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INTRODUCTION

The use of nonlinear mixed-effect models for the design 
and analysis of clinical trials has dramatically increased 
as the implementation of model informed drug develop-
ment (MIDD) has accelerated.1,2 One key aspect of the 
design of trials in drug development that will be analyzed 

with models is the assessment of model fit. Specifically, 
that relevant models will be identifiable, and have enough 
precision in parameter estimates to be useful in the next 
MIDD step.

One way to assess model identifiability and parameter 
precision is through the use of clinical trial simulations 
(CTS). By assuming a model and design and simulating 
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Abstract
This NONMEM tutorial shows how to evaluate and optimize clinical trial designs, 
using algorithms developed in design software, such as PopED and PFIM 4.0. 
Parameter precision and model parameter estimability is obtained by assessing 
the Fisher Information Matrix (FIM), providing expected model parameter uncer-
tainty. Model parameter identifiability may be uncovered by very large standard 
errors or inability to invert an FIM. Because evaluation of FIM is more efficient 
than clinical trial simulation, more designs can be investigated, and the design of 
a clinical trial can be optimized. This tutorial provides simple and complex phar-
macokinetic/pharmacodynamic examples on obtaining optimal sample times, 
doses, or best division of subjects among design groups. Robust design techniques 
accounting for likely variability among subjects are also shown. A design evalu-
ator and optimizer within NONMEM allows any control stream first developed 
for trial design exploration to be subsequently used for estimation of parameters 
of simulated or clinical data, without transferring the model to another software. 
Conversely, a model developed in NONMEM could be used for design optimiza-
tion. In addition, the $DESIGN feature can be used on any model file and data-
set combination to retrospectively evaluate the model parameter uncertainty one 
would expect given that the model generated the data, particularly if outliers of 
the actual data prevent a reasonable assessment of the variance-covariance. The 
NONMEM trial design feature is suitable for standard continuous data, whereas 
more elaborate trial designs or with noncontinuous data-types can still be accom-
plished in optimal design dedicated software like PopED and PFIM.
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many clinical trials one can evaluate if a model can be 
fit to the data/design combination and if the parameters 
have enough precision for future model-based steps. This 
process is very useful and many different types of evalua-
tions can be made, but the process can be slow, especially 
if estimation time is long, resulting in, potentially, few de-
signs being evaluated.

A second, faster approach, to assess parameter precision 
and model identifiability given a model/design combina-
tion is through an assessment of the Fisher Information 
Matrix (FIM), which gives an evaluation (a lower bound 
estimate) of the expected model parameter uncertainty 
via an evaluation of the curvature of the expected likeli-
hood surface.3 Because the evaluation of the FIM is more 
efficient than CTS, more designs can be investigated, and 
the possibility of optimizing the design of a clinical trial 
can be considered. For example, one could try to find the 
optimal sampling time points, dose levels, and number of 
time points appropriate for a clinical trial. Very complex 
designs considering the best time samples and dose may 
be considered in optimal designs which could be missed 
in trial-and-error clinical trial simulations.

A number of methodological advances and software 
tools have been developed to utilize this approach of eval-
uating and optimizing study designs using the FIM.4–9 As 
one would hope, the different software tools will generally 
give the same answer to the same calculations.7 However, 
the tools do differ, with some methods and approaches 
only implemented in certain software. In addition, for 
NONMEM10 users, the implementation of models in these 
software programs will require learning a new modelling 
language (often implemented in R11 or MATLAB12).

In this work, we present the $DESIGN tool in 
NONMEM, which implements basic evaluation and opti-
mization of the FIM. The tool is meant as an on-ramp to 
design evaluation and optimization, with more advanced 
design calculations available in other tools.4–9 The de-
sign algorithms in NONMEM have been modeled after 
PopED by Hooker et al. (https://andre​whook​er.github.
io/PopED), and PFIM by Mentre et al. (http://www.pfim.
biost​at.fr), as described in references.4–9 These articles 
outline the theory of clinical trial evaluation, of which a 
brief description is given in the section Design Theory in 
Supplementary Materials. A description of the options to 
the $DESIGN are listed in the Introduction to NONMEM 
7 manual (intro7.pdf) to the NONMEM software,10 ver-
sion 7.5 and higher.

In general, to evaluate or optimize a trial design using 
the FIM you will need a model, a set of model parame-
ter values, a design, and the tasks that are to be per-
formed (and a design space, if one wants to optimize the 
design). At its most basic $DESIGN can be used with 
any NONMEM model file and dataset combination to 

retrospectively evaluate the model parameter uncertainty 
one would expect given that the model generated the data 
(simply by updating the model parameter estimates and 
replacing the $ESTIMATION line with a $DESIGN line in 
a NONMEM control file). In a more advanced setting, one 
can prospectively evaluate or optimize a design. Several 
optimization algorithms, several optimization criteria, 
and tools to defined design constraints are available.

The present tutorial is composed of seven examples 
of increasing complexity illustrating main features of 
$DESIGN in NONMEM for a user nonspecialized in op-
timal design. It is our hope that the examples demon-
strate how a design calculation can be done. We would 
also like to make clear the assumptions made in the cal-
culations (model, parameters, and allowed design space). 
The examples will attempt to illustrate how to relax these 
assumptions.

GENERAL TRIAL DESIGN LAYOUT 
IN NONMEM

Population designs are usually composed of one or sev-
eral elementary designs and the number of subjects as-
sociated with each elementary design. Each elementary 
design is defined by design elements, such as the num-
ber of samples and their allocation in time, they may also 
contain a dosing protocol, response measurements, and 
covariates.

