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Background. The purpose of this study was to establish the finite element analysis (FEA) model of acetabular bone defect in Crowe
type II or IIT developmental dysplasia of the hip (DDH), which could evaluate the stability of the acetabular cup with different types
of bone defects, different diameters of femoral ceramic heads, and the use of screws and analyze the stress distribution of screws.
Methods. The FEA model was based on the CT scan of a female patient without any acetabular bone defect. The model of
acetabular bone defect in total hip arthroplasty for Crowe II or III DDH was made by the increasing superolateral bone defect
area of the acetabular cup. Point A was located in the most medial part of the acetabular bone defect. A 52 mm PINNACLE cup
with POROCOAT Porous coating was implanted, and two screws (the lengths were 25 mm and 40 mm) were implanted to fix
the acetabular cup. The stability of the acetabular cup and the von Mises stress of point A and screws were analyzed by a single-
legged stance loading applied in 1948 N (normal working). The different diameters of the femoral ceramic head (28 mm, 32 mm,
and 36 mm) were also analyzed. Results. The von Mises stress of point A was gradually increased with the increasing uncoverage
values. When the uncoverage values exceeded 24.5%, the von Mises stress of point A without screws increased significantly,
leading to instability of the cup. Screws could effectively reduce the von Mises stress of point A with uncoverage values of more
than 24.5%. However, the peak von Mises stress in the screws with the uncoverage values that exceeded 24.5% was considerably
increased. The diameter of the femoral ceramic head had no significant effect on the von Mises stress and the stability of the
acetabular cup. Conclusions. We recommend that uncoverage values of less than 24.5% with or without screw is safe for patients
with Crowe II or III DDH.

1. Introduction

Total hip arthroplasty (THA) is one of the most successful
surgeries in the 20™ century; a gradually increasing amount
of patients with developmental dysplasia of the hip (DDH)
received THA to release pain and improve function [1-3].
Despite their surgical complexity, DDH patients had also
notably low rates of revision and obtained durable clinical
results [2, 4-7]. During THA surgery, an obvious superolat-
eral bone defect has been reported to be frequently observed
above the surface of the acetabular cup at the level of the
true acetabulum, especially in patients with Crowe II or III
DDH [7, 8].

It has been recommended that the acetabular cup
uncoverage should not exceed 30% of its overall surface [9].
If the uncoverage was more than 30%, a structural bone graft-
ing may be needed [10-12]. However, all of these decisions
were made which depended on the intraoperative judgment
of surgeons. There is no previous publication reporting the
specific value of uncoverage in THA of DDH patients.

The aim of this current study was to establish a finite
element analysis (FEA) model of acetabular bone defect in
THA for Crowe II or III DDH, in which the acetabular cup
was positioned at the anatomical center of rotation of the
hip without grafting. Then, the stability of the acetabular
cup with different types of bone defects, different diameters
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of femoral ceramic heads, the use of screws, and the stress
distribution of screws were analyzed.

2. Materials and Methods

The FEA model was based on the geometry of a human
pelvis, obtained from the CT scan of a female patient (body-
weight: 50 kg) without any acetabular bone defect, who signed
an informed consent for this study. The three-dimensional
model of the pelvis was restored using Mimics Research 20.0
(Materialise, Belgium). The STL date of the pelvis was used
to conduct the reverse engineering reconstruction using
Geomagic 2012 (Geomagic, America), which includes seg-
mentation, smoothing, polishing, denoising, and other image
processing of the model. Then, this solid model was generated
into IGES three-dimensional image. We followed the methods
of Fu et al. [13].

According to the actual size of the patient’s acetabulum
and femur, acetabular and femoral prostheses were assem-
bled using Solidworks 2014 (Dassault, France). The acetabu-
lar cup was a 52mm PINNACLE cup with POROCOAT
Porous coating (DePuy, America); cup inclination of 40
degrees and anteversion of 20 degrees were preset using a
coordinate system linked with the pelvis. The ceramic liner
(DePuy, America) and size 9 LCU femoral prosthesis (Link,
Germany) with 28 mm/32 mm/36 mm femoral ceramic head
of different diameters (Link, Germany) were implanted.
When the diameter of the femoral ceramic head was
36mm, two screws (the lengths were 25mm and 40 mm,
and the diameter was 6.5mm) were implanted to fix the
acetabular cup.

The solid model was imported into Ansys Workbench
16.2 (Ansys, America), and Boolean operation was per-
formed. Mesh generation was made after setting up all the
material properties and interfaces. The mesh size was set as
1 mm using an automatic mesh technique, as validated in a
previous study [14]. Element type was chosen as Solid 187.
The material properties used in the model are presented in
Table 1. The friction coefficient between the cup and the bone
was 0.8. And the friction coeflicient between the ceramic liner
and the femoral ceramic head was 0.06 [15].

