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ABSTRACT

In order to evaluate cell- and disease-specific changes in the interacting strength of chromatin targets, ChIP-
seq signal across multiple conditions must undergo robust normalization. However, this is not possible
using the standard ChIP-seq scheme, which lacks a reference for the control of biological and experimental
variabilities. While several studies have recently proposed different solutions to circumvent this problem,
substantial analytical differences among methodologies could hamper the experimental reproducibility and
quantitative accuracy. Here, we propose a computational method to accurately compare ChIP-seq experiments,
with exogenous spike-in chromatin, across samples in a genome-wide manner by using a local regression
strategy (spikChIP). In contrast to the previous methodologies, spikChIP reduces the influence of sequencing
noise of spike-in material during ChIP-seq normalization, while minimizes the overcorrection of non-occupied
genomic regions in the experimental ChIP-seq. We demonstrate the utility of spikChIP with both histone
and non-histone chromatin protein, allowing us to monitor for experimental reproducibility and the accurate
ChIP-seq comparison of distinct experimental schemes. spikChIP software is available on GitHub (https:
//github.com/eblancoga/spikChIP).

INTRODUCTION

The development of chromatin immunoprecipitation (ChIP) coupled with the next-generation sequencing (seq) method-
ologies has been pivotal for characterizing the genomic distribution of a vast collection of chromatin-associated proteins,
histone post-translational modifications (PTMs) and histone variants (1–4), and for building the cartography of functional
elements of the human genome in the international collaborative efforts (5–9).

In its traditional scheme, ChIP-seq is essentially a semi-quantitative method that enables the researcher to determine the
relative occupancy of one factor in a given genomic region, with respect to the rest of the genome. However, the semi-
quantitative nature of the ChIP-seq, as well as, multiple sources of biological and technical variability hamper the direct
comparison of ChIP signal strength between different conditions (e.g. cell types, metabolic states or pathological situations)
(10). For instance, an increase in genomic occupancy of a chromatin factor could simply be the result of variability in the
efficiency of immunoprecipitation between experiments. Moreover, while running the sequencer, a standard practice is to
equilibrate the output DNA eluted after the immunoprecipitation by mixing equal proportions of barcoded libraries to run
the samples in a multiplexed manner. Therefore, even a substantial global reduction of a histone variant occupancy per cell
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would remain hidden in a ChIP-seq experiment after normalizing by the total number of reads (10). Although the consistent
replication of ChIP-seq experiments can reveal the biological tendency in the interacting strength of the chromatin factor,
a robust normalizing strategy is required to accurately compare ChIP-seq results across different experimental conditions,
such as different cell types and/or stimulus.

Several groups have pioneered different strategies based on the use of internal reference controls (spike-in), which pro-
vides a feasible solution to accurately normalize and compare ChIP-seq experiments (11–13). The spike-in strategy in
ChIP-seq is based on the initial combination of a set of experimental samples with a fixed amount of exogenous mate-
rial (e.g. cells or chromatin) from another species. As long as the amount of spike-in added is constant, the number of
the reference reads after sequencing is expected to be similar. Therefore, the observable differences in the reads of the
experimental samples across conditions can be exclusively attributed to biological variation. If the read numbers of the
reference genome after sequencing are not the same, by any technical mean, a normalization factor can be easily cal-
culated ad hoc to equilibrate the spike-in signal among samples. The same correction computed from spike-in reads is
then used to normalize the experimental ChIP-seq, thus enabling the fair comparison of the ChIP-seq signal across the
samples.

Despite this common scheme, the different proposed methodologies differ in the computational approach to correct the
spike-in and, consequently, the experimental sample (Supplementary Table S1). For instance, the method named ‘ChIP
with reference exogenous genome’ or ChIP-Rx (11) implements this correction by dividing the total number of mapped
reads per million (RPM) from each experimental ChIP-seq (e.g. human) for the corresponding number of spike-in reads
(e.g. Drosophila melanogaster). Alternatively, the Tag removal method proposes to use the total number of reference reads
to compute a scaling factor for random removal of tags from samples with the higher number of reads (see Materials and
Methods section) (13). Although initially appealing, these normalization methods present in our opinion important short-
comings, such as (i) the spike-in reads mapped not only along the read enriched regions (named ChIP peaks) but also over
the non-enriched background regions are used for computing the correction factor, (ii) the correction factor is uniformly
applied to all experimental reads in the actual experiment, treating both non-specific and specific signal loci with the same
correction value and (iii) the computational removal of informative reads results in the loss of genomic coverage, thus im-
pacting in downstream analyses.