In NONMEM, the data file pointed to by the $DATA 
record in an NMTRAN control stream contains the layout 
of the elementary designs, where the ID data item refers 
to the elementary design number. Thus, an elementary de-
sign is actually a subject template of records in a data file, 
indicating its dosing protocol, sample times, covariates, 
etc., just as if this data set were being used for simulation. 
A very basic elementary design structure will be intro-
duced in the first example. By default, each elementary 
design represents one subject, and elementary designs are 
equally weighted. We shall see how this can be altered 
by using GROUPSIZE to multiply the weighting of the 
entire template data set, and in a later example by using 
the STRAT and STRATF data items to alter the weight-
ing among elementary designs. Any design elements that 
are data record specific (such as dose, time, covariate, etc.) 
are placed in the data file, much as what one would do 
for clinical trial simulation. It is most economical to place 
these design elements in the data file, rather than specify-
ing these data-record specific details in the control stream. 
NONMEM users who are used to using the data file as a 
template for simulation will be familiar with using a data 
file template for specifying data-record specific design ele-
ments for optimal design/evaluation.

https://andrewhooker.github.io/PopED
https://andrewhooker.github.io/PopED
http://www.pfim.biostat.fr
http://www.pfim.biostat.fr
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The $DESIGN record in the NMTRAN control stream 
specifies general design evaluation or optimization direc-
tives, and options pertaining to general components are in-
troduced here. The most important options are introduced 
with each example below. A design criterion is selected, 
which is generally some measure of the standard errors 
that would result from a particular design. The most typi-
cal one is the negative logarithm of the determinant of the 
FIM, or logarithm of the variance-covariance matrix of the 
estimates, and the smaller this value, the lower the standard 
errors. The $DESIGN record can be used to set up the design 
criteria, and can be used for finding the best design elements 
(optimal design), or for evaluating design elements proposed 
by the user (design evaluation). The diagram in Figure  1 
shows the flow of input, decision making, and output for the 
$DESIGN step in NONMEM for evaluation or optimization.

EXAMPLE 1:  WARFARIN 
PHARMACOKINETIC DESIGN 
EVALUATION

We first consider a simple example of design evaluation. 
Using the example of warfarin.ctl (control stream shown 
in Table 1). We see that most of the records will be fa-
miliar to NONMEM users. Note, however, the new record 
specific for trial design: 

The csv file specified in the $DATA record for this 
problem is very simple, and contains a single elementary 
design with a bolus dose record and three observation 
records. 

Although the csv file contains only one subject (that is 
one subject type or elementary design), the subject number 
size may be specified with GROUPSIZE in the $DESIGN re-
cord. Here, we request the variance-covariance expected from 
a design with 32 subjects, all with the same elementary de-
sign (equivalent time values, doses, and covariates) defined 
in the csv file. We define for each patient the three following 
sampling times: one, four, and eight. There can be more than 
one elementary design in the csv, each with their own design 
(different doses, sample times, etc.), as shown in a later ex-
ample. Each elementary design would be multiplied by the 
GROUPSIZE scale factor. The FIMDIAG = 1 option indi-
cates evaluation of the FIM with block-diagonal modality, 
as described in the introduction (the default in NONMEM is 
FIMDIAG = 0, but FIMDIAG = 1 is considered usually the 
most appropriate one to use).7,13

The problem may be executed using the standard 
NONMEM script as follows:

where warfarin.ctl is the control stream and warfarin.res 
will be our NONMEM report file. This model has MU ref-
erencing of its thetas. MU referencing is not required, but 
can be helpful in evaluating FIM analytically, providing 
greater significant digit precision and speed.

The report file (Table 2) will contain the computed FIM 
and its derived components, including the expected standard 
errors (SEs) of the parameter estimates, the design criterion 

F I G U R E  1   Diagram representing 
the input and output components, 
design elements, and elementary designs 
involved in conducting a clinical trial 
design or optimization

Input Output

Evaluation

Input Output

Optimization

data.csv: elementary design components

control.ctl:
design to be evaluated
model
pop parameter values (or distribution)

control.res:
summary of calculations
control.ext:
design criterion objective function
standard errors
control.shk:
shrinkage information
control.coi:
expected Fisher information matrix (FIM)

data.csv: elementary design components

control.ctl:
initital design 
design space
design elements to be optimized
model
pop parameter values (or distribution)

control.res:
summary of calculations
control.ext:
design criterion objective function
standard errors
control.shk:
shrinkage information
control.coi:
expected Fisher information matrix (FIM)
control.tab:
optimized design elements
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objective function (in this case, the default criterion −log(de-
t(FIM))), and the expected shrinkage of the individual ran-
dom effects in the model given the design. These values are 
also reported in separate files for easy import into other soft-
ware tools (Figure 1). For example, the.coi file (Supplementary 
Materials) contains the FIM table, which is sometimes useful 
for more detailed analysis.

From Table 2, we see that the design itself is quite poor, 
with an SE of the variance for CL that is very high (6 times 
larger than the parameter value, 730% relative SE), ren-
dering this variability practically nonestimateable given 
the design. A correspondingly large expected shrinkage 
for the individual ETA (empirical Bayes estimate) asso-
ciated with this parameter (94.8%) can also be seen. The 
reported values for this example are very similar to results 
computed by both PFIM and PopED (results not shown).

Note that design evaluation of an existing dataset is pos-
sible using, simply, the command “$DESIGN” and a real-
ized dataset substituted for the elementary design dataset. 

For standard NONMEM analyses, $DESIGN can be used 
before parameter estimation, using some reasonable initial 
estimate of parameters to explore if parameters using this 
model and particular data set are expected to be estimable. In 
addition, after estimation using the estimated parameters ob-
tained from, say, a first order conditional estimation analysis, 
$DESIGN can be used to see what the RSE of parameters one 
would expect given that the model generated the data.

