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Abstract: High-resolution hyperspectral imaging is becoming indispensable, enabling the precise
detection of spectral variations across complex, spatially intricate targets. However, despite these
significant benefits, currently available high-resolution set-ups are typically prohibitively expensive,
significantly limiting their user base and accessibility. These limitations can have wider implications,
limiting data collection opportunities, and therefore our knowledge, across a wide range of environ-
ments. In this article we introduce a low-cost alternative to the currently available instrumentation.
This instrument provides hyperspectral datasets capable of resolving spectral variations in mm-scale
targets, that cannot typically be resolved with many existing low-cost hyperspectral imaging alterna-
tives. Instrument metrology is provided, and its efficacy is demonstrated within a mineralogy-based
environmental monitoring application highlighting it as a valuable addition to the field of low-cost
hyperspectral imaging.

Keywords: hyperspectral; low-cost; high-resolution; environmental monitoring

1. Introduction

High spatial and spectral resolution hyperspectral imaging is becoming increasingly
important for a wide range of industries. It has reached a reasonable level of maturity in
agriculture. It promises to be a beneficial measurement modality that can provide datasets
capable of resolving intricate details and variations across a broad range of targets. Con-
tinued uptake of the technology will require a reduction in cost of hardware along with
an increased knowledge of the meaning behind the spectra for any particular applica-
tion. Despite the benefits, high-spatial-resolution hyperspectral imaging can be difficult
to achieve due to the associated trade-offs between spatial resolution, spectral resolution,
and signal-to-noise ratio [1,2]. These factors represent key performance parameters within
instrumentation design, having a significant impact on the overall abilities of the final con-
figuration [3–5]. The instrumentation design process, therefore, often becomes a balancing
act, finding the best possible combination of these three factors that allows the highest
quality data to be captured from the chosen application. Whilst these trade-offs affect
hyperspectral imaging applications as a whole, many low-cost designs are typically more
adversely affected as a result of their use of lower cost components. This results in many
low-cost hyperspectral instruments foregoing high spatial resolution in order to achieve
effective spectral outputs, and, in turn, this limits high-spatial-resolution hyperspectral
imaging to more costly commercial instrumentation [6,7]. These limitations have further
repercussions; by placing these high-resolution datasets ‘out-of-reach’ for many less-well-
resourced research teams and organisations, it hinders the continued democratisation of
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hyperspectral imaging techniques and, in so doing, limits a wide range of data collection
applications. Low-cost high-resolution hyperspectral imaging, therefore, represents a crit-
ical area for continued development. By developing instrumentation that is capable of
accurate spectral identification of small-scale spatial targets, it enables a broad range of
more detailed spectral measurements that can provide key knowledge and understanding
in a variety of application areas. Low-cost hyperspectral imaging will not only open up the
technology to a wider range of applications, but it will also enable an increase in knowledge
of the correlations/causations between spectra and the parameters that can be used to
improve, e.g., manufacturing processes, by hugely expanding the user base.

In environmental monitoring applications, high-spatial-resolution hyperspectral imag-
ing can enable the capture of intricate features that would often be overlooked by traditional
monitoring methods. This approach is, therefore, employed across a wide variety of applica-
tions, from spatially complex environments such as swamps [8], or dense forest canopies [1],
to the accurate identification of volcanic gases [3,9]. Many existing applications focus on nat-
ural and agricultural vegetation monitoring [10–14], however, there has also been a recent
increase in interest in high-resolution analyses for mining operations [15–17], geological
exploration [18–20], mineralogy [21–25] and petrology [23,26–29]. Hyperspectral imaging
provides a rapid, non-destructive, and information-rich means of data collection [15,23,30],
enabling both an increase in our understanding of the structure and composition of key
environmental settings whilst also providing valuable planetary analogues for continued
solar system exploration [30–35]. The application of high-spatial-resolution hyperspectral
imagers within these scenarios is, therefore, of considerable benefit.