Recently, with the aim of overcoming the limitations of the previous approaches, Guertin et al. proposed a third approach
based on a linear local regression method (14). This approach computes a correction coefficient, defined by a linear regression
model, for the systematic and gradual correction of the pre-defined ChIP-seq peaks from a reference parallel ChIP-seq. This
parallel ChIP-seq is performed to profile the genomic occupancy of a pervasive chromatin factor (e.g. CTCF) whose genomic
distribution is assumed to be unchanged between different cell types and/or treatments and which is clearly distinguishable
from the experimental target (14). Once computed from the reference parallel ChIP-seq, the same coefficient is also used
to correct a pre-defined subset of peaks in the experimental ChIP-seq. The conceptual improvements of this computational
approach stem from the fact that the correction factor gradually increases along with the informative power (as number of
reads) of the peaks. However, the addition of a computational step to pre-select the real signal loci in this strategy could
introduce an additional bias step, as the consistency in the outcome of available peak calling tools is limited (15). In addition,
this analysis would impede the genome-wide evaluation of the signal-to-noise ratio, thereby limiting the informative power
of the ChIP-seq.

In order to overcome the abovementioned obstacles, we developed a novel computational method that performs the genome-
wide normalization of ChIP-seq data adapting the spike-in control correction to the class of genomic region (Figure 1A).
In our view, the spikChIP method offers several benefits, as (i) it normalizes ChIP-seq signal over the complete genome,
and not just from a subset of selected regions; (ii) in order to compute the correction factor, the influence of the reads
from background regions, although dominating over the total number of reads, is minimized; and (iii) the correction factor
derived from the spike-in material is not uniformly applied over all the experimental ChIP signal, instead, it is increasingly
and gradually applied from background to positive ChIP signal regions.

MATERIALS AND METHODS

Description of the spikChIP software

We developed spikChIP as a Perl script that performs the normalization of two or more ChIP-seq experiments with spike-in
according to five distinct strategies of correction: raw, traditional, ChIP-Rx, tag removal and spikChIP. Source data, addi-
tional documentation and several examples of use are freely distributed in GitHub (https://github.com/eblancoga/spikChIP).
In brief, spikChIP is a command-line program running in Linux and Mac OS-X environments that analyzes BAM files of
reads previously aligned to a synthetic genome constituted of a sample genome (e.g. human) and a spike genome (e.g. fruit

https://github.com/eblancoga/spikChIP
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Figure 1. Computational pipeline for normalizing ChIP-seq data using spike-in ChIP-signal in a genome-wide manner. (A) Diagram summarizing the
computational analysis for spikChIP normalization (see Materials and Methods section for details). (B) Scheme representing the locally estimated scat-
terplot smoothing (LOESS) normalization of the spike-in ChIP-seq data (�, �, �, � are distinct correction coefficients calculated from specific bins to
normalize spike-in data, these coefficients are then used to normalize the experimental ChIP-seq). (C) Scheme representing the experimental approach
undertaken in (11) to generate a gradual ChIP-seq signal for H3K79me2.

fly) to assign a normalized value of ChIP signal to each bin of both genomes. We implemented two alternative scoring
schemes: average value and maximum value within a bin. By taking advantage of the location of ChIP-seq peaks previously
computed in BED files, spikChIP is able to classify the bins of normalized values into bins of peaks and background. Users
must provide a configuration file with information about the files of reads and peaks that correspond to each ChIP-seq
experiment that will be analyzed. In addition, it is necessary to provide a file with the list of chromosome names that were
used for the mapping and their sizes in both genomes. The output of spikChIP consists of a series of text files grouped by
normalization strategy, which contain the value assigned to each bin of sample and spike-in genomes. File compression is
implemented and additional options are available to reduce the final output storage space. Moreover, spikChIP generates
boxplots of each corrected distribution of values in both sample and spike-in genomes to evaluate the performance of every
strategy of normalization.
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Genome segmentation in bins of the same size

SpikChIP is able to normalize ChIP-seq experiments with spike-in from samples of virtually any organism. For that, users
must provide a file with the list of chromosomes of the sample genome and the spike-in genome, together with their sizes.
Such files can be easily retrieved from the UCSC genome browser (16). To analyze all the ChIP-seq experiments shown along
this work, we downloaded the genome assembly information of human and the fruit fly (hg19 and dm3, respectively) from
the following sites:

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/chromInfo.txt.gz

chr1 249250621

(...)

http://hgdownload.soe.ucsc.edu/goldenPath/dm3/database/chromInfo.txt.gz

chr2L 23011544

(...)