EXAMPLE 2:  WARFARIN 
PHARMACOKINETIC DESIGN 
OPTIMIZATION

In this example, we attempt to optimize the trial design 
proposed in example 1. We add the following specifications. 
First, additional data items describing the designs space 
TSTRAT, TMIN, and TMAX are needed (we shall see later 
how they are used), and added to the elementary design: 

T A B L E  1   Control Stream of warfarin.ctl (example 1)

Note: The control stream file allows the user to provide the model, parameter values, and particularly the $DESIGN record allows specification of design 
evaluation criteria. The data files specified on the $DATA record serves as the description for elementary designs.
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These are then referred to in the $INPUT record of the 
control stream (complete controls stream warfarin2.ctl and 
data file are in Supplementary Materials); 

Next, we have added several options to the $DESIGN 
record: 

We specify MAXEVAL>0, to indicate that we wish to 
have a design optimization performed. If we do not specify 
the method (NELDER/FEDOROV/STGR/RS/DISCRETE), 
the default is NELDER (Simplex method in PFIM software). 
We also ask that intermittent results every 20 iterations be 
printed out (PRINT = 20). Next, we specify the design el-
ements that are to be optimized. For this example, we ask 
that design element (DESEL) TIME be optimized. The 
optimization of TIME will occur for each unique value of 

the stratification variable (DESELSTRAT) TSTRAT, with 
possible values of each time being bounded (specified by 
DESLMIN and DESLMAX) by the values listed in column 
TMIN and TMAX. Each group of times that share the same 
TSTRAT value are constrained to be the same value during 
the optimization. If the TSTRAT value is 0, then the TIME 
of this particular record will not be optimized. We shall see 
how TSTRAT is used as we consider more complex exam-
ples in this tutorial.

Looking at the values in the design space columns in 
the csv file, we notice that the initial times are given in 
data column TIME of the csv file with three observation 
records per subject, but are to be optimized between TMIN 
and TMAX. All rows have unique TSRTAT values, so the 
times of each of these records are to be independently var-
ied during optimization. The initial, dosing, row will not 
be varied during optimization (TSTRAT = 0).

Finally, among the output, results are to be those of 
optimized sampling times, we therefore need to have a 
$TABLE record that will output these new times: 

T A B L E  2   Final results in NONMEM report file for example 1

Note: Shown are standard errors for population parameters, and shrinkage information.
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When the problem is run, intermittent output showing 
the improvement of the objective function is shown, just 
as any typical optimization process in NONMEM. The im-
provement in the SEs is important, so these are outputted in 
the raw output file (warfarin2.ext, Supplementary Materials), 
rather than the population parameters themselves, which do 
not change. There is no progress of the changing TIME val-
ues shown, but, when the analysis is completed, the $TABLE 
record outputs the final TIME values estimated to file war-
farin2.tab (Supplementary Materials). The −log(det(FIM) 
(which is the default optimality criterion) and SEs are ob-
tained from the raw output file(.ext) or the report file (war-
farin2.res, Supplementary Materials), shrinkage is obtained 
from the warfarin2.shk or the report file, and final sample 
times are obtained from the $TABLE file (warfarin2.tab). 
The initial/evaluation values and the optimized values of 
these components are compiled in Table 3 for comparison. 
The −log(det(FIM)) has improved considerably, as have the 
RSEs and shrinkage for most parameters, with optimization.

The three optimal times points are 1.55 (early in the 
rising phase of the curve), 3.69 (near the peak concentra-
tion), and 187 (late in the declining phase). Of note the 
RSE to the residual variance SIGMA(1,1) is 57%, rather 
high. This is because we have only three data points per 
subject, with the degrees of freedom of the three data 

points being used up to evaluate three pharmacokinetic 
(PK) parameters. There remain no degrees of freedom for 
assessing residual variance that one gets with more data 
points than parameters to assess.

Will things be better if we allow five data points per pa-
tient? We proceed to do so with an additional example war-
farin2b.ctl (available in Supplementary Materials) in which 
there are five time samples per subject, each with their own 
TSTRAT index so they vary independently, and find that the 
RSEs to all of the parameters are somewhat reduced, as ex-
pected when having more data points per subject, but the 
RSE to the residual variance is greatly improved, now being 
17.7% (see Table 3). However, we can notice that there are 
only three distinct times, even though five times were al-
lowed to be independently optimized. The three points are 
the boundary positions (0.13 and 159), and a third point at 
7.0 (with some small variations among the replicates). Thus, 
only three distinct positions were needed to get information 
about three PK parameters, with the two additional sample 
replications at the middle point (where concentrations are 
high) provided more information for the residual variance.

We further verify this by showing that having five data 
points but with just three of them being distinctly changing 
(we do this by having the middle 3 points share the same 
TSTRAT index), and note that the identical objective function 

T A B L E  3   Optimized Results for warfarin (example 1, example 2, and example 3), compared to the starting values

Item

Evaluated 
(warfarin, 
example 1, 3 
sample times)

Optimized 
(warfarin2, 
example 2, 3 
sample times)

Optimized 
(warfarin2b, 
5 sample 
times)

Optimized 
(warfarin2c, 5 
sample times, 
only 3 modeled 
as distinct)

Evaluated (warfarin3b, 
3 distinct sample times 
from warfarin2b, 2 samples 
spread between them)

−log(det(FIM)) −39.518 −47.533 −51.5977 −51.5977 −51.567

%RSE(CL) 36.9 5.00 4.78 4.78 4.77

%RSE(V) 4.95 3.39 2.71 2.71 2.72

%RSE(KA) 15.7 15.7 13.9 13.9 13.9

%RSE(var(CL)) 731 27.2 26.0 26.0 26.0

%RSE(var(V)) 42.4 49.5 29.5 29.5 29.7

%RSE(var(KA)) 27.0 31.0 25.7 25.7 25.7

%RSE(var(sigma)) 28.1 56.6 17.7 17.7 17.7

%Shrinkage(CL) 
(EVBSHRINKVR)