To date, whilst high-spatial-resolution instrumentation has become more common
place within these applications, there remains a considerable gap in the existing literature
surrounding the application of low-cost instrumentation within these domains. Whilst
many existing low-cost alternatives are capable of accurate and detailed data capture,
making them valuable additions to the research field, very intricate targets, ca. < 1 mm,
are often not easily resolved by these approaches. In this article we, therefore, introduce a
Low-Cost High-Resolution hyperspectral imager as an accessible alternative to existing
measurement and monitoring approaches. Within this article we use “high-resolution” to
refer to data capture quality required to be associated with high definition (HD) video,
however, given the final processed output datasets are not a video format, we have chosen
not to use HD more broadly within the text. Furthermore, “high-resolution” can also be
attributed to the spectral resolution of this instrument. With a spectral resolution of 0.29 nm,
this instrument compares favorably with a broad range of existing instrumentation [6].
Additionally, we use the term “low-cost” to refer to instrumentation that is significantly
cheaper than the typical cost of commercially available systems. Commercial hyperspectral
imaging instrumentation often cost more than £30,000, with some systems costing up to
£150,000 [7]. In comparison, the instrument detailed within this article costs ca. £11,000 to
develop, with the majority of these costs associated with the chosen camera sensor. This
single-instrument cost would fall significantly if our design were to be supplied commer-
cially due to the inverse relationship between sales volume and price. The instrument is
semi-portable and capable of mm-scale spatial data acquisitions. In this article we aim to
present a thorough analysis of, and introduction to, our Low-Cost High-Resolution hyper-
spectral imager, providing insights that demonstrate its significant potential. Instrument
design and metrology are presented before its application within a mineralogy-based study
with the aim of demonstrating the instrument’s efficacy and potential within environmental
monitoring contexts. In so doing, we highlight the significant potential offered by this Low-
Cost High-Resolution instrument, demonstrating it to be a valuable addition to the research
field and an additional step towards the wide-spread democratisation of hyperspectral
imaging techniques.
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2. Materials and Methods

The Low-Cost High-Resolution hyperspectral imager (Figure 1) is a semi-portable
instrument, capable of capturing spectral information from mm-scale spatial targets, and
focus can be adjusted to best fit the intended target. This is demonstrated within Figure 2,
which shows an example of the data quality capture possible with this set-up using two
different focal lengths. The instrument is composed of commercially available components,
as listed in Table 1. A key benefit of the Low-Cost High-Resolution instrument is its inherent
modularity. This enables key components and their configuration to be altered to best fit
the intended application without compromising the overall abilities of the imager. The
components listed in Table 1 were selected to best fit the intended applications discussed
within this article, however, many of them can be altered or exchanged, enabling a wider
range of applications with the additional benefit of potential cost reduction if required.
For example, the width of the slit can be adjusted without disturbing the existing set-
up, enabling the capture of a greater range of target scenes under variable illumination
conditions. Furthermore, for targets with key spectral features outside of the existing range
of this instrument, the diffraction grating can be replaced with an alternative with relative
ease. Finally, the Hamamatsu C13440 camera (Hamamatsu, Shizuoka, Japan) makes up
a considerable portion of the development costs for this particular design. It could be
replaced with a lower cost alternative, for example, a Thorlabs Quantalux CS2100M-USB
(Thorlabs, Newton, NJ, USA). Of course, replacing the camera with a considerably lower
cost alternative, will influence the data capture quality. However, the operator can look to
determine the acceptable limitations and trade-offs between data quality and cost reduction
within the specifics of their intended application. The ease of these alterations highlight the
versatility of this approach to instrument design, demonstrating the significant potential
for versatile, low-cost, high-resolution hyperspectral instrument development for a range
of applications and research fields, including potential adaptations for the capture of
longer wavelengths within the infrared, however, these alterations would likely result in a
significant increase in development costs.
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Figure 1. Schematic diagram of the Low-Cost High-Resolution hyperspectral imager showing how
axial and marginal rays pass through the optical system. Blue, green, and red lines represent example
wavelength rays after diffraction has taken place. Not to scale.
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Figure 2. Example frames of an ammonite fossil taken from a hyperspectral data cube demonstrating
the spatial resolution possible with this instrument. The first panel shows a standard color image of
the target for reference. The additional panels show hyperspectral frames captured at focal lengths of
18 mm and 55 mm, respectively.