We have implemented the option in spikChIP to allow users to select the size of the bins for the segmentation. Here, we
performed the normalizations using a bin size of 1 kbp in all the cases shown along this article. Internally, spikChIP generated
each segmentation file of non-overlapping bins of 1 kb in BED format using the following GAWK command (showing the
command for fly only):

% gawk ’BEGIN{OFS = "\t";offset = 999;}{for(i = 1;i<$2-offset;i = i+offset+1) print
$1,i,i+offset;}’ chromInfo.txt > fly 1Kb.bed

chr2L 1 1000

chr2L 1001 2000

chr2L 2001 3000

(...)

In total, after filtering the Het and M chromosome files out, we ended up with 3 095 665 bins for the human genome and
120 397 bins for the fruit fly genome.

Synthesis of the human+fruit fly genome for mapping

First, we merged the full set of chromosomes of each genome assembly (hg19 for human and dm3 for D. melanogaster) in
FASTA format into a single file (genome.fa). Next, to distinguish human from fly sequences after mapping, we appended
the tag ‘ FLY’ to the name of the fly chromosomes in the resulting FASTA file and in the chromInfo.txt file described
above.

>chr1

(...)

>chr2L FLY

(...)

Finally, we used the command bowtie-build from the BOWTIE suite (17) to generate the corresponding indexes for posterior
mapping of the ChIP-seq raw data files.

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/chromInfo.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/dm3/database/chromInfo.txt.gz
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ChIP-seq raw data files and mapping

We defined our initial dataset of H3K79me2 (NCBI GEO series accession: GSE60104) with the samples Ju-
rkat K79 25% R1 (GSM1465005) and Jurkat K79 75% R1 (GSM1465007) from (11). We constructed a second dataset
of H3K79me2 by integrating the samples Jurkat K79 0% R1(GSM1465004), Jurkat K79 50% R1 (GSM1465006), and
Jurkat K79 100% R1(GSM1465008) into the initial set. As a control, we gathered the following samples of H3K4me3
from (11): Jurkat K4 0% R1 (GSM1464999), Jurkat K4 25% R1 (GSM1465000), Jurkat K4 50% R1 (GSM1465001), Ju-
rkat K4 75% R1 (GSM1465002) and Jurkat K4 100% R1 (GSM1465003). We constructed our H3K27me3 dataset (NCBI
GEO series accession GSE64243) from the raw data of the samples PC9 control H3K27me3 Dmspike (GSM1890165) and
PC9 EZH2inh H3K27me3 Dmspike (GSM1890166) from (13). Finally, to define the Estrogen Receptor-alpha (ER) dataset
(NCBI GEO series accession GSE102882), we retrieved the raw data of the samples SLX-8047 1b ER none (GSM2747692),
SLX-8047 1a ER Fulvestrant (GSM2747691), SLX-8047 2b ER none (GSM2747694) and SLX-8047 2a ER Fulvestrant
(GSM2747693) from (14).

Next, for the samples of each dataset, we used BOWTIE (17) to map the FASTQ files of reads over the human+fly genome
indexes described above (BOWTIE parameters -p 4 -t -m 1 -S). Finally, we used SAMTOOLS (18) to filter the unaligned
reads (option -F 0×4) out and, by using the ‘ FLY’ tag, the mapped reads corresponding to the fly spike-in control were
then separated from the human experimental ones into two different BAM files.

ChIP-Rx and Tag removal normalization of the ChIP-seq data values

For each experiment, spikChIP counted the number of reads within each human and fly bin (average or maximum value,
separately) using the function recoverChIPlevels of SeqCode (https://github.com/eblancoga/seqcode). Next, to assign the
final value of one bin depending on the normalization method, spikChIP employed the following transformations (formu-
lated below): (i) absolute values, in millions of reads, which were used as raw values; (ii) absolute values divided by the total
number of human+fly reads per sample, for the traditional normalization; (iii) absolute values divided by the total num-
ber of fly reads per sample, for the ChIP-Rx normalization and (iv) down-sampling of a fraction of human reads from the
experiment with more abundance of spike-in reads respecting the same proportion of fly reads that was observed between
both conditions, for the Tag removal normalization.

(Raw)

Let X be the number of reads counted on a particular bin B, the raw value per bin was calculated as:

Raw (B) = X / 106.

(Standard ChIP-seq normalization)

Let X be the number of reads counted on a particular bin B and N be the total number of human and fly mapped reads, the
traditional value per bin was calculated as:

Standard (B) = X / N.