95.2 7.72 3.75 3.75 3.8

%Shrinkage(V) 26.2 38.8 14.5 14.5 15.3

%Shrinkage(KA) 7.14 16.7 2.48 2.48 2.6

Sample Time TSTRAT = 1 1 1.55 0.13 0.13 0.13

Sample Time TSTRAT = 2 4 3.69 7.01 7.109 (3x) 4.0

Sample Time TSTRAT = 3 8 -- 7.05 -- 7.0

Sample Time TSTRAT = 4 -- -- 7.11 -- 12.0

Sample Time TSTRAT = 5 -- 186.8 159.3 159.9 160

Note: The −log(det(FIM)) and SE’s are obtained from the raw output file(.ext) or the report file, shrinkage is obtained from the .shk or the report file, and 
sample times are obtained from the $TABLE file (.tab, optimization) or data file (.csv, evaluation).
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value (−51.5977) is obtained (warfarin2c, see Supplementary 
Material). Nonetheless, we recognize that the design is com-
puted assuming specific parameter values in the model, 
which will be somewhat different upon estimation, so the 
design would be more robust if we could spread the five data 
points out, so that a common set of five time positions will 
fit most potential model parameter values, without compro-
mising too much on the FIM value given the assumed true 
parameter values. The next example shows one way of se-
lecting distinct times for the clustered samples.

EXAMPLE 3:  EVALUATE 
DIFFERENCES IN SAMPLE 
TIMES DUE TO UNCERTAINTY IN 
POPULATION PARAMETERS

In the previous example, we noticed that some of the opti-
mized times cluster together, indicating that some of this 
repetition can be used for spreading out points to make the 
design more robust for variations in PK parameters. We 
may want to determine how differences in sample times 
may occur, given uncertainty in the population parame-
ters. Thus, we use the $SIML TRUE = PRIOR with prior 
information to randomly generate thetas (and omegas 
and sigmas, if desired), and optimal time points for each 
of these theta sets will be obtained. The prior information 
may be selected based on some understanding of likely 
variability in thetas, omegas, and sigmas, or may have 
come from some firm experience of previous studies, not 
from the previous optimal design runs of Table 3. We add 
prior information and simulation instructions (complete 
control stream priortrue.ctl in Supplementary Materials): 

In this example, 1000 sub-problems are generated, each 
with their own theta sets. The variance on the thetas is about 
30% coefficient of variation, and by observing the optimal 
times listed in priortrue.tab, we get a sense of what kind of dif-
ferences of optimal time points will be obtained, based on the 
likely variability of the thetas, in this example. A FORTRAN 
program, summary.f90, has been created (available in 
Supplementary Materials), to provide a convenient summa-
rization of the results in priortrue.tab (STD = standard devia-
tion, RSTD = relative standard deviation, or %STD/MEAN): 

The full output from summary.exe contains many percen-
tiles, to allow for a large selection of dispersed time samples.

The program summary may be compiled once, for ex-
ample, as follows:

and then executed (the third argument, a FORTRAN style 
format, is optional):

For this example, we need only two time samples for 
dispersing the clustered set near 7.0 h, so we use 2.5 and 
97.5 percentile positions, to obtain coverage of the possi-
ble thetas that may occur. Of particular interest for us is 
to take some sense of lower and upper bounds around the 
7 h time, such as the 2.5% and 97.5% values of the cluster 
points (whose mean is 7.122, thus representing the 7 h). 
In this case, the values are 4.09 and 11.13 that we obtain 
from the above summary table, and we can use the floor 
of 4.09 (−>4) and ceiling of 11.13 (−>12) and use these 
as recommended times around the 7.0 h clustered time to 
improve robustness. We have done this, for example, for 
warfarin3b, where we evaluate with time samples 0.13, 
4.0, 7.0, 12.0, and 160.0. The results of the design evalua-
tion at these sample times are shown in the last column 
of Table 3.

We may also wish to make the theta variance equal to 
the OMEGA intersubject variance, to take into account 
likely fluctuations of PK profiles among the subjects, and 
make the sampling robust for between subject variability. 
We would thus make the $THETAPV variances equivalent 
to the $OMEGA variances (priortrue2.ctl): 
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The result is summarized in summary2.tab 
(Supplementary Materials), and we note that the median 
times are 0.13, a triplet clustered near 6.9, and 159.9. The 
clustered triplet with median 6.9  h has a 2.5% value of 
1.5, and 97.5% level of 23 h. Therefore, suggested robust 
time samples would be 0.13, 1.5, 7.0, 23.0, and 160.0. The 
criterion value calculated for these times is −51.374 (war-
farin3c, Supplementary Materials), very similar to the op-
timal −51.5977.

This process of determining what variability of thetas 
could provide what degree of variability of ideal sample 
times (or other design elements) provides a robust means 
of assessing sensitivity between parameters and design 
elements.

For this example, we considered only influence of 
variability in Thetas on sample times. A more advanced 
assessment could include the influence of variability in 
Omegas on sample times, but the predominant influence 
comes from Thetas, especially when using FO assessment 
of the FIM.14

There are other ways to account for uncertainties in 
parameters values and perform optimal robust designs in 
NONMEM (such as serial correlation models, as recom-
mended in ref. 15) but they are beyond the scope of the 
present tutorial.