The model of acetabular bone defect in THA for Crowe II
or III DDH was made as shown in Figures 1(a) and 1(b).
Figure 1(a) shows the sector defect, which was identified by
extending the arc (defined as arc eAf) formed by the bone-
prosthesis border within superolateral bone defect to the
edge which was defined by arc eCf, and the arc AC was the
longest distance from the sector defect [7, 16]. The straight
line ef went through the hip center of rotation (HCOR).
The surface area of the defect gradually increased by the
length of the arc AC, and the angle a denoted the central
angle of the uncovered portion above the cup as shown in
Figure 1(b).

A resultant equivalent load (single-legged stance loading)
was applied without taking account of muscles around the
hip joint. The peak force measurements for the unilateral
hip joint were reported in the majority of literature showing
1948 N for normal working [17, 18]. Fixed constraint bound-
ary conditions were assumed at the sacroiliac joint and pubic
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TaBLE 1: Mechanical properties of materials used in FEA mode.

Elastic Poisson’s
Components Materials modulus ratio
(MPa)
Cortical bone Cortical bone 17300 0.265
Cancellous bone Cancellous bone 400 0.2
Screws
Acetabular component Titanium alloy 110600 0.326
Femoral prosthesis
Ceramic liner Ceramics 350000 0.22

Femoral ceramic head

symphysis (Figure 1(c)). The femur was constrained in all
directions at the middiaphysis, and the simulated vertical
reaction load was applied from the bottom of the femur at
1948 N (Figure 1(d)). Figure 1 shows the general layout used
for these FEA models and the details of components, inter-
faces, load, and constraint boundary. The main analysis was
the effect of bone defect, femoral ceramic head, and screw
on the stability of the acetabular cup.

3. Results

3.1. The Effect of Different Bone Defects and Femoral Ceramic
Head on the Stability of the Acetabular Cup. According to the
result of FEA, the diameter of the femoral ceramic head had
no significant effect on the von Mises stress of point A and
the stability of the acetabular cup. The von Mises stress of
point A was gradually increased with the increasing length
of the arc AC (uncoverage). When the length of the arc AC
exceeded 20 mm (uncoverage > 24.5%, angle « > 44.0%), the
von Mises stress of point A improved significantly, leading
to prosthesis instability (Figure 2).

3.2. The Effect of Screws on the Stability of the Acetabular Cup.
When the diameter of the femoral ceramic head was set on
36mm and two screws were inserted into the acetabular
cup, the von Mises stress of point A with two screws was
12.44 MPa (without screw: 32.98 MPa) on the condition that
the length of arc AC was 24 mm (uncoverage: 29.4%, angle «:
52.8%) and the acetabular cup with two screws had no sign of
instability (Figure 3).

3.3. Stress Distribution of the Screw for Fixing an Acetabular
Cup. The peak von Mises stress of the two screws was located
in the upper 1/3 of the two screws, which was 18.83 MPa
(0 mm), 19.06 MPa (4 mm), 19.71 MPa (8 mm), 21.29 MPa
(12mm), 23.42MPa (16mm), 62.12MPa (20mm), and
62.09 MPa (24 mm), respectively. As the he length of the
arc AC increased, the peak von Mises was gradually moved
down along the screw (Figure 4).

4. Discussion

This current study of a three-dimensional FEA model of ace-
tabular bone defect in THA for Crowe II or III DDH was
constructed from CT scan date and used to analyze the effect
of bone defect, femoral ceramic head, and screws on the
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F1GURE 1: (a) The model of acetabular bone defect in total hip arthroplasty for Crowe II or III DDH. (b) The uncoverage area gradually
increased by the length of the arc AC, and the angle & denoted the central angle of the uncovered portion above the cup. Angle & was
formed by the crossing of line OA and OC. (c) Fixed constraint boundary conditions were assumed at the sacroiliac joint and pubic
symphysis. (d) Simulated vertical reaction load was applied from the bottom of the femur.

stability of the acetabular cup. The results showed that the
diameter of the femoral ceramic head had no significant
effect on the von Mises stress and the stability of the acetab-
ular cup; the acetabular cup primary stability can be achieved
with uncoverage values of less than 24.5% (angle a: 44°) with-
out a screw. Screws could effectively reduce the von Mises
stress of point A with uncoverage values of more than
24.5%. However, the peak von Mises stress in the screws con-
siderably increased.