(ChIP-Rx)

Let X be the number of reads counted on a particular bin B and F be the total number of fly mapped reads, the ChIP-Rx
value per bin was calculated as:

ChIP-Rx (B) = X / F.

(Tag removal)

Let M and N (M < N) the number of spike-in reads mapped over the fruit fly genome for the two conditions studied on
each dataset presented here. We calculated a normalization factor as:

R = M / N.

https://github.com/eblancoga/seqcode
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Next, we used this R factor to down-sample human reads from the experiment with more abundance of spike-in reads (N),
using the command samtools view -h -b -s R -o sample adjusted.bam sample original.bam of the SAMTOOLS (18).

Calculation of local regression normalization of the ChIP-seq data values (SpikChIP)

Local regression methods, in contrast to canonical linear regression techniques, are able to apply different fitting models
to particular subsets or segments of the data, which are identified by the nearest neighbor algorithm. Inspired in a similar
treatment proposed for RNA-seq normalization of the RPKMs of spike-in controls (19), we applied the LOESS function
(LOcally Estimated Scatterplot Smoothing) from the R library affy to the traditional normalization values, to perform the
local regression of data. We instructed the loess function normalize.loess to use the adjustment on the values in the fly spike-
in genome as a subset to guide the normalization of the human values. A pseudo-count of 0.1 was added to each value before
running the normalization function.

More in detail, we concatenated the fly and the human files of bins containing the traditionally normalized values in both
conditions 25:75 and 75:25. The first 120 397 lines of this file corresponded to the fly bins (used as a subset to guide the
LOESS) and the rest of the lines to the human bins (normalized in the LOESS method by the corrections to adjust the
previous subset of bins). Once the normalization was performed, we separated again the human bins from the fly bins into
two different files per ChIP-seq experiment. This procedure can be easily generalized to more than two samples, as the
LOESS function is applicable to multiple conditions.

Discrimination of bins associated to peaks and to background

MACS2 with the –broad option (20) was used to identify the list of ChIP-seq peaks along both genomes in the 25:75 and
75:25 conditions for the H3K79me2 dataset, and for the Control and EZH2 inhibitor conditions of the Tag removal dataset.
As the reference set of peaks for further analysis at each case, we selected the sample in which a higher number of peaks was
reported (25:75 and Control, respectively) To distinguish between bins that contain ChIP-seq peaks and bins that constitute
the background, we calculated the overlap between MACS peaks and the coordinates of the segmentation bins at human
and fly chromosomes described above with the function matchpeaks of the SeqCode package (https://github.com/eblancoga/
seqcode). A similar procedure with MACS2 peak calling was adapted for the rest of datasets: H3K27me3 (broad option),
H3K4me3 (default, no broad peaks) and ER (default, no broad peaks).

Generation of profiles for the UCSC genome browser

Resulting files of normalized values can be converted into BedGraph profiles to upload in genome browsers with a series of
simple bash commands. The following spikChIP output line

#bin info corrected value 1 corrected value 2

chr1*1*1001 0.0997764035926034 0.100224097481314

can be translated into the next BedGraph lines (one per condition/profile)

chr1 1 1001 0.0997764035926034 and

chr1 1 1001 0.100224097481314 with the independent commands below:

zcat results/FINAL EXAMPLE SPIKCHIP 1000 avg normalized sample.txt.gz | sed ’s/\*/ /g’ |
gawk ’{print $1,$2,$3,$4}’

zcat results/FINAL EXAMPLE SPIKCHIP 1000 avg normalized sample.txt.gz | sed ’s/\*/ /g’ |
gawk ’{print $1,$2,$3,$5}’

https://github.com/eblancoga/seqcode


NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 3 7

RESULTS

Benchmarking spikChIP: a novel local regression method for comparative analysis of ChIP-seq in a genome-wide manner

Our approach, inspired by the spike-in-based RNA-seq quantification methods (19,21), shares conceptual similarities with
the recent linear local correction approach (14) and consists in the application of a local regression, in this case, over the read
counts of all the genome-wide bins determined along the chromosomes (see Materials and Methods section). Thereby, our
method can introduce a distinct correction factor to each bin in the genome, depending on its class. First, a local regression
(LOESS) is computed from the read counts on bins in the spike-in genome in order to accommodate the two ChIP-seq
conditions compared into the same best-fit line (Figure 1A and B). Next, the values from the real experiment (experimental
reads) are corrected following the previous local normalization calculated using the spike-in bins (Figure 1A). Under this
approach, the adjustment on a region containing a true ChIP-seq signal is expected to be substantially higher than the
change computed for bins with a background signal.