EXAMPLE 4:  WARFARIN 
PHARMACOKINETIC/
PHARMACODYNAMIC DESIGN 
OPTIMIZATION, DETERMINING 
BEST DISCRETE TIMES USING A 
SIMPLEX ALGORITHM

We now consider a model with two responses, the PK/
pharmacodynamic (PD) of warfarin, as from ref. 16, in 
which warfarin PD measurements (prothrombin complex 
activity) are driven by the warfarin PK concentrations. 
Note that the problems of the present example have only 
proportional errors in keeping with what was done in ref. 
16. For optimal design, residual errors are best modeled 
with a proportional and additive error (which may be 
fixed to avoid specifying a design point for it), as shown in 
the earlier examples, or just additive error. The PD model 
for this system is a turnover model with inhibition of the 
Rin parameter based on warfarin concentration (con-
trol stream, warfarin_pkpd_opt.ctl, in Supplementary 
Materials). Of particular note, the following portion of the 
control stream defines the parameters and the ordinary 
differential equations: 

We wish to create an elementary design in which four PK 
observations and four PD observations are obtained, with 
different sample times for the PK and PD samples. This is 
shown in Table 4 (warfarin_pkpd.csv).

Notice that there is one PD (CMT = 3) record at time 0, 
whose TSTRAT index is 0, so this PD sample will be obtained 
predose, and its TIME value will not be optimized. The other 
seven records contain initial time positions, each having 
their own TSTRAT index, so that their TIME values are var-
ied as independent design elements during design optimi-
zation. The CMT data item is two to indicate a PK sample, 
and three to indicate a PD sample. After optimization with 
the default Nelder (Simplex) method, the results (Table 5), 
shows that some times are repeated, and there are just six 
distinct times found (including the predose PD sample): 

PK: (0.49, 5, 145)
PD: (0, 18, 34.9).

The final criterion value was −118.27. The original 
paper16 used the Fedorov algorithm in PFIM 4.0, which 
selects the best set of time points from a list. The list of 
time points permitted were: 

PK: 0.5, 1, 2, 3, 6, 9, 12, 24, 36, 48, 72, 96, 120
PD: 0, 24, 36, 48, 72, 92, 120, 144.

Using this prespecified discrete grid of sampling times, 
we manually select four PK and four PD times closest to 
those we obtained by our continuous Nelder (Simplex al-
gorithm) method, without repeats, so those could be: 

PK: (0.5, 6, 9, 144)
PD: (0, 24, 36, 48).

Next, a design evaluation of these discrete times results 
in a criterion value of −117.56 (second column of values 
in Table 5), similar to the ideal −118.27 in the continuous 
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sample time assessment, so there was very little compro-
mise here in rounding the sampling times.

Another design consideration would be to require that 
four PK/PD samples be taken in one elementary design 
(PK and PD times are restricted to be taken at the same 
time), and another four PK/PD samples be obtained in 
another elementary design (so, two elementary designs 
or two subject types). The data template to describe this 
is shown in Table 4 (warfarin_pkpd2.csv), where two ele-
mentary designs are templated.

Notice that each PK/PD sample pair (one from CMT 
= 2 and the next from CMT = 3) share the same initial 
TIME value, and they share a TSTRAT index. This ensures 
that the TIMEs of the PK/PD sample pair moves together 
during the optimization. Because the two designs are to 
have their own PK/PD times, the four PK/PD samples in 
design 1 (ID = 1) are numbered 1 to 4, and those of de-
sign 2 are numbered 5 to 8 (ID = 2). If we desired that 
they have the same times for one or more sample, then the 
TSTRAT index would be the same for those times, across 
elementary designs. The final optimized times are shown 
in Table 5, along with other components. The closest pre-
set distinct set of PK/PD times are: 

Elementary design (subject template) 1: 0.5, 3, 6, 96
Elementary design (subject template) 2: 0.5, 72, 96, 145.

This continuous sample time finding method is com-
parable to the discrete sample time finding method of 
Table 3 of design opt.iden, of ref. 16. In that paper, they 
determined that 22 subjects are to have design 1, and 10 
subjects to have design 2. We could have also considered 
optimizing for proportionate representation of elementary 
designs 1 and 2, using the STRAT and STRATF options (to 
be introduced below), but we already have overparame-
terization, as evidenced by the time clumping that has oc-
curred. Thus, our representation is equal proportions for 
elementary designs 1 and 2, for a more continuous time 
sample set.

EXAMPLE 5:  DS - OPTIMALITY 
EXAMPLE FOR FINDING THE BEST 
SAMPLE TIMES (USING UNINT) 
FOR A TWO - COMPARTMENT 
PROBLEM

For this example, we now use the Ds-optimality criteria 
where some parameters (structural and variance fixed 
effects) are declared “uninteresting” for design opti-
mization. For this problem OFVTYPE = 6 is selected, 
which takes into account interesting versus uninter-
esting parameters. In the previous examples, we have 

T A B L E  4   Elementary designs for problems warfarin_pkpd and warafarin_pkpd2
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been implicitly using the default the d-optimality −
log(det(FIM), OFVTYPE = 1, for optimization of the de-
sign. A list of various OFVTYPE option values are listed 
in Table S1, and in the description of the $DESIGN record 
in intro7.pdf to the NONMEM software.10 For the present 

example, we use a two compartment PK model and opt-
design2.ctl (Supplementary Materials), and we specify 
that the Omega values are UNINTed (that is, are declared 
uninteresting), and that only the thetas and the residual 
proportional error are of interest: 

T A B L E  5   The Optimized Results of warfarin_pkpd_opt and warfarin_pkpd_opt2 (example 4)

Item

Optimized 
(warfarin_
pkpd_opt)

Evaluated at 
selected discrete 
and distinct times 
(warfarin_pkpd_eval) Item

Optimized 
(warfarin_
pkpd_opt2)

Evaluated at 
selected discrete 
times (warfarin_
pkpd_eval2)