Table 1. Components of the Low-Cost High-Resolution hyperspectral imager.

Component Part Used

Objective Lens Canon EF-S 18–55 mm
Slit Thorlabs VA100C (set at 300 µm).

Collimating Lens Thorlabs MVL75M1
75 mm telephoto c mount

Transmission Diffraction Grating Edmund Optics #49-580

Focusing Lens Thorlabs MVL50M23
50 mm telephoto c mount

Camera Sensor Hamamatsu C13440

In its current form (Figure 3), the instrument is capable of detecting spectral infor-
mation across the visible spectrum (450–650 nm), however, given its inherent modularity
this wavelength range can be altered with relative ease. The wavelength range of the
instrument is limited by the focusing lens, which produced mild vignetting. We, therefore,
chose to partially crop the sensor, sacrificing some of the spectral range. This could be
avoided by replacing the focusing lens or selecting a diffraction grating with a lower groove
density. However, it should be noted that whilst replacing the diffraction grating would
enable a greater spectral range to be captured, it would result in a trade-off, reducing
the spectral resolution. The instrument is semi-portable. By referring to the instrument
as “semi-portable” we intend to highlight its increased maneuverability over traditional
laboratory-based hyperspectral imagers. This instrument can be operated using a laptop,
removing its reliance on a static computer terminal. This enables it to be utilised in a wider
range of data collection scenarios, increasing its range of potential applications.
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Figure 3. The Low-Cost High-Resolution hyperspectral imager within a laboratory setting.

To obtain a hyperspectral image with this instrument, the objective lens is translated
across the scene using a compact translation stage travelling at a rate of 0.2 mm/s providing
stable and reliable scene capture that is unaffected by factors such as operator shake. Using
this method, a full hyperspectral scene could be captured in 1 min. The scanning range is
determined by the fore optics, and, as such, can be altered/replaced to better fit a range of
larger and smaller targets e.g., using scanning mirrors or microscope coupling respectively.
Illumination under laboratory conditions is provided by a 20 W LED lamp. The instrument
is controlled using HC Image Live (version 4.3.1.30, Hamamatsu) software. The software
can be used to tailor the camera settings to the specifics of the chosen application; factors
such as exposure time, and image dimensions can be altered by the operator. Similarly, the
focal length, and working distance can be altered to best fit the chosen scene. The settings
utilised for the data capture discussed within this article are shown in Table 2. After data
capture was completed the hyperspectral data cube was built within MATLAB to create
a visual representation of the acquired dataset. Spectral datasets were also corrected for
sensor and illumination biases within this software allowing the true spectral response
curves of each target scene to be extracted for further examination and analysis. To do
this, white and dark references were obtained during the image capture phase. Note the
white reference utilised was a piece of matt white card illuminated in the same manner as
the target scene. Figure 4 shows the workflow required to capture a hyperspectral image,
highlighting the sequence of steps as they were implemented.

Table 2. Data capture settings used for the High-Resolution hyperspectral imager.

Setting

Exposure Time (ms) 60
Wavelength Range (nm) 450–650

Spectral Resolution (FWHM) (nm) 0.29
Spatial Resolution (pixels) 1000 × 1000

Focal Lengths (mm) 18 and 55
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ment, allowing samples from different sources to be accurately compared, a radiometric 
assessment of the optical power represented by each pixel within the image was per-
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formed using a photodiode-based radiometer, described by Zhu et al. [36]. The RG850 
long-pass filter was replaced by a Thorlabs narrow bandpass filter (#FB550-10), centered 
on 550 nm with a FWHM of 10 nm. The reflected optical power collected by the radiometer 
was calculated by comparing the photocurrent measured by the radiometer with and 
without the filter in the optical path. Given that the FOV of the radiometer represented an 
area upon the target of approximately 14 mm in diameter at its 1 m operating distance, 
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be approximately 250.26 μW/m2. The optical power reflected from the illumination refer-
ence target was, therefore, estimated to be 38.51 nW. 