In Crowe II or III DDH, the superolateral acetabular defi-
ciency prevents placement of a standard cup to inadequate
coverage [16]. Special techniques including high hip center
and bone graft may be necessary to address inadequate osse-
ous coverage of the acetabular cup. There is no standard high
hip center technique to guide the process of acetabular recon-
struction, which leads to the variable clinical outcomes
resulting from the high hip center technique. In addition, it
remains unclear to what extent the high hip center technique
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F1GURE 2: The von Mises stress of point A without screw. (a) The length of arc AC was 0 mm with a 36 mm femoral ceramic head. (b) 4 mm.
(c) 8mm. (d) 12 mm. (e) 16 mm. (f) 20 mm. (g) 24 mm. (h) Relationship between the von Mises stress of point A (MPa) and the length of arc

AC with different diameters of the femoral ceramic head.

Stress of point A (MPa)

0 +— s ——T— T —

0 4 8 12 16 20 24 Arc AC (mm)
0 4.9 9.8 14.7 19.6 24.5 29.4 Uncoverage (%)
0 8.8 17.6 264 35.2 44.0 528 a(°)

—— With screws

—— Without screws

FIGURE 3: Relationship between the von Mises stress of point A
(MPa) and the length of arc AC with and without screw.

restores the normal hip biomechanics [19]. Structural bone
grafting with the acetabular cup at the level of the true acetab-
ulum was another alternative to reconstruct the defect in
DDH patients [20-22]. However, when coverage of the cup
by the autograft did not exceed 50%, there will be a high risk
of failure in the acetabular cup. And the absorption and col-
lapse of structural bone grafting were also other causes for the
failure of structural bone grafting. Therefore, the optimal
acetabular cup position is at the level of the true acetabulum
that restored the HCOR, the limb-length discrepancy (LLD),
and muscle tension around the hip.

Xu et al. [7] measured the three-dimensional coverage
postoperatively in 35 patients (45 hips) with Crowe II or III
DDH, in which the acetabular cup was positioned at the ana-
tomical center of rotation of the hip. Their research results
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FIGURE 4: The stress distribution of the screw for fixing an acetabular cup: (a) 0mm; (b) 4 mm; (c) 8 mm; (d) 12mm; (e) 16 mm; (f)

20 mm; (g) 24 mm.

showed that the postoperative three-dimensional coverage
was 85.74% and the height of the uncovered (the length of
the arc AC in our study) is a useful parameter to determine
the three-dimensional coverage during surgery.

Tikhilov et al. [12] utilized a mathematical computer
model based on the FEA and the mechanical experiment to
estimate the critical values of uncoverage enabling safe pri-
mary fixation of the acetabular cup in arthroplasty patients
with DDH. According to their results, cup prosthesis primary
stability can be achieved with uncoverage values of less than
15-25% without screw fixation and can reach approximately
35% with two-screw fixation. In our study, a possibility of
mounting an acetabular cup with uncoverage within 24.5%
(the length of arc AC: 20mm, angle a: 44°) was demon-
strated. This study was consistent with most previous studies
that the minimal acetabular cup uncoverage should not
exceed 30% of its surface [9-11, 23].

Tikhilov et al. suggested that if extreme uncoverage
values of greater than 35% of the acetabular cup were
observed, screw fixation did not improve reliable primary
stabilization [12]. In our study, the von Mises stress of point
A with two screws was considerably decreased on the condi-
tion that the length of arc AC was 20 mm (uncoverage:
24.5%, angle a: 44°) compared with that without screw.
The use of screws can effectively reduce the stress of point
A and improve reliable primary stabilization of the cup.
However, the peak von Mises stress in the screws for fixing
the acetabular cup with the length of arc AC exceeding
20 mm (uncoverage > 24.5%, angle « > 44.0°) was consider-
ably increased.

There are some limitations. This study investigated an
ideal model and simulated acetabular bone defect in THA
for Crowe II or III DDH which does not necessarily mimic

actual THA surgical environments and the real-life stresses.
Additionally, the angle @ may not be accurate on the X-ray
given complex acetabular bone defects for Crowe II or III
DDH. The intraoperative measuring or CT scan may better
guide patients with early weight-bearing exercises. We
believe our mode may provide a surgical guidance to sur-
geons while performing THA for patients with Crowe II
or III DDH.

5. Conclusions

We recommend that uncoverage values of less than 24.5%
(angle o < 44°) with or without a screw are safe for patients
with Crowe II or III DDH, in which the acetabular cup was
positioned on the anatomical center of rotation of the hip.
The use of screws can effectively improve the reliable primary
stabilization of the cup when the uncoverage values are more
than 24.5%.
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