−log(det(FIM)) −118.27 −117.56 −log(det(FIM)) −117.52 −116.3

%RSE(KA) 12.7 12.6 %RSE(KA) 12.6 12.3

%RSE(CL) 3.83 3.83 %RSE(CL) 3.86 3.85

%RSE(V) 2.80 2.64 %RSE(V) 2.61 2.55

%RSE(RIN) 6.05 6.05 %RSE(RIN) 6.05 6.05

%RSE(IC50) 2.34 2.26 %RSE(IC50) 2.42 2.42

%RSE(KOUT) 1.76 1.76 %RSE(KOUT) 1.76 1.77

%RSE(var(KA)) 22.7 22.5 %RSE(var(KA)) 22.6 21.8

%RSE(var(CL)) 21.7 21.4 %RSE(var(CL)) 21.4 21.3

%RSE(var(V)) 31.1 28.8 %RSE(var(V)) 30.4 29.5

%RSE(var(RIN)) 19.6 19.6 %RSE(var(RIN)) 19.6 19.6

%RSE(var(IC50)) 31.9 31.4 %RSE(var(IC50)) 38.0 38.1

%RSE(var(KOUT)) 19.7 19.7 %RSE(var(KOUT)) 19.7 19.9

%rse(sigma1) 16.4 15.6 %rse(sigma1) 13.9 13.5

%rse(sigma2) 19.6 36.4 %rse(sigma2) 27.7 58.9

%SHRINKAGE(KA) 12.3 1.8 %SHRINKAGE(KA) 11.2 9.37

%SHRINKAGE (CL) 9.23 8.10 %SHRINKAGE (CL) 7.73 7.45

%SHRINKAGE (V) 34.0 29.9 %SHRINKAGE (V) 34.8 32.3

%SHRINKAGE (RIN) 0.0272 0.0357 %SHRINKAGE (RIN) 0.0499 0.122

%SHRINKAGE (IC50) 35.8 35.0 %SHRINKAGE (IC50) 47.5 47.8

%SHRINKAGE (KOUT) 0.319 0.420 %SHRINKAGE (KOUT) 0.629 1.42

Sample Time TSTRAT = 
1 (CMT = 2)

0.49 0.5 Sample Time TSTRAT = 1 
(CMT = 2,3)

0.49 0.5

Sample Time TSTRAT = 
2 (CMT = 2)

5.028 6.0 Sample Time TSTRAT = 2 
(CMT = 2,3)

4.806 3.0

Sample Time TSTRAT = 
3 (CMT = 2)

5.035 9.0 Sample Time TSTRAT = 3 
(CMT = 2,3)

4.807 6.0

Sample Time TSTRAT = 
4 (CMT = 3)

18.0 24.0 Sample Time TSTRAT = 4 
(CMT = 2,3)

90.6 96

Sample Time TSTRAT = 
5 (CMT = 3)

34.855 96.0 Sample Time TSTRAT = 5 
(CMT = 2,3)

0.49 0.5

Sample Time TSTRAT = 
6 (CMT = 3)

34.862 120.0 Sample Time TSTRAT = 6 
(CMT = 2,3)

70.6 72

Sample Time TSTRAT = 
7 (CMT = 2)

145.0 144.0 Sample Time TSTRAT = 7 
(CMT = 2,3)

80.0 96

Sample Time TSTRAT = 8 
(CMT = 2,3)

135 145

Note: The −log(det(FIM)) and SE’s are obtained from the raw output file(.ext) or the report file, shrinkage is obtained from the .shk or the report file, and 
sample times are obtained from the $TABLE file (.tab, optimization) or data file (.csv, evaluation).  
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The OFVTYPE = 6 objective function is structured as

−log(det(FIM)) + log(det(FIMuninteresting))

Final optimal times are listed in Table 6, as are the 
RSEs and shrinkage. Comparing with the results when the 
UNINT are removed, and OFVTYPE = 1 (second column 
in Table 6), and when UNINT is replaced with FIXED, and 
OFVTYPE = 1 (third column in Table 6), we can notice that 
the RSEs of V2 omega and Sigmaconstant for the UNINT 
setting are quite large. When the omegas are included (by 
removing their UNINT designations), RSEs to these are 
considerably reduced. For a GROUPSIZE of 100, the RSE 
to var(Q) is still quite large. The RSEs reduce by a factor 
of sqrt(N), so if we want the RSE to be no larger than 20%, 
then seeing that the var(Q) has the largest RSE of 46.7%, we 
should require 100*(46.7/20)*(46.7/20) = 545 subjects.

There are small variations in the optimal sample times 
among UNINT, FIXED, and full representation in the 
FIM, but they all report four relatively distinct times.

EXAMPLE 6:  OPTIMIZING FOR 
BEST TIMES AND GROUP SIZES TO 
ELEMENTARY DESIGNS: TARGET 
MEDIATED DRUG DISPOSITION 
EXAMPLE

Here, we optimize the sampling times and also the num-
ber of individuals for the various elementary designs. 
Target mediated drug disposition (TMDD) problems have 
complex PK and PD profiles, and so it may be a chal-
lenge to design a clinical trial just by intuition. Consider 
the NONMEM example6, which describes PK of anti-
bodies (Abs), which, if no specific target is present, has 
a dose-linear bi-exponential decay profile, with volume 
of distribution of central compartment close to serum 
(Vc = 45 ml/kg), and slow distribution (K12, K21, and sev-
eral hours) into extravascular spaces. Linear kinetic elimi-
nation (K10) of serum Ab is very slow, due to interaction 
with nonsaturable (high capacity) FcRn receptor (binding 
to Fc of Ab) on endothelial cells, which recycle most of the 
antibody back to the blood. The beta phase half-life is typi-
cally 18–30 days in humans. With specific target present, 
the Fab’2 portion of Ab binds to, for example, a cell surface 

T A B L E  6   The Optimized Results, for optdesign2, example 5

Item
UNINT on Omegas (optdesign2, 
OFVTYPE = 6)