Figure 4. Workflow used to capture a hyperspectral image with the Low-Cost High-Resolution
instrument detailing image acquisition and post processing stages.

Spectral calibration was completed using a Mercury Argon lamp that produced a
series of intense narrow peaks at known wavelengths. In this research we utilised the peaks
present at 546.074 nm and 576.960 nm, as shown in Figure 5. These two known points were
used to calculate the wavelength range and the increment present between each value. The
full width at half maximum (FWHM) was calculated using the 546.074 nm peak and was
found to be two pixels.
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Figure 5. Spectrum captured from a Mercury Argon lamp using the Low-Cost High-Resolution
instrument highlighting the peaks present at 546.074 nm and 576.960 nm that were used to spectrally
calibrate the instrument.

The Instantaneous Field of View (IFOV) for each pixel within the spectrometer image was
measured to be approximately 2 mm × 2 mm (18 mm focal length) and 300 µm × 300 µm
(55 mm focal length) for a 95% energy enclosure at a working distance of 300 mm. The
Total Field of View (TFOV) is determined by the slit height relative to the image circle of
the objective lens and the travel distance of the translation stage. To calibrate the instru-
ment, allowing samples from different sources to be accurately compared, a radiometric
assessment of the optical power represented by each pixel within the image was performed
by measuring the power reflected by the white reference target. This was performed using
a photodiode-based radiometer, described by Zhu et al. [36]. The RG850 long-pass filter
was replaced by a Thorlabs narrow bandpass filter (#FB550-10), centered on 550 nm with a
FWHM of 10 nm. The reflected optical power collected by the radiometer was calculated
by comparing the photocurrent measured by the radiometer with and without the filter in
the optical path. Given that the FOV of the radiometer represented an area upon the target
of approximately 14 mm in diameter at its 1 m operating distance, the reflected power
per unit area, without the filter in place, was calculated from this to be approximately
250.26 µW/m2. The optical power reflected from the illumination reference target was,
therefore, estimated to be 38.51 nW.
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3. Results
Optical Characterisation

To provide a quantifiable measure of the optical abilities of the instrument, the Contrast
Transfer Function (CTF) was calculated for both focal lengths used within this article. The
modulation depth was measured with a Thorlabs R2L2S1N resolution target. Images were
captured of the target and the modulation depth for a number of line pair widths was
calculated (Figure 6). The modulation depth was different for horizontally and vertically
orientated CTF targets. This is due to the scanning nature of the system. The optical
resolution was measured from the horizontal CTF targets (as shown in Figure 6) because the
vertical CTF targets were influenced by small variations in scan speed, minor perturbations
in the translation stage, and the finite slit width. A knife-edge measurement provides a
simple method of determining the point-spread-function of an optical system [37]. The
point-spread-function quantifies the extent to which an optical system can resolve a point
source of light. A knife-edge was, therefore, used to assess the influence of these sources of
error on the resolution. The width in pixels between 5% and 95% of the measured signal
normal to the knife-edge was measured vertically (parallel to the slit) and horizontally
(normal to the slit). Figure 7 shows the horizontal and vertical knife-edge measurements
for both focal lengths. In this figure it is clear that the vertical knife-edge measurements
are better than the horizontal measurements, as expected. However, given the discrepancy
of one pixel for the 18 mm focal length, and two pixels for the 55 mm focal length, this
difference does not appear to be great enough to significantly influence the quality of
output datasets acquired with this instrument.
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4. Discussion
Example Application

To demonstrate both the spectral and spatial abilities of the Low-Cost High-Resolution
hyperspectral imager within an environmental monitoring-based application, we chose to
focus within the field of mineralogy. In Section 1 we highlighted the importance of resolving
highly detailed spectral and spatial datasets within this discipline, therefore, through the
following measurements we aim to highlight the efficacy of our instrumentation within
this important area of research. Furthermore, the existing literature highlights the general
absence of low-cost hyperspectral imaging applications within this domain, therefore, we
aim to provide a foundation for further developments in low-cost hyperspectral imaging
techniques within this field.

