical VLF BOLD signal

(Birn et al., 2006; Chang, Cunningham, & Glover, 2009; Glover

et al., 2000; Wise et al., 2004). However, the physiological signals are

repeatedly propagating as waves over the entire brain (see also

supplementary video 1), each having a nonuniform amplitude and

phase distribution over the entire brain (Chen et al., 2020; Kiviniemi

et al., 2016; Yousefi, Shin, Schumacher, & Keilholz, 2018). Thus, the

physiological pulsations cannot be removed simply by regressing; any

single global signal regressor have same instantaneous phase in virtu-

ally each voxel, which is not correct assumption for moving pulsation,

and multiple nuisance regressors would excessively reduce the

degrees of freedom in the data (Beall, 2010; Chen et al., 2020; Glover

et al., 2000). We agree with both Glover and Beall, that a more feasi-

ble way to control for physiological signals over the entire brain is

presented by applying voxel-wise corrections with Fourier-based fil-

tering (Beall, 2010; Glover et al., 2000).

In order to completely remove physiological signals, or to analyze

them comprehensively, it is necessary to sample BOLD signal at suffi-

cient frequency, with TR < < 500 ms (Chen, Polimeni, Bollmann, &

Glover, 2019). The principal cardiovascular and respiratory pulsations,

their harmonics, and furthermore the interactive modulations of the

pulsations such as CREM, as shown in this study, are irretrievably

aliased in the BOLD signal if the data is sampled too slowly (Huotari

et al., 2019). However, recently developed fast fMRI sequences, such

as the MREG used in this study, can capture the whole brain volume

with partial k-space sampling at a TR of 100 ms or less. This fast scan-

ning brings a certain penalty in spatial resolution, but on the other

hand enables the clear separation of physiological noise sources,

removes aliasing, and avoids slice-timing problems of interleaved

scanning (Huotari et al., 2019). This improved signal precision enables

stronger statistical inferences and provides a more accurate view of

emerging metrics on pathophysiological pulsation mechanisms

of human brain (Helakari et al., 2019; Jahanian et al., 2015; (Kananen

et al., 2018, 2020; Makedonov et al., 2016; Rajna et al., 2019, 2021;

Tuovinen et al., 2020).

5 | CONCLUSIONS

In summary, the extended spectral analysis of high temporal resolu-

tion BOLD data revealed multiple sources of the BOLD signal, each

with unique and characteristic dynamic distribution over the brain. In

the neocortex, the respiratory pulsations can dominate over the classi-

cal low frequency BOLD signals that are attributed to neuronal activ-

ity. Our results suggest that respiratory brain pulsations can compete

as source of signal variance equally with VLF BOLD signal. Thus,

careful separation of cardiorespiratory signal using fast fMRI is

strongly recommended for future neurovascular as well as physiologi-

cal brain signal studies. In addition, the strong respiration pulse intro-

duces a uniquely propagating wave of modulation of the purely

cardiac brain pulsations in the brain. Our study identifies multiple

sources of global BOLD signal and supports the use of fast fMRI data

for their comprehensive separation.
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