No UNINT, optdesign2c, 
OFVTYPE = 1)

FIXED on Omegas 
(optdesign2d, OFVTYPE = 1)

Objective function −42.182 −103.694 −42.327

%RSE(CL) per subject 1.01 1.04 1.04

%RSE(V1) 1.34 1.34 1.34

%RSE(Q) 3.30 3.77 3.49

%RSE(V2) 1.24 1.13 1.30

%RSE(var(CL)) U/F 17.6 17.5 -

%RSE(var(V1)) U/F 26.2 28.0 -

%RSE(var(Q)) U/F 37.6 46.7 -

%RSE(var(V2)) U/F 94.2 33.3 -

%RSE(SigmaProp) 12.9 20.8 11.5

%RSE(SigmaConst) U/F 72.9 23.4 -

%SHK(CL) 17.9 17.8 17.8

%SHK(V1) 42.5 41.8 43.0

%SHK(Q) 58.1 63.3 56.0

%SHK(V2) 66.3 53.1 65.8

Sample Time TSTRAT = 1 0.010058 0.0105 0.0103

Sample Time TSTRAT = 3 1.3126 1.5868 1.4347

Sample Time TSTRAT = 5 1.3198 4.7893 4.9097

Sample Time TSTRAT = 7 5.0292 22.295 4.9146

Sample Time TSTRAT = 9 25.005 25.0 25.0

Note: The −log(det(FIM)) and SE’s are obtained from the raw output file(.ext) or the report file, shrinkage is obtained from the.shk or the report file, and 
sample times are obtained from the $TABLE file (.tab, optimization) or data file (.csv, evaluation). Notice that some of the RSE’s are high. RSE’s reduce by a 
factor of sqrt(number of subjects).
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receptor with high affinity (KMc of say 0.01–1 nM). These 
receptors have a natural rate of production by their cells 
expressed in K03, and a natural rate of internalization of 
K30. When Ab interacts with receptor, the rate of inter-
nalization of the Ab-receptor complex is expressed as Vm, 
and this results in increased removal of receptor, as well 
as increased clearance of Ab. The three differential equa-
tions are coded in the $DES record as: 

The complete control stream based on the NONMEM ex-
ample 6 problem is in Supplementary Materials (tmdd2.ctl).

The clearance at low concentrations (and therefore at 
low doses) is fast, with transient downmodulation of recep-
tor that can determine the concentration of half-maximal 
receptor-mediated clearance. Higher concentrations have 
slower clearance, and can determine the maximum down-
modulation of receptor, as well as the linear clearance 
component best. Therefore, we consider a trial with two 
elementary designs, one for a dose of 0.3 mg/kg, and an-
other for 10 mg/kg. Whereas the 10 mg/kg PK/PD profile 
would traverse through high concentrations followed by 
low concentrations, if sampled long enough, it is desired 
that the sampling period be for no more than 49 days, so 
the 0.3 mg/kg group, which traverses through mid and low 
concentrations, is included to reach the lower concentra-
tions at earlier sample times than the 10 mg/kg group. Five 
PK/PD blood sample pairs are taken optimized separately 
for each dose. In addition, we wish to know what propor-
tion of subjects should receive each dose, so STRAT and 
STRATF design elements have been added. This is com-
parable to determining best group size, as described in an 
example in ref. 6. The STRAT and STRATF are data items 
that should be defined in the data file as follows: 

STRATF = data item containing fraction representa-
tion for the associated elementary design
STRAT = data item containing stratification index per-
taining to the STRATF design element.

Because STRAT and STRATF describe a property of the 
entire elementary design (all data records belonging to the 
same ID), the only the STRAT and STRATF of the first re-
cord of the ID is considered. As an example, suppose we 
have a STRAT index of four, and its STRATF value is 0.4. 
All elementary designs that have the same STRAT of four 
on their first record will share a STRATF value of 0.4, and 
this represents their weight of influence on the FIM. If 
STRAT and STRATF are specified, and there is at least one 
STRAT value greater than 0, then the STRATF values are 
optimized, and represent the weight to the contribution 

of that elementary design to the information matrix. For 
STRAT values less than or equal to 0, then their STRATF 
values are not optimized, and remain fixed at their initial 
values, but are still used as weights to the information ma-
trix. It is up to the user to ensure that the initial sum of 
STRATF values among unique STRAT indices sum to one. 
If value of STRATF is less than 0.0, then that elementary 
design is not included in the assessment. The effective 
group size for elementary designs with STRATF greater 
than zero is then GROUPSIZE*STRATF value for that 
elementary design. The data file laying out the design is 
shown in Supplementary Materials, tmdd2.csv.

For this problem, the optimization is repeated several 
times. For the NELDER method, this may be an advan-
tage so that on each initiation of NELDER, it re-initializes 
the starting vertex positions of the simplex17 to cover a 
larger region, to alleviate it from a tendency toward a local 
minimum. The optimized sample times (TIME) and pro-
portions (STRATF, first line of each elementary design/
ID) are listed in supplementary Materials, table tmdd2.
tab. The following was determined for best proportion of 
subjects to be given the dose, and best times (constrained 
between 0.01 and 49): 

0.3 mg/kg: 0.59 of subjects, times 0.01, 0.17, 0.48, 2.5, 5
10 mg/kg: 0.41 of subjects, times 0.01, 0.29, 3.25, 24.3, 49.