A variety of rock samples exhibiting intricate crystal structures and surface variations
were imaged to demonstrate the clarity of datasets the instrumentation was capable of
capturing. Figure 8 shows a gneiss sample with characteristic banding. Looking at the
hyperspectral frames of this sample, the quality of the spatial data resolution is clearly
demonstrated. The sample can be clearly identified within the hyperspectral data, and
exact locations can be determined for further, more detailed analysis if required. This is of
significant benefit within the field of mineralogy, enabling the precise spectral response of
specific sample locations to be observed and monitored effectively.
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Figure 8. Hyperspectral image frames of a gneiss sample demonstrating the spatial resolution of this
instrument. Characteristic banding and surface features are clearly visible within the hyperspectral
data and can be easily related to their specific location on the original target. The image on the left is
a standard color image of the sample and the hyperspectral images are on the right-hand side of the
figure. The hyperspectral images are just one slice through the data cube that contains 689 discrete
wavelength values. RGB frames represent the availability of different wavelength frames within the
hyperspectral data cube.
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Similarly, when presented with a more complex target, the instrument was shown to
perform well. Figure 9 demonstrates this using a basalt sample with plagioclase feldspars.
The figure highlights this sample has a greater surface complexity with irregular surface
variations, and bubble structures present alongside the feldspar features. This provides
a much greater challenge for effective hyperspectral image collection; however, this fig-
ure demonstrates that the Low-Cost High-Resolution instrument is capable of accurately
detecting these irregular features, clearly identifying individual mm-scale targets.
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Figure 9. Two hyperspectral image frames of a basalt sample compared to standard color images.
Note the clarity of the surface features within the hyperspectral frames allowing clear differentiation
between feldspar and surface features. The hyperspectral images are just one slice through the data
cube that contains 689 discrete wavelength values. RGB frames represent the availability of different
wavelength frames within the hyperspectral data cube.

It should be noted that the hyperspectral image frames shown within the figures of
this article only represent single slices of a data cube spanning 689 discrete wavelength
values. This means that for each imaged scene the instrument builds a 689 Mega Pixel (MP)
image (1000 × 1000 × 689). Each image frame, therefore, represents a small piece of the
total data available. This is demonstrated in Figure 10 which shows the spectral graphs
that demonstrate the wealth of underlying data. Subtle changes in spectral response can
be accurately attributed to specific locations by effectively visualizing these small-scale
features within the hyperspectral images. Figure 10 shows a sample of glacial debris with
clear variations across its surface. These variations can be clearly identified within the
graphed spectral responses. Furthermore, the spectral response recorded across this target
correlates well with expectation; areas of the rock surface display a generally brighter
response across the visible spectrum, whilst areas with orange pigmentation display more
limited reflectance across shorter wavelengths.
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the spectral curves shown in (B).
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This is further demonstrated in Figure 11, which shows the spectral and spatial
information captured for a sample of lapis lazuli. The hyperspectral data clearly shows
a distinct peak in reflectance across blue wavelengths followed by a steady decline in
reflectance towards red wavelengths, with areas of lighter, near-white, surface pigment
becoming more obvious, across these generally darker wavelengths. This response is to
be expected given the distinct visual coloring of the sample, and correlates well with the
spectral response graph (Figure 12), which, in turn, matches with the known spectral
response of this target [38].
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cation of specific areas of spectral change is of significant benefit to a broad range of envi-
ronmental monitoring applications and beyond. By clearly highlighting areas of specific 
spectral change, it can enable targeted analysis and further investigation. This, in turn, ena-
bles the thorough analysis of intended targets with minimal disruption and/or invasive 
analysis. Within the field of mineralogy these benefits can be particularly pertinent, increas-
ing the accuracy of target studies whilst also minimizing the need for invasive investigation. 
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potential to expand the use of low-cost high-resolution hyperspectral instrumentation 