To assess the accuracy of our proposal, we compared the performance of spikChIP with the ChIP-Rx (11) and Tag removal
(13) strategies on a reference dataset. We took advantage of the available ChIP-seq data published by Guenther et al. that
included fly material as spike-in control (11). In this study, the authors artificially generated a pre-defined ChIP signal
gradient for the di-methylation of lysine-79 of histone H3 (H3K79me2), a histone mark deposited on the initial 5′-end of
genes and that typically constitutes a small fraction (∼2.8%) of total histone H3 in cancer cells (22). To achieve a controlled
range of distinct conditions, they mixed different proportions of Jurkat cells that had been untreated or treated with a
selective inhibitor for the H3K79-methyltranferase DOT1L (EPZ5676). The mixture aims to reflect the global change in
the average H3K79me2 level per cell. Finally, a constant amount of fly cells was used as an internal reference control for
normalization. Once mixed, the sample and the spike-in material are captured using the same antibody against H3K79me2,
since the epitope is highly conserved between human and flies.

For our benchmarking, we initially selected two intermediate conditions: (i) the 25:75 (DMSO:EPZ5676) proportion, which
has higher levels of H3K79me2 and (ii) the 75:25 proportion, with lower levels of H3K79me2 (Figure 1C). As indicated in
our computational pipeline (Figure 1A), first we mapped the resulting sequencing reads to an artificial genome in which we
included the human and the fruit fly chromosomes (see Materials and Methods section). Next, we segmented the genomes of
the sample (human) and the spike-in control (fly) into bins of 1 kbp. The selection of this size was based on finding a balance
between ChIP-seq resolution, and the computational memory demand and running time required for a more compact bin
segmentation. After separating the mapped reads into human and fly, we calculated the corresponding ChIP-seq value
of H3K79me2 in both conditions within all bins from both genome segmentations (see Materials and Methods section).
These initial values, which were not corrected by any normalization method, were considered to be the raw value (Figure
1A). We then employed the spike-in raw reads to compute the normalization based on the ChIP-Rx, Tag removal, or our
spikChIP approaches (Figure 2A). For ChIP-Rx and Tag removal correction, we used the total number of aligned fly reads
to calculate a normalizing factor (ChIP-Rx) or scaling factor (Tag removal), to equilibrate the ChIP signal or the number
of reference reads, respectively, as previously suggested (11,13). For spikChIP, we first normalized the spike-in sample for
the total number of reads and then applied the LOESS correction in the fly bins to the best fit-line (Figure 2A and B). As
when applying spikChIP, the normalization factors applied over the reference genome (bins of 1 kbp) depend on the signal
strength, our method results in a slight improved equilibration of spike-in ChIP signal between samples (see slope on Figure
2).

Then, we used the same correction factors to normalize the human experimental bins (Figures 3 and 4). An appropriately
analytical normalization using spike-in should display a qualitative and quantitative difference between both experimen-
tal ChIP signals in ChIP-seq peaks of H3K79me2 (∼2% of total read, Figure 4A), while keeping their background levels
equilibrated, respectively. As shown in Figure 3, either using the ChIP-Rx, Tag removal or spikChIP normalization, ChIP
signal strength on enriched loci (Figure 3, the genomic region marked with a gray box) is remarkably different between
the 25:75 and the 75:25 samples. However, after a detailed inspection over the background regions, we consistently found a
sustained increase also in such areas when using the ChIP-Rx or Tag removal correction (Figure 3, vertical scaling). These
genome-wide changes observed in the target occupancy over the background are misleading since the genomic distribution
of H3K79me2 must be considered to be equivalent between both samples, resulting from mixing the same samples with
different proportions. Instead, when using spikChIP, the ChIP signal at background regions remains equivalent between the
samples (Figure 3).

Indeed, the genome-wide difference in the ChIP signal (25:75 versus 75:25) over the bins belonging to H3K79me2 peaks
is consistently increased, either using ChIP-Rx, Tag removal normalization or the spikChIP approach (Figure 4B and C).
However, the ChIP-Rx and Tag removal normalizations result in a disproportionate correction over the non-enriched back-
ground genomic bins (∼20–25% difference in the median of ChIP-seq signal, Figure 4B and C). Strikingly, the ChIP-seq
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Figure 2. ChIP-Rx, Tag removal and spikChIP normalization of the reference genome. The Drosophila genome is segmented in 1 kb bins. For each bin
(dot), the average ChIP-seq signal for H3K79me2 on 75:25 (y-axis: 8 554 870 reads) versus 25:75 (x-axis: 6 226 309 reads) is represented before normalization
(A, raw) and (B) after ChIP-Rx, Tag removal and spikChIP normalizations. Linear regression line is depicted in blue and the y = x line in dotted orange.

signal at background regions remains equilibrated after spikChIP correction (<5% difference in the median of ChIP-seq
signal) between both conditions (Figure 4B and C). These results indicate that spikChIP enables the normalization of ChIP-
seq experiments, with exogenous spike-in, in a genome-wide manner, by applying a gradual and progressive correction of
ChIP-seq signal from background to enriched read regions.