EXAMPLE 7:  BAYES OPTIMAL 
DESIGN TO FIND BEST SAMPLING 
TIMES AND BEST DOSE: TMDD 
EXAMPLE

We now use the previous example for illustration of the 
Bayesian Fisher Information (OFVTYPE = 8) method, 
as described in refs. 8,17-19 and the Design Theory in 
Supplementary Materials. The Bayesian FIM is essentially 
the FIM for the maximum a posteriori estimation, and its 
information content (although using population informa-
tion as a prior) is localized to data/elementary designs of 
a particular individual rather than the entire population. 
We evaluate a design for Bayesian estimation of individual 
parameters, given population parameters. In this case, the 
conditional variance-covariances of the individual’s param-
eters are optimized, identified as ETC(,), and the final val-
ues are listed in the.phi table (Supplementary Materials). If 
just one subject (or subject type) is in the data file, then the 
criterion is that one subject’s Bayesian FIM. If more than 
one subject (or subject type), then the Bayesian FIM of all 
the subjects, averaged together, is the criterion for design.

The control stream example optex6d17_8.ctl is given in 
Supplementary Materials. For this example, five PK sam-
ple times and five PD sample times are sought, along with 
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a best dose. To evaluate for best dose, we add additional 
DESEL* options. 

The appropriate DMIN, DSTRAT, and DMAX data items 
specify optimizing the dose are needed in the data file con-
taining the elementary design: 

As usual, the $TABLE user requested table optex6d17_8.
tab reports the final sample times and dose, but now the 
table optex6d17_8.bfm (Supplementary Materials) reports 
the intermediate posterior variance-covariance. Final con-
ditional posterior variances are reported in optex6d17_8.phi 
(Supplementary Materials). The raw file (optex6d17_8.ext, 
Supplementary Materials) shows only starting and final val-
ues of the SEs of population parameters, as extra information.

The average shrinkage information is reported as usual 
in the main report file (optex6d17_8.res, Supplementary 
Materials). If we compare the EBVSHRINKVR between 
this Empirical Bayes method, and the general popula-
tion analysis method OFVTYPE = 1, these are similar 
(Table 7). The SEs to population parameters are slightly 
better assessed with OFVTYPE = 1, as expected, because 
OFVTYPE = 8 only assesses time points that most favor 
the FIM of the posterior density. Notice also that whether 
Bayes or population optimization is performed, only eight 
distinct time points arise from the total 10 that are re-
quested. This is expected, as the dimension of the Bayes 
FIM is eight (with some modulatory information in the 
covariances), for the eight individual parameters with 
intersubject variability, and for the population analysis 
(OFVTYPE = 1), OMEGAS and SIGMAS were fixed, to 
make a fair comparison with the Bayes analysis.

CONCLUSIONS

To our knowledge, $DESIGN in NONMEM is the first op-
timal design tool implemented in a pharmacometrics soft-
ware that was primarily developed for model fitting. This 
allows the user to easily evaluate designs using approaches 

based on the FIM, using already implemented models, pa-
rameters values, and sometimes designs.

Using an optimal design approach, instead of CTS, for 
design evaluation is timely, as, indeed, many more designs 
can be evaluated. Furthermore “true” design optimization 
can presently be done extensively only by using these opti-
mal design approaches. Note, however, that SEs and RSEs 
predicted by the FIM are often close, but theoretically 
only lower bounds of the true uncertainty for any given 
dataset, especially for designs of limited size. Because the 
FIM is presently computed using a linear approximation, 

T A B L E  7   The Optimized Results, optex6d17_8, example 7

Item
OFVTYPE = 8 
(optex6d17_8)

OFVTYPE = 1 
(tmdd2b)

Bayes Objective function −43.335 −42.893

%RSE(VC) (per subject) 26.8 26.7

%RSE(K10) 29.4 29.1

%RSE(K12) 35.5 35.5

%RSE(K21) 36.7 35.8

%RSE(VM) 26.2 27.1

%RSE(KMC) 37.2 33.7

%RSE(K03) 29.1 28.5

%RSE(K30) 30.9 30.9

%SHK(VC) 8.66 8.50

%SHK(K10) 20.9 20.0

%SHK(K12) 37.1 37.5

%SHK(K21) 39.8 38.5

%SHK(VM) 8.08 13.3

%SHK(KMC) 50.8 41.2

%SHK(K03) 18.1 16.4

%SHK(K30) 28.7 30.6

Optimal Dose 5.334 mg/kg 5.189 mg/kg

Fixed Sample Time 
predose (CMT = 3)

0 0

Sample Time (CMT = 3) 0.01 (redundant 
with fixed 
predose)

---

Sample Time (CMT = 1) 0.01 0.01

Sample Time (CMT = 3) 0.2733,0.2734 0.240

Sample Time (CMT = 1) 0.627 0.561

Sample Time (CMT = 3) 2.12 1.93,1.97

Sample Time (CMT = 1) 2.78 3.13

Sample Time (CMT = 1) 44.7 41.7

Sample Time (CMT = 3) 47.7 47.00,47.01

Sample Time (CMT = 1) 49.0 48.5

Note: The −log(det(FIM)) and SE’s are obtained from the raw output file(.
ext) or the report file, shrinkage is obtained from the.shk or the report file, 
and sample times are obtained from the $TABLE file (.tab, optimization) or 
data file (.csv, evaluation).
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we suggest the users to use this tool to define one or a 
few designs that should then be evaluated by clinical trial 
simulation.

Presently, $DESIGN in NONMEM can only be used for 
models with continuous data as the FIM is more complex 
to evaluate for discrete or time to event models. We have 
used the Nelder method of search for these examples, but 
there is a risk of reaching local minima, and other search 
algorithms such as random search or stochastic gradi-
ent search are available in NONMEM’s $DESIGN feature 
which can also be used, sometimes in combination with the 
Nelder search method. We illustrated in the current tutorial 
seven examples of basic/standard optimal design, but more 
specifications are available for design evaluation and op-
timization in the documentation. However, other specific 
tools, such as PopED and PFIM, may have more advanced 
methods if needed.
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