Figure 11. Spectral and spatial information obtained for a sample of lapis lazuli. Note the expected
increase in reflectance across blue wavelengths followed by a steady reduction in reflectance towards
longer wavelengths. The hyperspectral images represent single slices through the data cube that
contains 689 discrete wavelength values. The reconstructed RGB image is created using red-green-
blue equivalent images taken from the hyperspectral data cube.
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Figure 12. Spectral data obtained from a sample of lapis lazuli. Deviations from the laboratory-
measured spectrum are associated with regions of low signal within the illumination spectrum. Note
the correlation between the spectral response curve and the spectral-spatial data shown in Figure 11.

The data discussed above clearly demonstrates the high spatial and spectral resolu-
tion achievable with the Low-Cost High-Resolution hyperspectral imager. The accurate
identification of specific areas of spectral change is of significant benefit to a broad range
of environmental monitoring applications and beyond. By clearly highlighting areas of
specific spectral change, it can enable targeted analysis and further investigation. This, in
turn, enables the thorough analysis of intended targets with minimal disruption and/or
invasive analysis. Within the field of mineralogy these benefits can be particularly perti-
nent, increasing the accuracy of target studies whilst also minimizing the need for invasive
investigation. Furthermore, these benefits remain in high demand across a broad range of
applications, particularly within a low-cost, more accessible alternative. There is, therefore,
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significant potential to expand the use of low-cost high-resolution hyperspectral instrumen-
tation across a variety of fields and disciplines. The datasets discussed within this article
have shown the Low-Cost High-Resolution instrument to be capable of highly detailed
data capture and analysis, demonstrating it to be a valuable addition to the research field.

The ability to capture high-resolution hyperspectral datasets using low-cost com-
ponents outside of a laboratory setting is highly sought-after, enabling non-invasive in
situ analyses, and removing the need for sample collection and preparation. This would
be of significant benefit to a broad range of applications, particularly where vulnerable
and/or fragile environmental settings are the focus of the intended study. The Low-Cost
High-Resolution hyperspectral imager provides an opportunity to continue to improve
the availability and accessibility of hyperspectral imaging techniques, adding to a range of
low-cost alternative devices suitable for a wide variety of situations and application areas.
By demonstrating the abilities of the Low-Cost High-Resolution hyperspectral imager,
we have provided a further step towards this realisation, demonstrating the significant
potential within the continued development of low-cost hyperspectral imaging alternatives.

5. Conclusions

In this article we have successfully demonstrated a low-cost, high-resolution hyper-
spectral imager capable of resolving mm-scale spatial targets. The instrument can produce
a 689 MP image of a chosen scene, with a 50% modulation of 3 lp/mm and 7.1 lp/mm for
focal lengths of 18 mm and 55 mm respectively. The efficacy of this imager was demon-
strated within the field of mineralogy, clearly emphasising its spectral and spatial abilities,
as well as demonstrating its proficiency within, and value to, the field of low-cost hyper-
spectral imaging in environmental monitoring. The instrument was shown to be capable
of resolving a range of mm-scale targets across a variety of samples with different sur-
face features and complexities. The accurate identification of these features within the
hyperspectral data provides substantial benefits, significantly increasing the quality and
accuracy of the acquired hyperspectral datasets without the expected costs. The Low-Cost
High-Resolution hyperspectral imager provides a solid foundation for further innovations
into the development of accessible high-resolution hyperspectral imaging, and in turn
provides a valuable step towards the democratisation of hyperspectral imaging techniques
as a whole.
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