SpikChIP application to multiple samples and distinct histone marks

Under certain circumstances, the comparison of ChIP-seq data will involve more than two samples. To fulfill this need, we
have generalized the spikChIP method to compare any number of ChIP-seq experiments and generate the resulting nor-
malization values by applying the same local regression function to multiple samples at once. As shown in Supplementary
Figure S1a, after spikChIP normalization we detected gradual reduction of H3K79me2 ChIP signal from untreated control
to EPZ5676-treated cells, including intermediate samples with different proportion of these cells (25:75, 50:50 and 75:25)
up to a total of five samples. While the gradual ChIP signal reduction is observed at enriched peak loci, background re-
gions remain equilibrated when applying spikChIP, but not when using ChIP-Rx or Tag removal strategies. Importantly, by
normalizing H3K4me3 ChIP data from these cells, a histone mark unaffected by the EPZ5676 treatment (11), we detected
equivalent ChIP-seq signal levels in both peak and background regions (Supplementary Figure S1b).

To rule out that this major improvement in the detection of H3K79me2 changes over peaks and not over background
regions is exclusive of such a particular histone mark, we set out to additionally evaluate the performance of spikChIP,
using an independent second dataset (13). Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase
enzyme responsible for the methylation of lysine 27 on histone H3 (H3K27) (23). GSK126 is a potent selective inhibitor
of EZH2, which induces a global reduction of H3K27me3 in cancer cell lines (24). In particular, Egan and collaborators
showed a global reduction of H3K27me3 in PC9 lung adenocarcinoma cells treated 5 days with 1 �M of GSK126 (13).
The authors performed chromatin preparation from both control and GSK126 treated cells, which was mixed with an equal
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amount of Drosophila chromatin, as spike-in. Then, ChIP was performed, using a mixture of two specific antibodies against
the H3K27me3 and D. melanogaster-specific histone variant His2Av (H2Av), and the resulting material was processed by
massive parallel sequencing (13). Similarly to the previous H3K79me2 dataset, we processed the read counts of H3K27me3
ChIP-seq in both conditions using ChIP-Rx, Tag removal and spikChIP normalization strategies (Supplementary Figure
S2). Nevertheless, the impact of spikChIP on equilibrating the reference ChIP signal between both samples was striking for
the gradual normalization applied on genomic bins (Supplementary Figure S2; P-value for the remaining differences in the
spike-in ChIP signal distribution after computational normalization, Wilcoxon test; ChIP-Rx P-value<2.2e-16; Tag removal
P-value = 9.611e-14; SpikChIP P-value = 0.01547). When the normalization factors were applied to the experimental ChIP,
we clearly detected the reduction in H3K27me3 ChIP-seq signal upon GSK126 inhibition over the enriched peak regions
(Supplementary Figure S3). However, while ChIP-Rx and Tag removal normalization showed an equivalent reduction of the
signal in either peaks and background regions (∼81–85%), the use of spikChIP enabled to detect a greater effect of GSK126
over peaks with respect to non-enriched regions (69% and 23%, respectively, Supplementary Figure S3), thus affecting the
biological interpretation of the results.

SpikChIP for comparing transcription factor occupancy across samples

Since its development, the ChIP-seq technique has become one of the most widely-used methods in molecular biology (25),
and the universal method to delineate the genome-wide maps of the distribution of histone, as well as non-histone proteins
(e.g. transcription factors [TF] and chromatin remodelers). In addition to the analysis with histone PTMs, we envisioned
that spikChIP could also be applied to accurately compare the genomic occupancy of non-histone proteins, such as TF that
typically display a precise occupancy over their DNA binding sites. To test our hypothesis, we used available ChIP-seq data
for a ligand-activated TF, the estrogen receptor-alpha (ER) (14). This dataset includes ChIP-seq data from breast cancer
cells MCF-7 treated with a selective estrogen receptor (ER) degrader, fulvestrant, thus allowing to compare ER genomic
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occupancy between untreated control and ER-depleted cells (14). Finally, untreated and fulvestrant-treated cells were pre-
mixed with fly chromatin as spike-in reference captured with the specific H2Av antibody, therefore enabling to test the ability
of spikChIP to normalize ChIP-seq from non-histone proteins.

We process the ChIP-seq data similarly to histone PTMs, for ChIP-Rx, Tag removal and spikChIP normalization. As in
the case of H3K27me3 dataset, the spike-in signal adjustment resulted in a more similar distribution between samples when
applying spikChIP (P-value for the remaining differences in the spike-in ChIP signal distribution after computational nor-
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malization, Wilcoxon test; ChIP-Rx P-value = 3.446e-15; Tag removal P-value<2.2e-16; SpikChIP P-value = 0.02066).
Then, after the normalization of the experimental ChIP, as shown in the supertrack from the genome browser (Figure 5A),
and in a quantitative manner in the boxplots (Figure 5B), we could appreciate the loss of ChIP-seq signal both in ER-
occupied as well as over the non-occupied loci on fulvestrant-treated cells, when normalizing the data using ChIP-Rx and
Tag removal strategy. Instead, spikChIP normalization results in an evident loss of signal of ER occupancy over enriched
regions, while as expected, the background signal remains equilibrated between untreated and fulvestrant-treated cells (Fig-
ure 5A and B). Overall, this result supports the application of spikChIP to compare binding occupancy of both histone and
non-histone proteins across multiple samples. To our knowledge, the distinct gradual normalization from background to
positive ChIP signal regions has not previously been considered in any of the existing normalization techniques. We thus be-
lieve our proposal presents a major technical advance for the genome-wide normalization and for comparison of ChIP-seq
experiments.



12 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 3

DISCUSSION

Limitations in the original ChIP-seq scheme, due to potential biases introduced by the technical variabilities, have required
the development of strategies to implement an internal reference control across samples for further comparisons (11–13).
Over the last 7 years, different alternative strategies have been proposed based on the spike-in concept to deal with the
problem of comparability between multiple ChIP-seq samples. The introduction of exogenous spike-in material in the orig-
inal ChIP-seq scheme enables (i) to monitor the quality of the ChIP-seq experiment and the technical variability along the
experimental procedure and (ii) to computationally normalize the sequencing data for comparative analysis of ChIP-seq
experiment in different experimental and/or biological conditions.

Current strategies for ChIP-seq normalization using spike-in diverge in (i) the type of biological material to be used as a
reference sample for normalization, (ii) the capturing method of the spike-in material and (iii) the computational method
used to analyze the sequencing data (Supplementary Table S1). It is important to mention that the adoption of different
strategies can introduce inconsistencies to the final results, as each method presents its own benefits and limitations. In
addition, the existence of several alternatives (Supplementary Table S1) might complicate decision-making for researchers
about when and how to apply a normalization method for comparative analysis of ChIP-seq. With the aim of providing a
practical and unified reference framework for comparative ChIP-seq analysis, here we propose the addition of exogenous
xenogenic fly cells, whenever possible, and the use of a second antibody against a fly-specific histone variant, as a best practice
for comparative ChIP-seq normalization for mammalian genomes (Figure 6).

We recommend using fly material as the spike-in because (i) the genome sequence has been extensively assembled; (ii) the
fly chromatin has been largely characterized at epigenetic levels; (iii) the evolutionary distance between fly and mammalian
genomes is sufficient to allow an unambiguous alignment of the reads (11,13) and (iv) fly cells are relatively easy to culture
with standard tissue culture procedures and instruments. The addition of xenogenic cells of the spike-in material enables
the whole procedure to be monitored from the beginning, thereby minimizing the impact of technical variabilities for the
biological interpretation. Further, by mixing cells, it is possible to tackle eventual changes in genomic ploidy (e.g. due to
genomic instability or differences in cell cycle progression), thereby providing an estimation of the average ChIP-seq signal
per cell. This quantitative estimation is not possible when mixing fragmented chromatin. However, the option of mixing cells
is only available when the number of cells can be evaluated accurately (e.g. cells growing on a dish), or when the experimental
sample and spike-in material are fragmented with the same settings. On the contrary, when the number of cells in the sample
is uncertain (e.g. animal tissue samples) or when the experimental sample and spike-in material require different settings for
fragmentation, the addition of the fragmented spike-in material at the chromatin level is a more appropriate option. The use
of a second antibody, for a fly-specific histone variant (H2Av) to capture the spike-in material, avoids the cross-reactivity
constraint of the experimental antibody and to reduce any potential variability due to competition between the spike-in
control and the experimental material, which usually exceeds the amount of spike-in material by far. Moreover, the genomic
occupancy profile of the fly-specific H2Av is already characterized (13), thus providing a control point for assessing ChIP-seq
performance.

These guidelines take into consideration that (i) spike-in material should be present in all samples at equal amounts at the
earliest step during the ChIP-seq procedure and (ii) spike-in material should be present in a low-enough quantity (giving a
significantly lower number of reads as that of the experimental reads) to not interfere with the actual ChIP-seq experiment
yet still give an accurate normalization in the final sequencing data. As previously reported, the number of spike-in reads
in the final sequencing step should be at least one million reads, and approximately, 2%–5% of the experimental genome,
to minimize the changes in overall material used for ChIP-seq (11,13). This final amount of reads can be influenced by
the ratio of the mixture as well as by the quality of the antibody and/or the abundance of the target in the experimental
condition. Taking into account these considerations, and the relative ratio between the size of the fly genome and the two
most widely used mammalian experimental models (mouse and human), we recommend the use of different final mixtures
(Figure 6).

Finally, at the computational level, spikChIP methodology has shown to be very effective for the precise comparison of
ChIP signals across samples without a pre-defined selection of the loci. Indeed after normalization, spikChIP generates
consistently a tight adjustment in the spike-in ChIP signal across the genome between each pair of ChIP-seq conditions,
independently of the experimental dataset. Moreover, SpikChIP is able to correct for possible technical bias and to compute
a local correction factor, thereby minimizing the impact of the correction over non-occupied genomic regions. According to
proteomic quantification, certain histone modifications are present in a relatively high abundance over the total histone H3.
For instance, H3K9me2 and H3K27me2 typically represent 30–40% of total histone H3 in human cancer cell lines (22,26).
In the case of H3K27me2 mark, this percentage can increase up to 70% of total H3 in mouse embryonic stem cells, and it
displays a pervasive distribution over large genomic regions (27). In contrast, H3K27me3, which represents only 7% of his-
tone H3 in mouse embryonic stem cells, preferentially accumulates over CpG-dense promoters of transcriptionally repressed
genes (27). Thus, while global reduction of H3K27me2 would be observed over large genomic regions, H3K27me3 overall
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experiments. In our roadmap, we state some key questions that are relevant for deciding which type of spike-in to add (e.g. fly cells or fragmented chromatin).
From top to the bottom; in case we can count the number of our experimental cells, and the chromatin fragmentation settings of our experimental samples
and the spike-in reference are the same, we recommend to pre-mix sample and spike-in cells. This would enable to monitor all the ChIP procedure from the
beginning and will allow us to evaluate the average spike-in signal per cell equivalent among the samples. In case that any of these experimental premises
fail (e.g. number of experimental cells is uncertain, or the settings to fragment the chromatin from the samples and spike-in is very different), we should
consider the preparation of the experimental and spike-in chromatin separately. The amount of spike-in material to mix will depend on the yield of the
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reduction would be confined (in the absence of a genomic redistribution) to discrete CpG-rich promoters. In the case of our
benchmarking histone mark (H3K79me2), these specific changes of ChIP signal only over enriched regions are expected to
be even more evident since this histone mark represents a small fraction of all histone H3 in cancer cells (<3% (22)) and
displays a characteristic accumulation at 5´-end of transcriptionally active genes (11). Remarkably, in our benchmark the
potential changes in the redistribution of H3K79me2 across the experiments are negligible, as in the experimental scheme
untreated and EPZ5676-treated cells are mixed in different proportions to simulate the gradual reduction of the H3K79me2
mark. Finally, in contrast to histone PTMs, transcription factors are predominantly allocated within the DNA-binding site,
thus displaying a characteristic discrete genomic localization. We found that using spikChIP, while correcting the ChIP-seq
signal over the enriched loci, the background ChIP signal of both histone and non-histone proteins is equilibrated, thus
increasing the biological interpretation while comparing ChIP-seq across samples. To conclude, we strongly believe that the
systematic use of spike-in references in the ChIP-seq experiments will provide a more precise picture of the dynamics of the
epigenome in different conditions.
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DATA AVAILABILITY

The source code for SpikChIP is available in an online repository (https://github.com/eblancoga/SpikChIP). The datasets
reanalyzed in this study are deposited in Gene Expression Omnibus (GEO) repository under the accession numbers
GSE60104, GSE64243 and GSE102882. We have deposited all normalized tracks generated by spikChIP in this UCSC
session: https://genome.ucsc.edu/s/DiCroceLab/spikChIP NAR%2DGB 2021.
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Supplementary Data are available at NARGAB Online.
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